1
|
Majikes JM, Cho S, Cleveland TE, Liddle JA, Balijepalli A. Variable gain DNA nanostructure charge amplifiers for biosensing. NANOSCALE 2024; 16:20893-20902. [PMID: 39403767 DOI: 10.1039/d4nr02959c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Electronic measurements of engineered nanostructures comprised solely of DNA (DNA origami) enable new signal conditioning modalities for use in biosensing. DNA origami, designed to take on arbitrary shapes and allow programmable motion triggered by conjugated biomolecules, have sufficient mass and charge to generate a large electrochemical signal. Here, we demonstrate the ability to electrostatically control the DNA origami conformation, and thereby the resulting signal amplification, when the structure binds a nucleic acid analyte. Critically, unlike previous studies that employ DNA origami to amplify an electrical signal, we show that the conformation changes under an applied field are reversible. This applied field also simultaneously accelerates structural transitions above the rate determined by thermal motion. We tuned this property of the structures to achieve a response that was ≈2 × 104 times greater (i.e., a gain or amplification) than the value from DNA hybridization under similar conditions. Because this signal amplification is independent of DNA origami-analyte interactions, our approach is agnostic of the end application. Furthermore, since large signal changes are only triggered in response to desirable interactions, we minimize the deleterious effects of non-specific binding. The above benefits of self-assembled DNA origami make them ideally suited for multiplexed biosensing when paired with highly parallel electronic readout.
Collapse
Affiliation(s)
- Jacob M Majikes
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Seulki Cho
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Thomas E Cleveland
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - J Alexander Liddle
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Arvind Balijepalli
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
2
|
Siu RHP, Jesky RG, Fan YJ, Au-Yeung CCH, Kinghorn AB, Chan KH, Hung IFN, Tanner JA. Aptamer-Mediated Electrochemical Detection of SARS-CoV-2 Nucleocapsid Protein in Saliva. BIOSENSORS 2024; 14:471. [PMID: 39451684 PMCID: PMC11505747 DOI: 10.3390/bios14100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
Gold standard detection of SARS-CoV-2 by reverse transcription quantitative PCR (RT-qPCR) can achieve ultrasensitive viral detection down to a few RNA copies per sample. Yet, the lengthy detection and labor-intensive protocol limit its effectiveness in community screening. In view of this, a structural switching electrochemical aptamer-based biosensor (E-AB) targeting the SARS-CoV-2 nucleocapsid (N) protein was developed. Four N protein-targeting aptamers were characterized on an electrochemical cell configuration using square wave voltammetry (SWV). The sensor was investigated in an artificial saliva matrix optimizing the aptamer anchoring orientation, SWV interrogation frequency, and target incubation time. Rapid detection of the N protein was achieved within 5 min at a low nanomolar limit of detection (LOD) with high specificity. Specific N protein detection was also achieved in simulated positive saliva samples, demonstrating its feasibility for saliva-based rapid diagnosis. Further research will incorporate novel signal amplification strategies to improve sensitivity for early diagnosis.
Collapse
Affiliation(s)
- Ryan H. P. Siu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (R.H.P.S.); (R.G.J.); (C.C.H.A.-Y.); (A.B.K.)
| | - Robert G. Jesky
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (R.H.P.S.); (R.G.J.); (C.C.H.A.-Y.); (A.B.K.)
| | - Yu-Jing Fan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; (Y.-J.F.); (I.F.-N.H.)
| | - Cyrus C. H. Au-Yeung
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (R.H.P.S.); (R.G.J.); (C.C.H.A.-Y.); (A.B.K.)
| | - Andrew B. Kinghorn
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (R.H.P.S.); (R.G.J.); (C.C.H.A.-Y.); (A.B.K.)
| | - Kwok-Hung Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, China;
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; (Y.-J.F.); (I.F.-N.H.)
| | - Julian A. Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (R.H.P.S.); (R.G.J.); (C.C.H.A.-Y.); (A.B.K.)
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong SAR, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518000, China
| |
Collapse
|
3
|
Sankar K, Kuzmanović U, Schaus SE, Galagan JE, Grinstaff MW. Strategy, Design, and Fabrication of Electrochemical Biosensors: A Tutorial. ACS Sens 2024; 9:2254-2274. [PMID: 38636962 DOI: 10.1021/acssensors.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Advanced healthcare requires novel technologies capable of real-time sensing to monitor acute and long-term health. The challenge relies on converting a real-time quantitative biological and chemical signal into a desired measurable output. Given the success in detecting glucose and the commercialization of glucometers, electrochemical biosensors continue to be a mainstay of academic and industrial research activities. Despite the wealth of literature on electrochemical biosensors, reports are often specific to a particular application (e.g., pathogens, cancer markers, glucose, etc.), and most fail to convey the underlying strategy and design, and if it is transferable to detection of a different analyte. Here we present a tutorial review for those entering this research area that summarizes the basic electrochemical techniques utilized as well as discusses the designs and optimization strategies employed to improve sensitivity and maximize signal output.
Collapse
|
4
|
Kadan-Jamal K, Jog A, Sophocleous M, Dotan T, Frumin P, Kuperberg Goshen T, Schuster S, Avni A, Shacham-Diamand Y. Sensing of gene expression in live cells using electrical impedance spectroscopy and DNA-functionalized gold nanoparticles. Biosens Bioelectron 2024; 252:116041. [PMID: 38401280 DOI: 10.1016/j.bios.2024.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 02/26/2024]
Abstract
A novel electrical impedance spectroscopy-based method for non-destructive sensing of gene expression in living cells is presented. The approach used takes advantage of the robustness and responsiveness of electrical impedance spectroscopy and the highly specific and selective nature of DNA hybridization. The technique uses electrical impedance spectroscopy and gold nanoparticles functionalized with single-stranded DNA complementary to an mRNA of interest to provide reliable, real-time, and quantifiable data on gene expression in live cells. The system was validated by demonstrating specific detection of the uidA mRNA, which codes for the β-glucuronidase (GUS) enzyme, in Solanum lycopersicum MsK8 cells. Gold nanoparticles were functionalized with single-stranded DNA oligonucleotides consisting of either a sequence complementary to uidA mRNA or an arbitrary sequence. The DNA-functionalized gold nanoparticles were mixed with cell suspensions, allowing the gold nanoparticles to penetrate into the cells. The impedance spectra of suspensions of cells with gold nanoparticles inserted within them were then studied. In suspensions of uidA-expressing cells and gold nanoparticles functionalized with the complementary single-stranded DNA oligonucleotide, the impedance magnitude in the frequency range of interest was significantly higher (146 %) in comparison to all other controls. Due to its highly selective nature, the methodology has the potential to be used as a precision agricultural sensing system for accurate and real-time detection of markers of stress, viral infection, disease, and normal physiological activities.
Collapse
Affiliation(s)
- Kian Kadan-Jamal
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Aakash Jog
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.
| | - Marios Sophocleous
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Research & Development Department, eBOS Technologies Ltd., Nicosia, Cyprus
| | - Tali Dotan
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Polina Frumin
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | | | - Silvia Schuster
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Adi Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Yosi Shacham-Diamand
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Scojen Institute of Synthetic Biology, Reichmann University, Herzliya, Israel
| |
Collapse
|
5
|
Quazi MZ, Choi JH, Kim M, Park N. DNA and Nanomaterials: A Functional Combination for DNA Sensing. ACS APPLIED BIO MATERIALS 2024; 7:778-786. [PMID: 38270150 DOI: 10.1021/acsabm.3c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Recent decades have experienced tough situations due to the lack of reliable diagnostic facilities. The most recent cases occurred during the pandemic, where researchers observed the lack of diagnostic facilities with precision. Microorganisms and viral disease's ability to escape diagnosis has been a global challenge. DNA always has been a unique moiety with a strong and precise base-paired structure. DNA in human and foreign particles makes identification possible through base pairing. Since then, researchers have focused heavily on designing diagnostic assays targeting DNA in particular. Moreover, DNA nanotechnology has contributed vastly to designing composite nanomaterials by combining DNA/nucleic acids with functional nanomaterials and inorganic nanoparticles exploiting their physicochemical properties. These nanomaterials often exhibit unique or enhanced properties due to the synergistic activity of the many components. The capabilities of DNA and additional nanomaterials have shown the combination of robust and advanced tailoring of biosensors. Preceding findings state that the conventional strategies have exhibited certain limitations such as a low range of target detection, less biodegradability, subordinate half-life, and high susceptibility to microenvironments; however, a DNA-nanomaterial-based biosensor has overcome these limitations meaningfully. Additionally, the unique properties of nucleic acids have been studied extensively due to their high signal conduction abilities. Here, we review recent studies on DNA-nanomaterial-based biosensors, their mechanism of action, and improved/updated strategies in vivo and in situ. Furthermore, this review highlights the recent methodologies on DNA utilization to exploit the interfacial properties of nanomaterials in DNA sensing. Lastly, the review concludes with the limitations/challenges and future directions.
Collapse
Affiliation(s)
- Mohzibudin Z Quazi
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Jang Hyeon Choi
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Minchul Kim
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Nokyoung Park
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| |
Collapse
|
6
|
Oliveira LS, Avelino KYPS, Oliveira SRDE, Lucena-Silva N, de Oliveira HP, Andrade CAS, Oliveira MDL. Flexible genosensors based on polypyrrole and graphene quantum dots for PML/RARα fusion gene detection: A study of acute promyelocytic leukemia in children. J Pharm Biomed Anal 2023; 235:115606. [PMID: 37544275 DOI: 10.1016/j.jpba.2023.115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Acute promyelocytic leukemia (APL) in children is associated with a favorable initial prognosis. However, minimal residual disease (MRD) follow-up remains poorly defined, and relapse cases are concerning due to their recurrent nature. Thus, we report two electrochemical flexible genosensors based on polypyrrole (PPy) and graphene quantum dots (GQDs) for label-free PML-RARα oncogene detection. Atomic force microscopy (AFM), scanning electron microscope (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used to characterize the technological biosensor development. M7 and APLB oligonucleotide sequences were used as bioreceptors to detect oncogenic segments on chromosomes 15 and 17, respectively. AFM characterization revealed heterogeneous topographical surfaces with maximum height peaks for sensor layers when tested with positive patient samples. APLB/Genosensor exhibited a percentage change in anode peak current (ΔI) of 423 %. M7/Genosensor exhibited a ΔI of 61.44 % for more concentrated cDNA samples. The described behavior is associated with the biospecific recognition of the proposed biosensors. Limits of detection (LOD) of 0.214 pM and 0.677 pM were obtained for APLB/Genosensor and M7/Genosensor, respectively. The limits of quantification (LOQ) of 0.648 pM and 2.05 pM were estimated for APLB/Genosensor and M7/Genosensor, respectively. The genosensors showed reproducibility with a relative standard deviation of 7.12 % for APLB and 1.18 % for M7 and high repeatability (9.89 % for APLB and 1.51 % for M7). In addition, genetic tools could identify the PML-RARα oncogene in purified samples, plasmids, and clinical specimens from pediatric patients diagnosed with APL with high bioanalytical performance. Therefore, biosensors represent a valuable alternative for the clinical diagnosis of APL and monitoring of MRD with an impact on public health.
Collapse
Affiliation(s)
- Léony S Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Karen Y P S Avelino
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Sevy R D E Oliveira
- Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Norma Lucena-Silva
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz), 50670-420 Recife, PE, Brazil; Laboratório de Biologia Molecular, Departamento de Oncologia Pediátrica, Instituto de Medicina Integral Professor Fernando Figueira (IMIP), 50070-550 Recife, PE, Brazil
| | - Helinando P de Oliveira
- Institute Pesquisa em Ciência dos Materiais, Universidade Federal do Vale do São Francisco, Juazeiro, Brazil
| | - Cesar A S Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Maria D L Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
| |
Collapse
|
7
|
Ghorbanizamani F, Moulahoum H, Guler Celik E, Zihnioglu F, Beduk T, Goksel T, Turhan K, Timur S. Design of Polymeric Surfaces as Platforms for Streamlined Cancer Diagnostics in Liquid Biopsies. BIOSENSORS 2023; 13:400. [PMID: 36979612 PMCID: PMC10046689 DOI: 10.3390/bios13030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Minimally invasive approaches for cancer diagnosis are an integral step in the quest to improve cancer survival. Liquid biopsies such as blood samples are matrices explored to extract valuable information about the tumor and its state through various indicators, such as proteins, peptides, tumor DNA, or circulating tumor cells. Although these markers are scarce, making their isolation and detection in complex matrices challenging, the development in polymer chemistry producing interesting structures, including molecularly imprinted polymers, branched polymers, nanopolymer composites, and hybrids, allowed the development of enhanced platforms with impressive performance for liquid biopsies analysis. This review describes the latest advances and developments in polymer synthesis and their application for minimally invasive cancer diagnosis. The polymer structures improve the operational performances of biosensors through various processes, such as increased affinity for enhanced sensitivity, improved binding, and avoidance of non-specific interactions for enhanced specificity. Furthermore, polymer-based materials can be a tremendous help in signal amplification of usually low-concentrated targets in the sample. The pros and cons of these materials, how the synthesis process affects their performance, and the device applications for liquid biopsies diagnosis will be critically reviewed to show the essentiality of this technology in oncology and clinical biomedicine.
Collapse
Affiliation(s)
- Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Emine Guler Celik
- Bioengineering Department, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Türkiye
- EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, Bornova, 35100 Izmir, Türkiye
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Tutku Beduk
- Silicon Austria Labs GmbH: Sensor Systems, Europastrasse 12, 9524 Villach, Austria
| | - Tuncay Goksel
- EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, Bornova, 35100 Izmir, Türkiye
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, Bornova, 35100 Izmir, Türkiye
- EGESAM-Ege University Translational Pulmonary Research Center, Bornova, 35100 Izmir, Türkiye
| | - Kutsal Turhan
- EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, Bornova, 35100 Izmir, Türkiye
- Department of Thoracic Surgery, Faculty of Medicine, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
- EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, Bornova, 35100 Izmir, Türkiye
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Bornova, 35100 Izmir, Türkiye
| |
Collapse
|
8
|
Bhartiya PK, Suryansh, Bangruwa N, Srivastava M, Mishra D. Light-Amplified CISS-Based Hybrid QD-DNA Impedimetric Device for DNA Hybridization Detection. Anal Chem 2023; 95:3656-3665. [PMID: 36749750 DOI: 10.1021/acs.analchem.2c04608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We design and build a novel light-amplified electrochemical impedimetric device based on the CISS effect to detect DNA hybridization using a hybrid quantum dot (QD)-DNA monolayer on a ferromagnetic (FM) Ni/Au thin film for the first time. Using spin as a detection tool, the current research considers the chiral-induced spin selectivity (CISS) phenomenon. After injecting a spin current into the QD-DNA system with opposite polarities (up and down), the impedimetric device revealed a large differential change in the charge-transfer resistance (ΔRct) of ∼100 ohms for both spins. Nearly, a threefold increase in the ΔRct value to ∼270 ohms is observed when light with a wavelength of 532 nm is illuminated on the sample, owing to the amplified CISS effect. The yield of spin polarization as extracted from the Nyquist plot increases by a factor of more than 2 when exposed to light, going from 6% in the dark to 13% in the light. The impact of light on the CISS effect was further corroborated by the observation of the spin-dependent asymmetric quenching of photoluminescence (PL) in the same hybrid system. These observations are absent in the case of a noncomplementary QD-DNA system due to the absence of a helical structure in DNA. Based on this, we develop a spin-based DNA hybridization sensor and achieve a limit of detection of 10 fM. These findings open a practical path for the development of spin-based next-generation impedimetric DNA sensors and point-of-care devices.
Collapse
Affiliation(s)
- Prashant K Bhartiya
- Department of Physics & Astrophysics, University of Delhi, New Delhi 110007, India
| | - Suryansh
- Department of Physics & Astrophysics, University of Delhi, New Delhi 110007, India
| | - Neeraj Bangruwa
- Department of Physics & Astrophysics, University of Delhi, New Delhi 110007, India
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology, (BHU), Varanasi 221005, India
| | - Debabrata Mishra
- Department of Physics & Astrophysics, University of Delhi, New Delhi 110007, India
| |
Collapse
|
9
|
Thenrajan T, Alwarappan S, Wilson J. Molecular Diagnosis and Cancer Prognosis-A Concise Review. Diagnostics (Basel) 2023; 13:766. [PMID: 36832253 PMCID: PMC9955694 DOI: 10.3390/diagnostics13040766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Cancer is a complicated disease. Globally, it is one of the major causes for morbidity and mortality. A critical challenge associated with it is the difficulty to accurately diagnose it at an early stage. The malignancy due to multistage and heterogeneity that result from genetic and epigenetic modifications poses critical challenge to diagnose and monitor the progress at an early stage. Current diagnostic techniques normally suggest invasive biopsy procedure that can cause further infections and bleeding. Therefore, noninvasive diagnostic methods with high accuracy, safety and earliest detection are the needs of the hour. Herein, we provide a detailed review on the advanced methodologies and protocols developed for the detection of cancer biomarkers based on proteins, nucleic acids and extracellular vesicles. Furthermore, existing challenges and the improvements essential for the rapid, sensitive and noninvasive detection have also been discussed.
Collapse
Affiliation(s)
- Thatchanamoorthy Thenrajan
- Polymer Electronics Lab., Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Subbiah Alwarappan
- CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamilnadu, India
| | - Jeyaraj Wilson
- Polymer Electronics Lab., Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
10
|
Wan C, Qu A, Deng L, Liu X, Wu C. Preparation of electrochemical sensor based on glassy carbon electrode and its specificity and sensitivity for directional detection of antibiotic resistance genes spreading in the water environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7904-7913. [PMID: 36048394 DOI: 10.1007/s11356-022-22787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic-resistant bacteria/resistance genes (ARB/ARGs) have been paid much attention due to the environmental risks they might bring. They were demonstrated to be widespread in surface water and wastewater. Determining the concentrations of ARGs is the first step to evaluate the degree of pollution. In this study, electrochemical detection technology was studied due to its advantages of low cost, fast response, and satisfactory selectivity. Additionally, the electrochemical sensor technology was used to determine the concentration of a ubiquitous ARG (ampicillin gene blaTEM) in the water environment. A kind of electrochemical sensor was prepared on a glassy carbon electrode (GCE). The results of X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) curves indicated that the single-stranded DNA (ssDNA) probe can be successfully immobilized on the surface of the GCE. In addition, the performance of hybridization between the ssDNA probe and the target DNA at diverse temperatures was compared, of which 35 °C was the optimum. Moreover, the change of charge transfer resistance (ΔRct) for the GCE sensor hybridizing with complementary DNA was much higher than that of DNA with the mismatched base, which indicated that the electrochemical sensor prepared in this study was specific. The sensitivity of the sensor was also proved by the strong correlation between the concentrations of ARGs and ΔRct (with the correlation coefficient (R2) of 0.9905). All in all, this study is meaningful for the comprehend on the detection of ARGs through the electrochemical method.
Collapse
Affiliation(s)
- Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Aoxuan Qu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
- Shanghai Chengtou Environmental Ecological Restoration Technology Co., Ltd., Shanghai, 200232, China
| | - Liyan Deng
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Changyong Wu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
11
|
A Turn Off Fluorescence Probe Based on Carbon Dots for Highly Sensitive Detection of BRCA1 Gene in Real Samples and Cellular Imaging. J Fluoresc 2022; 32:1733-1741. [DOI: 10.1007/s10895-022-02954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
12
|
Nobusawa K, Han HW, Takei F, Chu TC, Hashida N, Yamashita I. Electrochemical Impedimetric Real-Time Polymerase Chain Reactions Using Anomalous Charge Transfer Enhancement. Anal Chem 2022; 94:7747-7751. [PMID: 35609246 DOI: 10.1021/acs.analchem.2c01659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We developed a new electrochemical impedimetric method for the real-time detection of polymerase chain reactions (PCR) based on our recent discovery that the DNA intercalator, [Ru(bpy)2DPPZ]2+, anomalously enhances charge transfer between redox mediators, K4[Fe(CN)6]/K3[Fe(CN)6], and a carbon electrode. Three mM [Fe(CN)6]3-/4- and 5 μM [Ru(bpy)2DPPZ]2+ were added to the PCR solution, and electrochemical impedance spectroscopy (EIS) measurements were performed at each elongation heat cycle. The charge transfer resistance (Rct) was initially low due to the presence of [Ru(bpy)2DPPZ]2+ in the solution. As PCR progressed, amplicon dsDNA was produced exponentially, and intercalated [Ru(bpy)2DPPZ]2+ ions, which could be detected as a steep Rct, increased at specific heat cycles depending on the amount of template DNA. The Rct increase per heat cycle, ΔRct, showed a peak at the same heat cycle as optical detection, proving that PCR can be accurately monitored in real time by impedance measurement. This simple method will enable a cost-effective and portable PCR device.
Collapse
Affiliation(s)
- Kazuyuki Nobusawa
- Graduate School of Engineering, Osaka University 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Huan-Wen Han
- Graduate School of Engineering, Osaka University 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumie Takei
- National Defense Medical College, 3-2 Namiki, Tokorozawa-shi, Saitama 359-8513, Japan
| | - Ting-Chieh Chu
- Graduate School of Engineering, Osaka University 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriyasu Hashida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 E7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ichiro Yamashita
- Graduate School of Engineering, Osaka University 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Poellmann MJ, Rawding P, Kim D, Bu J, Kim Y, Hong S. Branched, dendritic, and hyperbranched polymers in liquid biopsy device design. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1770. [PMID: 34984833 PMCID: PMC9480505 DOI: 10.1002/wnan.1770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
The development of minimally invasive tests for cancer diagnosis and prognosis will aid in the research of new treatments and improve survival rates. Liquid biopsies seek to derive actionable information from tumor material found in routine blood samples. The relative scarcity of tumor material in this complex mixture makes isolating and detecting cancerous material such as proteins, circulating tumor DNA, exosomes, and whole circulating tumor cells a challenge for device engineers. This review describes the chemistry and applications of branched and hyperbranched to improve the performance of liquid biopsy devices. These polymers can improve the performance of a liquid biopsy through several mechanisms. For example, polymers designed to increase the affinity of capture enhance device sensitivity. On the other hand, polymers designed to increase binding avidity or repel nonspecific adsorption enhance device specificity. Branched and hyperbranched polymers can also be used to amplify the signal from small amounts of detected material. The further development of hyperbranched polymers in liquid biopsy applications will enhance device capabilities and help these critical technologies reach the oncology clinic where they are sorely needed. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Michael J Poellmann
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
- Capio Biosciences, Madison, Wisconsin, USA
| | - Piper Rawding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - DaWon Kim
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - YoungSoo Kim
- Department of Pharmacy, Yonsei University, Incheon, South Korea
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
- Capio Biosciences, Madison, Wisconsin, USA
- Department of Pharmacy, Yonsei University, Incheon, South Korea
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Electrochemical aptasensing for the detection of mycotoxins in food commodities. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Wan C, Qu A, Li M, Tang R, Fu L, Liu X, Wang P, Wu C. Electrochemical Sensor for Directional Recognition and Measurement of Antibiotic Resistance Genes in Water. Anal Chem 2021; 94:732-739. [PMID: 34932901 DOI: 10.1021/acs.analchem.1c03100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The establishment of rapid targeted identification and analysis of antibiotic resistance genes (ARGs) is very important. In this study, an electrochemical sensor, which can detect ARGs was obtained by modifying the sulfhydryl single-stranded DNA probe onto the thin-film gold electrode through self-assembly. The sensor can perform a hybridization reaction with a target sequence to obtain an electrochemical impedance spectroscopy signal. The results showed that when the concentration of the probe used to modify thin-film gold electrodes during preparation was 1 μM, the hybridization time was 1 h, and the hybridization temperature was 35 °C, the self-assembled sensor showed good detection performance for the ARGs encoding β-lactam hydrolase. The measurement ARG concentration linear range is 6.3-900.0 ng/mL, and the R2 is 0.9992. The sensor shows good specific recognition ability for single-base, double-base, and three-base mismatch DNA. In addition, after 30 days of storage at 4 °C, the accurate identification and analysis of ARGs can still be maintained.
Collapse
Affiliation(s)
- Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Aoxuan Qu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Min Li
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rui Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Liya Fu
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Panxin Wang
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changyong Wu
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
16
|
Han H, Nobusawa K, Yamashita I. Anomalous Enhancement of Electrochemical Charge Transfer by a Ru Complex Ion Intercalator. Anal Chem 2021; 94:571-576. [PMID: 34928123 DOI: 10.1021/acs.analchem.1c03681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have found that the DNA intercalator [Ru(bpy)2DPPZ]2+ (bpy = 2,2'-bipyridine; DPPZ = dipyrido[3,2-a:2',3'-c]phenazine) causes an anomalous increase in charge transfer in electrochemical impedance spectroscopy (EIS). With a carbonaceous electrode and a 1 mM hexacyanoferrate (1 mM [Fe(CN)6]3- and 1 mM [Fe(CN)6]4-) mediator, we found that adding only 1 μM [Ru(bpy)2DPPZ]2+ greatly enhanced the charge transfer between the electrode and hexacyanoferrate mediator, independently of other electrolytes or buffer components. The effect started with a one millionth amount of hexacyanoferrate. Since [Ru(bpy)2DPPZ]2+ can intercalate with dsDNA, the effect is highly applicable for dsDNA detection or PCR monitoring. With further developments of this method, EIS sensors not requiring specific electrode modifications should be possible.
Collapse
Affiliation(s)
- HuanWen Han
- Graduate School of Engineering, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazuyuki Nobusawa
- Graduate School of Engineering, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Ichiro Yamashita
- Graduate School of Engineering, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
17
|
Javed A, Abbas SR, Hashmi MU, Babar NUA, Hussain I. Graphene Oxide Based Electrochemical Genosensor for Label Free Detection of Mycobacterium tuberculosis from Raw Clinical Samples. Int J Nanomedicine 2021; 16:7339-7352. [PMID: 34754188 PMCID: PMC8572100 DOI: 10.2147/ijn.s326480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/07/2021] [Indexed: 12/01/2022] Open
Abstract
Background Mycobacterium tuberculosis’ rapid detection is still a formidable challenge to have control over the lethal disease. New diagnostic methods such as LED fluorescence microscopy, Genexpert, Interferon Gamma Release Assay (IGRA) are limited on efficacy spectrum owing to their high cost, time-intensive and laborious nature, in addition their low sensitivity hinders their robustness and portability. Electroanalytical methods are now being considered as an excellent alternative, being currently employed for efficient detection of the analytes with the potential of being portable. This report suggests label-free electrochemical detection of Mycobacterium tuberculosis (Mtb) via its marker, insertion sequence (IS6110). Methods In this pursuit, graphene oxide-chitosan nanocomposite (GO-CHI), a biocompatible matrix, having a large electroactive area with an overall positively charged surface, is fabricated and characterized. The obtained GO-CHI nanocomposite is then immobilized on the ITO surface to form a positively functionalized electrochemical sensor for the detection of Mtb. DNA probe, specific for the IS6110, was electrostatically anchored on a positively charged electrode surface and the resistance of charge transfer was investigated for the sensitive and specific (complementary vs non-complementary) detection of Mtb by cyclic voltammetry and differential pulse voltammetry techniques. Results The cyclic voltammetry was found to be diffusion controlled facilitating the absorption of analyte on the electrode surface. The label-free “genosensor” was found to detect a hybridization efficiency with a limit of detection of 3.4 pM, and correlation coefficient R2=0.99 when analysed over a range of concentrations of DNA from 7.86 pM to 94.3pM. The genosensor was also able to detect target DNA from raw sputum samples of clinical isolates without DNA purification. Conclusion This electrochemical genosensor provides high sensitivity and specificity; thus offering a promising platform for clinical diagnosis of TB and other infectious diseases in general.
Collapse
Affiliation(s)
- Aisha Javed
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, 44000, Pakistan
| | - Shah Rukh Abbas
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Uzair Hashmi
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, 44000, Pakistan
| | - Noor Ul Ain Babar
- Department of Chemistry, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Irshad Hussain
- Department of Chemistry, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| |
Collapse
|
18
|
Scala-Benuzzi ML, Soler-Illia GJ, Raba J, Battaglini F, Schneider RJ, Pereira SV, Messina GA. Immunosensor based on porous gold and reduced graphene platform for the determination of EE2 by electrochemical impedance spectroscopy. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Pothipor C, Jakmunee J, Bamrungsap S, Ounnunkad K. An electrochemical biosensor for simultaneous detection of breast cancer clinically related microRNAs based on a gold nanoparticles/graphene quantum dots/graphene oxide film. Analyst 2021; 146:4000-4009. [PMID: 34013303 DOI: 10.1039/d1an00436k] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A label-free multiplexed electrochemical biosensor based on a gold nanoparticles/graphene quantum dots/graphene oxide (AuNPs/GQDs/GO) modified three-screen-printed carbon electrode (3SPCE) array is successfully constructed to detect miRNA-21, miRNA-155, and miRNA-210 biomarkers for the first time. Redox species (anthraquinone (AQ), methylene blue (MB), and polydopamine (PDA)) are used as redox indicators for anchoring capture miRNA probes, which hybridize with the complementary targets, miRNA-21, miRNA-155, and miRNA-210, respectively. After three target miRNAs are present, the square wave voltammetry (SWV) scan displays three well-separated peaks. Each peak indicates the presence of one miRNA, and its intensity quantitatively correlates with the concentration of the corresponding target analyte. This phenomenon results in the substantial decline of the SWV peak current of the redox probes. The developed AuNPs/GQDs/GO-based biosensor reveals excellent performance for simultaneous miRNA sensing. It offers a wide linear dynamic range from 0.001 to 1000 pM with ultrasensitive low detection limits of 0.04, 0.33, and 0.28 fM for the detection of miRNA-21, miRNA-155, and miRNA-210, respectively. It also presents high selectivity and applicability for the detection of miRNAs in human serum samples. This multiplex label-free miRNA biosensor has great potential for applications in breast cancer diagnosis.
Collapse
Affiliation(s)
- Chammari Pothipor
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. and The Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, 50200, Thailand and Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
20
|
Development of Electrochemical DNA Biosensor for Equine Hindgut Acidosis Detection. SENSORS 2021; 21:s21072319. [PMID: 33810389 PMCID: PMC8037926 DOI: 10.3390/s21072319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
The pH drop in the hindgut of the horse is caused by lactic acid-producing bacteria which are abundant when a horse’s feeding regime is excessively carbohydrate rich. This drop in pH below six causes hindgut acidosis and may lead to laminitis. Lactic acid-producing bacteria Streptococcus equinus and Mitsuokella jalaludinii have been found to produce high amounts of L-lactate and D-lactate, respectively. Early detection of increased levels of these bacteria could allow the horse owner to tailor the horse’s diet to avoid hindgut acidosis and subsequent laminitis. Therefore, 16s ribosomal ribonucleic acid (rRNA) sequences were identified and modified to obtain target single stranded deoxyribonucleic acid (DNA) from these bacteria. Complementary single stranded DNAs were designed from the modified target sequences to form capture probes. Binding between capture probe and target single stranded deoxyribonucleic acid (ssDNA) in solution has been studied by gel electrophoresis. Among pairs of different capture probes and target single stranded DNA, hybridization of Streptococcus equinus capture probe 1 (SECP1) and Streptococcus equinus target 1 (SET1) was portrayed as gel electrophoresis. Adsorptive stripping voltammetry was utilized to study the binding of thiol modified SECP1 over gold on glass substrates and these studies showed a consistent binding signal of thiol modified SECP1 and their hybridization with SET1 over the gold working electrode. Cyclic voltammetry and electrochemical impedance spectroscopy were employed to examine the binding of thiol modified SECP1 on the gold working electrode and hybridization of thiol modified SECP1 with the target single stranded DNA. Both demonstrated the gold working electrode surface was modified with a capture probe layer and hybridization of the thiol bound ssDNA probe with target DNA was indicated. Therefore, the proposed electrochemical biosensor has the potential to be used for the detection of the non-synthetic bacterial DNA target responsible for equine hindgut acidosis.
Collapse
|
21
|
Song Y, Xu M, Liu X, Li Z, Wang C, Jia Q, Zhang Z, Du M. A label-free enrofloxacin electrochemical aptasensor constructed by a semiconducting CoNi-based metal–organic framework (MOF). Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137609] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Urso M, Tumino S, Bruno E, Bordonaro S, Marletta D, Loria GR, Avni A, Shacham-Diamand Y, Priolo F, Mirabella S. Ultrasensitive Electrochemical Impedance Detection of Mycoplasma agalactiae DNA by Low-Cost and Disposable Au-Decorated NiO Nanowall Electrodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50143-50151. [PMID: 33078934 DOI: 10.1021/acsami.0c14679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanostructured electrodes detecting bacteria or viruses through DNA hybridization represent a promising method, which may be useful in on-field applications where PCR-based methods are very expensive, time-consuming, and require trained personnel. Indeed, electrochemical sensors combine disposability, fast response, high sensitivity, and portability. Here, a low-cost and high-surface-area electrode, based on Au-decorated NiO nanowalls, demonstrates a highly sensitive PCR-free detection of a real sample of Mycoplasma agalactiae (Ma) DNA. NiO nanowalls, synthesized by aqueous methods, thermal annealing, and Au decoration, by electroless deposition, ensure a high-surface-area platform for successful immobilization of Ma thiolated probe DNA. The morphological, chemical, and electrochemical properties of the electrode were characterized, and a reproducible detection of synthetic Ma DNA was observed and investigated by impedance measurements. Electrochemical impedance spectroscopy (EIS) ascribed the origin of impedance signal to the Ma DNA hybridization with its probe immobilized onto the electrode. The electrode successfully discriminates between DNA extracted from healthy and infected sheep milk, showing the ability to detect Ma DNA in concentrations as low as 53 ± 2 copy number μL-1. The Au-decorated NiO nanowall electrode represents a promising route toward PCR-free, disposable, rapid, and molecular detection.
Collapse
Affiliation(s)
- Mario Urso
- Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, and IMM-CNR, via S. Sofia 64, 95123 Catania, Italy
| | - Serena Tumino
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, via Valdisavoia 5, 95123 Catania, Italy
- OIE Reference Laboratory for Contagious Agalactia-Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Elena Bruno
- Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, and IMM-CNR, via S. Sofia 64, 95123 Catania, Italy
| | - Salvo Bordonaro
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, via Valdisavoia 5, 95123 Catania, Italy
| | - Donata Marletta
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, via Valdisavoia 5, 95123 Catania, Italy
| | - Guido Ruggero Loria
- OIE Reference Laboratory for Contagious Agalactia-Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Adi Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Yosi Shacham-Diamand
- Department of Physical Electronics, School of Electrical Engineering and Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978, Israel
- TAU/TiET Food Security Centre of Excellence (T2FSCOE), Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Francesco Priolo
- Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, and IMM-CNR, via S. Sofia 64, 95123 Catania, Italy
| | - Salvo Mirabella
- Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, and IMM-CNR, via S. Sofia 64, 95123 Catania, Italy
| |
Collapse
|
23
|
Radi A, Eissa A, Wahdan T. Molecularly Imprinted Impedimetric Sensor for Determination of Mycotoxin Zearalenone. ELECTROANAL 2020; 32:1788-1794. [DOI: 10.1002/elan.201900528] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Abd‐Elgawad Radi
- Department of Chemistry, Faculty of ScienceDamietta University 34517 Damietta Egypt
| | - Alsayed Eissa
- Department of Chemistry, Faculty of ScienceDamietta University 34517 Damietta Egypt
| | - Tarek Wahdan
- Department of Chemistry, Faculty of ScienceEl-Arish University 45111 El-Arish Egypt
| |
Collapse
|
24
|
Pangajam A, Theyagarajan K, Dinakaran K. Highly sensitive electrochemical detection of E. coli O157:H7 using conductive carbon dot/ZnO nanorod/PANI composite electrode. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2019.100317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
25
|
Fani M, Rezayi M, Pourianfar HR, Meshkat Z, Makvandi M, Gholami M, Rezaee SA. Rapid and label-free electrochemical DNA biosensor based on a facile one-step electrochemical synthesis of rGO-PPy-(L-Cys)-AuNPs nanocomposite for the HTLV-1 oligonucleotide detection. Biotechnol Appl Biochem 2020; 68:626-635. [PMID: 32542764 DOI: 10.1002/bab.1973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) as the first human retrovirus is currently a serious endemic health challenge. Despite the use of assorted molecular or serological assays for HTLV-1 detection, there are several limitations due to the lack of a confirmatory test that may affect the accuracy of the results. Herein, a novel label-free biosensor for the detection of HTLV-1 Tax gene has been reported. An electrochemical facile ecofriendly synthesis method has been demonstrated based on a synthesis of nanocomposite of reduced graphene oxide, polypyrrole, and gold nanoparticles (rGO-PPy-(l-Cys)-AuNPs) deposited on the surface of screen-printed carbon electrode. Electrochemical techniques were used to characterize and study the electrochemical behavior of the rGO-PPy-(l-Cys)-AuNPs, which exhibited a stable reference peak at 0.21 V associated with hybridization forms by applying the differential pulse voltammetry. The designed DNA biosensor presented a wide linear range from 0.1 fM to 100 µM and a low detection limit of 20 atto-molar. The proposed biosensor presented in this study provides outstanding selectivity, sensitivity, repeatability, and reproducibility.
Collapse
Affiliation(s)
- Mona Fani
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Rezayi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R Pourianfar
- Research Department of Industrial Fungi Biotechnology, Research Institute for Industrial Biotechnology, Academic Centre for Education, Culture and Research (ACECR)-Khorasan Razavi Province Branch, Mashhad, Iran
| | - Zahra Meshkat
- Department of Medical Bacteriology and Virology, Antimicrobial Resistance Research Center, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manoocher Makvandi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrdad Gholami
- Department of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Disease Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Saini K, Kaushal A, Gupta S, Kumar D. PlcA-based nanofabricated electrochemical DNA biosensor for the detection of Listeria monocytogenes in raw milk samples. 3 Biotech 2020; 10:327. [PMID: 32656060 DOI: 10.1007/s13205-020-02315-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
The electrochemical DNA biosensor has been developed for the detection of Listeria monocytogenes in raw milk samples. The electrochemical studies of the developed biosensor was recorded by cyclic voltammetry (CV) and electrochemical impedance (EI) using methylene blue (MB) and potassium ferricyanide K3Fe(CN)- 6 as redox indicators. The selectivity of the developed biosensor was demonstrated using complementary and mismatch oligonucleotide sequences. The sensitivity (S) of the developed sensor was recorded as 3461 (μA/cm2)/ng and limit of detection (LOD) was found to be 82 fg/6 µl with the regression coefficient (R 2) 0.941 using CV. The sensor was characterized by field emission scanning electron microscopy (FE-SEM). The electrode was found to be stable for six months, with only 10% loss in the initial CV current.
Collapse
Affiliation(s)
- Kritika Saini
- Shoolini University of Biotechnology and Management Sciences, Bajhol, PO, Distt. Solan, Sultanpur, 173229 HP India
| | - Ankur Kaushal
- Amity University, Manesar, Gurugram, 122413 Haryana India
| | - Shagun Gupta
- Shoolini University of Biotechnology and Management Sciences, Bajhol, PO, Distt. Solan, Sultanpur, 173229 HP India
| | - Dinesh Kumar
- Shoolini University of Biotechnology and Management Sciences, Bajhol, PO, Distt. Solan, Sultanpur, 173229 HP India
| |
Collapse
|
27
|
Yuhana Ariffin E, Heng LY, Tan LL, Abd Karim NH, Hasbullah SA. A Highly Sensitive Impedimetric DNA Biosensor Based on Hollow Silica Microspheres for Label-Free Determination of E. coli. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1279. [PMID: 32111092 PMCID: PMC7085554 DOI: 10.3390/s20051279] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 01/28/2023]
Abstract
A novel label-free electrochemical DNA biosensor was constructed for the determination of Escherichia coli bacteria in environmental water samples. The aminated DNA probe was immobilized onto hollow silica microspheres (HSMs) functionalized with 3-aminopropyltriethoxysilane and deposited onto a screen-printed electrode (SPE) carbon paste with supported gold nanoparticles (AuNPs). The biosensor was optimized for higher specificity and sensitivity. The label-free E. coli DNA biosensor exhibited a dynamic linear response range of 1 × 10-10 µM to 1 × 10-5 µM (R2 = 0.982), with a limit of detection at 1.95 × 10-15 µM, without a redox mediator. The sensitivity of the developed DNA biosensor was comparable to the non-complementary and single-base mismatched DNA. The DNA biosensor demonstrated a stable response up to 21 days of storage at 4 ℃ and pH 7. The DNA biosensor response was regenerable over three successive regeneration and rehybridization cycles.
Collapse
Affiliation(s)
- Eda Yuhana Ariffin
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia; (E.Y.A.); (N.H.A.K.); (S.A.H.)
| | - Lee Yook Heng
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia; (E.Y.A.); (N.H.A.K.); (S.A.H.)
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia;
| | - Nurul Huda Abd Karim
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia; (E.Y.A.); (N.H.A.K.); (S.A.H.)
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia; (E.Y.A.); (N.H.A.K.); (S.A.H.)
| |
Collapse
|
28
|
Li Z, Ausri IR, Zilberman Y, Tang XS. Towards label-free, wash-free and quantitative B-type natriuretic peptide detection for heart failure diagnosis. NANOSCALE 2019; 11:18347-18357. [PMID: 31573591 DOI: 10.1039/c9nr05386g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Current diagnostic systems used in clinical settings to detect protein biomarkers require highly trained experts, large volumes of blood samples, and long turnaround times. There is an immense need for a low-cost and accurate point-of-care-testing (POCT) device for home monitoring of protein biomarkers for global pandemics such as heart failure (HF). The integration of highly sensitive carbon nanotube (CNT) thin film (CNT-TF) impedance sensors with the electrochemical impedance spectroscopy (EIS) technique is a promising platform to actualize POCT systems for home use. Herein, we report such a system, NanoBot, which allows the label-free and wash-free detection of the HF antigen biomarker B-type natriuretic peptide (BNP) in blood plasma. The NanoBot system consists of two parts: a disposable test strip and a miniature electronic readout unit. The NanoBot exhibited reasonable accuracy and precision, a clinically relevant limit of detection (LOD) as low as 16 pg mL-1, a linear detection range from 0-4000 pg mL-1 and excellent correlation with a reference standard fluorescent immunoassay (FIA). A pilot clinical study with patient-derived blood plasma validated the NanoBot's strong performance compared to that of Alere Triage®, with an interclass correlation coefficient (ICC) of 98% and a square of correlation coefficient (CC) of 0.95. Furthermore, unlike the Alere Triage® that requires more than 250 μL of blood collected via venipuncture, the NanoBot only requires 50 μL of blood. Collectively, the NanoBot's high sensitivity, accuracy, precision, and self-calibration characteristics signify its promising potential as a POCT platform for heart failure diagnosis in home use.
Collapse
Affiliation(s)
- Zhi Li
- Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, Canada N2L 3G1.
| | | | | | | |
Collapse
|
29
|
Taki M, Rohilla KJ, Barton M, Funneman M, Benzabeh N, Naphade S, Ellerby LM, Gagnon KT, Shamsi MH. Novel probes for label-free detection of neurodegenerative GGGGCC repeats associated with amyotrophic lateral sclerosis. Anal Bioanal Chem 2019; 411:6995-7003. [PMID: 31435686 PMCID: PMC7433021 DOI: 10.1007/s00216-019-02075-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 01/28/2023]
Abstract
DNA repeat expansion sequences cause a myriad of neurological diseases when they expand beyond a critical threshold. Previous electrochemical approaches focused on the detection of trinucleotide repeats (CAG, CGG, and GAA) and relied on labeling of the probe and/or target strands or enzyme-linked assays. However, detection of expanded GC-rich sequences is challenging because they are prone to forming secondary structures such as cruciforms and quadruplexes. Here, we present label-free detection of hexanucleotide GGGGCC repeat sequences, which cause the leading genetic form of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The approach relies on capturing targets by surface-bound oligonucleotide probes with a different number of complementary repeats, which proportionately translates the length of the target strands into charge transfer resistance (RCT) signal measured by electrochemical impedance spectroscopy. The probe carrying three tandem repeats transduces the number of repeats into RCT with a 3× higher calibration sensitivity and detection limit. Chronocoulometric measurements show a decrease in surface density with increasing repeat length, which is opposite of the impedance trend. This implies that the length of the target itself can contribute to amplification of the impedance signal independent of the surface density. Moreover, the probe can distinguish between a control and patient sequences while remaining insensitive to non-specific Huntington's disease (CAG) repeats in the presence of a complementary target. This label-free strategy might be applied to detect the length of other neurodegenerative repeat sequences using short probes with a few complementary repeats. Graphical abstract Short oligomeric probes with multiple complementary repeats detect long neurodegenerative targets with high sensitivity and transduce into higher impedance signal.
Collapse
Affiliation(s)
- Motahareh Taki
- Department of Chemistry & Biochemistry, Southern Illinois University, 1245 Lincoln Dr, Carbondale, IL, 62901, USA
| | - Kushal J Rohilla
- Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA
| | - Maria Barton
- Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA
| | - Madison Funneman
- Department of Chemistry & Biochemistry, Southern Illinois University, 1245 Lincoln Dr, Carbondale, IL, 62901, USA
| | - Najiyah Benzabeh
- Department of Chemistry & Biochemistry, Southern Illinois University, 1245 Lincoln Dr, Carbondale, IL, 62901, USA
| | - Swati Naphade
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Lisa M Ellerby
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Keith T Gagnon
- Department of Chemistry & Biochemistry, Southern Illinois University, 1245 Lincoln Dr, Carbondale, IL, 62901, USA
- Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA
| | - Mohtashim H Shamsi
- Department of Chemistry & Biochemistry, Southern Illinois University, 1245 Lincoln Dr, Carbondale, IL, 62901, USA.
| |
Collapse
|
30
|
Chiticaru EA, Pilan L, Damian CM, Vasile E, Burns JS, Ioniţă M. Influence of Graphene Oxide Concentration when Fabricating an Electrochemical Biosensor for DNA Detection. BIOSENSORS 2019; 9:E113. [PMID: 31561443 PMCID: PMC6955971 DOI: 10.3390/bios9040113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/23/2022]
Abstract
We have investigated the influence exerted by the concentration of graphene oxide (GO) dispersion as a modifier for screen printed carbon electrodes (SPCEs) on the fabrication of an electrochemical biosensor to detect DNA hybridization. A new pretreatment protocol for SPCEs, involving two successive steps in order to achieve a reproducible deposition of GO, is also proposed. Aqueous GO dispersions of different concentrations (0.05, 0.1, 0.15, and 0.2 mg/mL) were first drop-cast on the SPCE substrates and then electrochemically reduced. The electrochemical properties of the modified electrodes were investigated after each modification step by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), while physicochemical characterization was performed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Finally, the sensing platform was obtained by the simple adsorption of the single-stranded DNA probe onto the electrochemically reduced GO (RGO)-modified SPCEs under optimized conditions. The hybridization was achieved by incubating the functionalized SPCEs with complementary DNA target and detected by measuring the change in the electrochemical response of [Fe(CN)6]3-/4- redox reporter in CV and EIS measurements induced by the release of the newly formed double-stranded DNA from the electrode surface. Our results showed that a higher GO concentration generated a more sensitive response towards DNA detection.
Collapse
Affiliation(s)
- Elena A Chiticaru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| | - Luisa Pilan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7, Polizu St., 011061 Bucharest, Romania.
| | - Celina-Maria Damian
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| | - Eugeniu Vasile
- Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania
| | - Jorge S Burns
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Mariana Ioniţă
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania.
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania.
| |
Collapse
|
31
|
Giacobbe S, Pezzella C, Della Ventura B, Giacobelli VG, Rossi M, Fontanarosa C, Amoresano A, Sannia G, Velotta R, Piscitelli A. Green synthesis of conductive polyaniline by Trametes versicolor laccase using a DNA template. Eng Life Sci 2019; 19:631-642. [PMID: 32625038 DOI: 10.1002/elsc.201900078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 11/06/2022] Open
Abstract
The green synthesis of highly conductive polyaniline by using two biological macromolecules, i.e laccase as biocatalyst, and DNA as template/dopant, was achieved in this work. Trametes versicolor laccase B (TvB) was found effective in oxidizing both aniline and its less toxic/mutagenic dimer N-phenyl-p-phenylenediamine (DANI) to conductive polyaniline. Reaction conditions for synthesis of conductive polyanilines were set-up, and structural and electrochemical properties of the two polymers were extensively investigated. When the less toxic aniline dimer was used as substrate, the polymerization reaction was faster and gave less-branched polymer. DNA was proven to work as hard template for both enzymatically synthesized polymers, conferring them a semi-ordered morphology. Moreover, DNA also acts as dopant leading to polymers with extraordinary conductive properties (∼6 S/cm). It can be envisaged that polymer properties are magnified by the concomitant action of DNA as template and dopant. Herein, the developed combination of laccase and DNA represents a breakthrough in the green synthesis of conductive materials.
Collapse
Affiliation(s)
- Simona Giacobbe
- Dipartimento di Scienze chimiche Università di Napoli "Federico II" Napoli Italy
| | - Cinzia Pezzella
- Dipartimento di Scienze chimiche Università di Napoli "Federico II" Napoli Italy
| | | | | | - Manuela Rossi
- Dipartimento di Scienze della Terra dell'Ambiente e delle Risorse Università di Napoli "Federico II" Napoli Italy
| | - Carolina Fontanarosa
- Dipartimento di Scienze chimiche Università di Napoli "Federico II" Napoli Italy
| | - Angela Amoresano
- Dipartimento di Scienze chimiche Università di Napoli "Federico II" Napoli Italy
| | - Giovanni Sannia
- Dipartimento di Scienze chimiche Università di Napoli "Federico II" Napoli Italy
| | - Raffaele Velotta
- Dipartimento di Fisica Ettore Pancini Università di Napoli "Federico II" Napoli Italy
| | | |
Collapse
|
32
|
Cascade catalysis-initiated radical polymerization amplified impedimetric immunosensor for ultrasensitive detection of carbohydrate antigen 15-3. Biosens Bioelectron 2019; 137:1-7. [DOI: 10.1016/j.bios.2019.04.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/13/2019] [Accepted: 04/24/2019] [Indexed: 12/30/2022]
|
33
|
A review of microfabricated electrochemical biosensors for DNA detection. Biosens Bioelectron 2019; 134:57-67. [DOI: 10.1016/j.bios.2019.03.055] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
|
34
|
Kim M, Iezzi R, Shim BS, Martin DC. Impedimetric Biosensors for Detecting Vascular Endothelial Growth Factor (VEGF) Based on Poly(3,4-ethylene dioxythiophene) (PEDOT)/Gold Nanoparticle (Au NP) Composites. Front Chem 2019; 7:234. [PMID: 31058131 PMCID: PMC6477177 DOI: 10.3389/fchem.2019.00234] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
In advanced forms of diabetic retinopathy, retinal vascular occlusive disease and exudative age-related macular degeneration, vision loss is associated with elevated levels or extravasation of vascular endothelial-derived growth factor (VEGF) into the retina, vitreous, and anterior chamber of the eye. We hypothesize that point-of-care biosensors, capable of rapidly and precisely measuring VEGF levels within the eye will assist clinicians in assessing disease severity, and in establishing individualized dosing intervals for intraocular anti-VEGF injection therapy. An impedance biosensor based on a poly(3,4-ethylenedioxythiophene) (PEDOT)/gold nanoparticle (Au NP) composite was developed for detecting VEGF. PEDOT with Au NP was electrochemically deposited on three different medical electrode sensor designs: free-standing pads, screen printed dots, and interdigitated micro-strip electrodes. Anti-VEGF antibody was covalently immobilized on the surface of the polymer films through attachment to citrate-functionalized Au NPs, and the resulting composites were used to detect VEGF-165 by electrochemical impedance spectroscopy (EIS). The PEDOT-Au NP composite materials were characterized using optical microscopy, SEM/EDS, FIB, TEM, and STEM techniques. Among the different micro-electrodes, the interdigitated strip shape showed the best overall film stability and reproducibility. A linear relationship was established between the charge transfer resistance (Rct) and VEGF concentration. The detection limit of VEGF was found to be 0.5 pg/mL, with a correlation coefficient of 0.99 ± 0.064%. These results indicate that the proposed PEDOT/Au NP composites can be used in designing low-cost and accurate VEGF biosensors for applications such as clinical diagnosis of VEGF-mediated eye disease.
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, United States
| | - Raymond Iezzi
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States
| | - Bong Sup Shim
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, United States.,Department of Chemical Engineering, Inha University, Incheon, South Korea
| | - David C Martin
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
35
|
Ravina, Mohan H, Gill PS, Kumar A. Hemagglutinin gene based biosensor for early detection of swine flu (H1N1) infection in human. Int J Biol Macromol 2019; 130:720-726. [PMID: 30822474 DOI: 10.1016/j.ijbiomac.2019.02.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/07/2019] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
Abstract
Hemagglutinin (HA) is a glycoprotein found on the surface of influenza A subtype virus H1N1 which play a major role in infection to the human by binding the virus to cells with sialic acid on the membrane of upper respiratory tract or erythrocytes. Based on sequence of HA gene an impedimetric biosensor was developed by immobilizing amino labeled single stranded DNA probe onto cysteine modified gold surface of the screen printed electrode for early and rapid detection of H1N1 (Swine flu) in human. The electrochemical impedance was recorded after hybridization of probe with single stranded cDNA (ss-cDNA) of H1N1 patient samples in presence of redox couple. All available methods for detection of H1N1 including RT-PCR are either expensive or time consuming. However, impedimetric biosensor is not only highly specific for H1N1 virus but also can detect as low as 0.004 ng (limit of detection) ss-cDNA in 6 µL only in 30 min. The sensitivity of the sensor was 3750 Ω cm-2 ng-1 of DNA. The biosensor was well characterized using surface cyclic voltammetry, validated with patient samples and compared with existing methods. The sensor can be used in hospitals, diagnostic centres as well as in remote areas for early and rapid diagnosis.
Collapse
Affiliation(s)
- Ravina
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India.
| | - Paramjeet Singh Gill
- Department of Microbiology, Pt. Bhagwat Dyal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana 124001, India
| | - Ashok Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India.
| |
Collapse
|
36
|
Zhao L, Yin S, Ma Z. Ca 2+-Triggered pH-Response Sodium Alginate Hydrogel Precipitation for Amplified Sandwich-Type Impedimetric Immunosensor of Tumor Marker. ACS Sens 2019; 4:450-455. [PMID: 30638376 DOI: 10.1021/acssensors.8b01465] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Signal amplification is of great significance in the ultrasensitive electrochemical impedimetric immunoassays for tumor marker detection. A cascaded signal amplification approach was designed using gold nanoparticle-CaCO3 microspheres (AuNP-CaCO3) to trigger pH-responsive alginate hydrogel precipitation for sandwich-type impedimetric immunosensor. AuNP-CaCO3 exerts a large hindrance effect and can release Ca2+ ions under weak acidic conditions, and thus can serve as a multifunctional label. The hindrance effect of AuNP-CaCO3 can significantly enhance the impedance response as the initial signal amplification. Then, part of CaCO3 dissolves under weak acid conditions and releases Ca2+, which can cross-link with alginate to generate an insoluble alginate hydrogel precipitate on the sensing interface, significantly increasing the impedance signal. The impedance signal can be further amplified by making the hydrogel negatively charged based on the pH-responsive surface charge properties of the alginate hydrogel. Benefiting from the cascaded signal amplification, this impedimetric immunosensor exhibits a linear range from 1.0 fg mL-1 to 100 ng mL-1, an detection limit of 0.09 fg mL-1, and ultrahigh sensitivity of 973.01 Ω (lg(ng mL-1))-1 toward the assay of prostate specific antigen (PSA).
Collapse
Affiliation(s)
- Lihua Zhao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Shuang Yin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
37
|
Muniandy S, Teh SJ, Appaturi JN, Thong KL, Lai CW, Ibrahim F, Leo BF. A reduced graphene oxide-titanium dioxide nanocomposite based electrochemical aptasensor for rapid and sensitive detection of Salmonella enterica. Bioelectrochemistry 2019; 127:136-144. [PMID: 30825657 DOI: 10.1016/j.bioelechem.2019.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
Abstract
Recent foodborne outbreaks in multiple locations necessitate the continuous development of highly sensitive and specific biosensors that offer rapid detection of foodborne biological hazards. This work focuses on the development of a reduced graphene oxide‑titanium dioxide (rGO-TiO2) nanocomposite based aptasensor to detect Salmonella enterica serovar Typhimurium. A label-free aptamer was immobilized on a rGO-TiO2 nanocomposite matrix through electrostatic interactions. The changes in electrical conductivity on the electrode surface were evaluated using electroanalytical methods. DNA aptamer adsorbed on the rGO-TiO2 surface bound to the bacterial cells at the electrode interface causing a physical barrier inhibiting the electron transfer. This interaction decreased the DPV signal of the electrode proportional to decreasing concentrations of the bacterial cells. The optimized aptasensor exhibited high sensitivity with a wide detection range (108 to 101 cfu mL-1), a low detection limit of 101 cfu mL-1 and good selectivity for Salmonella bacteria. This rGO-TiO2 aptasensor is an excellent biosensing platform that offers a reliable, rapid and sensitive alternative for foodborne pathogen detection.
Collapse
Affiliation(s)
- Shalini Muniandy
- Nanotechnology and Catalysis Research Centre, Institute of Graduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Swe Jyan Teh
- Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jimmy Nelson Appaturi
- Nanotechnology and Catalysis Research Centre, Institute of Graduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre, Institute of Graduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Bey Fen Leo
- Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
38
|
Meng Z, Stolz RM, Mendecki L, Mirica KA. Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chem Rev 2019; 119:478-598. [PMID: 30604969 DOI: 10.1021/acs.chemrev.8b00311] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrically-transduced sensors, with their simplicity and compatibility with standard electronic technologies, produce signals that can be efficiently acquired, processed, stored, and analyzed. Two dimensional (2D) nanomaterials, including graphene, phosphorene (BP), transition metal dichalcogenides (TMDCs), and others, have proven to be attractive for the fabrication of high-performance electrically-transduced chemical sensors due to their remarkable electronic and physical properties originating from their 2D structure. This review highlights the advances in electrically-transduced chemical sensing that rely on 2D materials. The structural components of such sensors are described, and the underlying operating principles for different types of architectures are discussed. The structural features, electronic properties, and surface chemistry of 2D nanostructures that dictate their sensing performance are reviewed. Key advances in the application of 2D materials, from both a historical and analytical perspective, are summarized for four different groups of analytes: gases, volatile compounds, ions, and biomolecules. The sensing performance is discussed in the context of the molecular design, structure-property relationships, and device fabrication technology. The outlook of challenges and opportunities for 2D nanomaterials for the future development of electrically-transduced sensors is also presented.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Robert M Stolz
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Lukasz Mendecki
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| |
Collapse
|
39
|
Pedro GC, Gorza FD, da Silva RJ, do Nascimento KT, Medina-Llamas JC, Chávez-Guajardo AE, Alcaraz-Espinoza JJ, de Melo CP. A novel nucleic acid fluorescent sensing platform based on nanostructured films of intrinsically conducting polymers. Anal Chim Acta 2019; 1047:214-224. [DOI: 10.1016/j.aca.2018.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022]
|
40
|
Zhao J, Shu D, Ma Z. Target-inspired Zn 2+-dependent DNAzyme for ultrasensitive impedimetric aptasensor based on polyacrylic acid nanogel as amplifier. Biosens Bioelectron 2018; 127:161-166. [PMID: 30599384 DOI: 10.1016/j.bios.2018.12.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/27/2018] [Accepted: 12/16/2018] [Indexed: 02/08/2023]
Abstract
In general, the traditional impedimetric aptasensor for detecting protein is based on its high molecular weight and low dielectric constant. Yet, the efficiency of these aptasensors is hindered by the slight resistance change in the trace concentration range because of the high initial resistance (the electrostatic repulsion between the compact negatively charged DNA on the electrode and [Fe(CN)6]3-/4-). To effectively and simply circumvent this issue and improve the detection sensitivity, we design an impedimetric aptasensor by reducing the substrate DNA's density on the electrode through the target-inspired recycling DNA cleavage. In order to enlarge the differences in resistance, the polyacrylic acid (PAA) nanogel is implemented as amplifier due to its poor conduction and negative charge that can hinder electron transfer and repulse the mediator [Fe(CN)6]3-/4-, respectively. Based on the target-inspired DNAzyme and PAA nanogel as amplifier, the ultrasensitive impedimetric aptasensor of carcinoembryonic antigen (CEA) in the buffer solution possesses a wide dynamic range of 10 fg mL-1 to 10 ng mL-1 and ultra-low detection limit of 7.9 fg mL-1 (10-fold relative to equivalent aptasensors). When tested in human serum, the proposed aptasensor exhibits good performance with an ultra-low detection limit of 1.4 fg mL-1, which is slightly higher than that in buffer solution.
Collapse
Affiliation(s)
- Juncai Zhao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Di Shu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
41
|
Ceylan O, Mishra GK, Yazici M, Qureshi A, Niazi JH, Gurbuz Y. A Hand-Held Point-of-Care Biosensor Device for Detection of Multiple Cancer and Cardiac Disease Biomarkers Using Interdigitated Capacitive Arrays. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:1440-1449. [PMID: 30605085 DOI: 10.1109/tbcas.2018.2870297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper presents a hand-held point-of-care device that incorporates a lab-on-a-chip module with interdigitated capacitive biosensors for label-free detection of multiple cancer and cardiovascular disease biomarkers. The developed prototype is comprised of a cartridge incorporating capacitive biodetection sensors, a sensitive capacitive readout electronics enclosed in a hand-held unit, and data analysis software calculating the concentration of biomarkers using previously stored reference database. The capacitive biodetection sensors are made of interdigitated circular electrodes, which are preactivated with single (for detecting one biomarker) or multiple specific antibodies (for detecting multiple disease biomarkers). Detection principle of capacitive biosensor is based on measuring the level of capacitance change between interdigitated electrode pairs induced by the change in dielectric constant due to affinity-based electron exchange in between antibodies/antigens and electrodes. The more antibody-antigens binding occurs, the more capacitance change is measured due to the change in dielectric constant of the capacitance media. The device uses preactivated ready-to-use cartridges embedded with capacitive biosensors with shelf-life of three months under optimal conditions, and is capable of onsite diagnosis and can report the result in less than 30 min. The device is verified with real patient blood samples for six different disease biomarkers.
Collapse
|
42
|
Liu X, Hu M, Wang M, Song Y, Zhou N, He L, Zhang Z. Novel nanoarchitecture of Co-MOF-on-TPN-COF hybrid: Ultralowly sensitive bioplatform of electrochemical aptasensor toward ampicillin. Biosens Bioelectron 2018; 123:59-68. [PMID: 30312876 DOI: 10.1016/j.bios.2018.09.089] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 11/17/2022]
Abstract
Owning to the misuse of the antibiotics in animal husbandry and agriculture, it is highly urgent to determine the quantification of antibiotics in biological systems by the simple, sensitive, and fast method. In this work, a novel nanoarchitecture of Co-based metal-organic frameworks (Co-MOF) and terephthalonitrile-based covalent organic framework (TPN-COF) was synthesized (represented by Co-MOF@TPN-COF), followed by the exploitation as the bioplatform of non-label aptasensor for detecting the most frequently used β-lactam antibiotics, ampicillin (AMP). The new porous hybrid material of Co-MOF@TPN-COF was synthesized by adding the as-prepared TPN-COF into the Co-MOF preparation system. The multilayered Co-MOF@TPN-COF nanosheets exhibit a high specific surface area (52.64 m2 g-1), nitrogen-rich groups and excellent electrochemical activity. As a result, large amounts of aptamer strands can be bound over the Co-MOF@TPN-COF nanosheets owning to the strong π-π stacking and hydrogen bonds. When detecting AMP by the electrochemical impedance spectroscopy, the fabricated Co-MOF@TPN-COF-based aptasensor exhibits an ultra-low detection limit of 0.217 fg mL-1 within the AMP concentration from 1.0 fg mL-1 to 2.0 ng mL-1, which was superior to those previously reported in literatures. In addition, this proposed aptasensor also shows high selectivity, good reproducibility and stability, acceptable regenerability, and favorable applicability in human serum, river water and milk. Therefore, the proposed Co-MOF@TPN-COF-based aptasensor has a great promise to be applied as a powerful tool in the fields of food safety.
Collapse
Affiliation(s)
- Xiaokang Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, PR China
| | - Mengyao Hu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China
| | - Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China
| | - Yingpan Song
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, PR China.
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China.
| |
Collapse
|
43
|
Khater M, de la Escosura-Muñiz A, Quesada-González D, Merkoçi A. Electrochemical detection of plant virus using gold nanoparticle-modified electrodes. Anal Chim Acta 2018; 1046:123-131. [PMID: 30482289 DOI: 10.1016/j.aca.2018.09.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/15/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
Abstract
Tristeza is one of the destructive diseases of citrus causing by citrus tristeza virus (CTV). Historically, CTV has been associated with serious outbreaks of quick decline of citrus, therefore CTV monitoring is important aspect for avoiding such re-emerging epidemics, which would threat citrus production through the world. In this context, we have designed for the first time a label-free impedimetric biosensor for the detection of nucleic acid of CTV. The sensing platform based on a screen-printed carbon electrode (SPCE) was modified by electrodeposited gold nanoparticles (AuNPs), which allowed to efficiently immobilizing thiolated ssDNA probes as well to enhance the electrode conductivity. The growth of AuNPs was optimized and characterized using scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). We investigated the behavior of thiolated ssDNA probe layer and its hybridization with target DNA onto AuNP surfaces by EIS measurements in Fe(CN6)4-/Fe(CN6)3- red-ox system. The main sensor design aspects such as AuNPs size, probe DNA concentration and immobilization time together with DNA hybridization time were optimized so as to achieve the best performance. Impedance values of DNA hybridization increased with Citrus tristeza-related synthetic DNA concentration, showing a logarithmic relation in the range of 0.1-10 μM. The results also indicate that the biosensor was able to selectively detect CTV nucleic acids in the presence of other non-specific DNAs. Moreover, we have demonstrated the good performance of the system in a real plant sample matrix. In addition, the sensor reproducibility enhanced after the hybridization onto MCH/poly (AT) thiolated DNA probes which was confirmed by intra- and inter-day variability assays.
Collapse
Affiliation(s)
- Mohga Khater
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, 08193, Barcelona, Spain; On Leave from Agricultural Research Center (ARC), Ministry of Agriculture and Land Reclamation, Giza, Egypt
| | - Alfredo de la Escosura-Muñiz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, 08193, Barcelona, Spain
| | - Daniel Quesada-González
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, 08193, Barcelona, Spain
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, 08193, Barcelona, Spain; ICREA-Institucio Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
44
|
Jayakumar K, Camarada MB, Dharuman V, Rajesh R, Venkatesan R, Ju H, Maniraj M, Rai A, Barman SR, Wen Y. Layer-by-Layer-Assembled AuNPs-Decorated First-Generation Poly(amidoamine) Dendrimer with Reduced Graphene Oxide Core as Highly Sensitive Biosensing Platform with Controllable 3D Nanoarchitecture for Rapid Voltammetric Analysis of Ultratrace DNA Hybridization. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21541-21555. [PMID: 29869501 DOI: 10.1021/acsami.8b03236] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The structure and electrochemical properties of layer-by-layer-assembled gold nanoparticles (AuNPs)-decorated first-generation (G1) poly(amidoamine) dendrimer (PD) with reduced graphene oxide (rGO) core as a highly sensitive and label-free biosensing platform with a controllable three-dimensional (3D) nanoarchitecture for the rapid voltammetric analysis of DNA hybridization at ultratrace levels were characterized. Mercaptopropinoic acid (MPA) was self-assembled onto Au substrate, then GG1PD formed by the covalent functionalization between the amino terminals of G1PD and carboxyl terminals of rGO was covalently linked onto MPA, and finally AuNPs were decorated onto GG1PD by strong physicochemical interaction between AuNPs and -OH of rGO in GG1PD, which was characterized through different techniques and confirmed by computational calculation. This 3D controllable thin-film electrode was optimized and evaluated using [Fe(CN)6]3-/4- as the redox probe and employed to covalently immobilize thiol-functionalized single-stranded DNA as biorecognition element to form the DNA nanobiosensor, which achieved fast, ultrasensitive, and high-selective differential pulse voltammetric analysis of DNA hybridization in a linear range from 1 × 10-6 to 1 × 10-13 g m-1 with a low detection limit of 9.07 × 10-14 g m-1. This work will open a new pathway for the controllable 3D nanoarchitecture of the layer-by-layer-assembled metal nanoparticles-functionalized lower-generation PD with two-dimensional layered nanomaterials as cores that can be employed as ultrasensitive and label-free nanobiodevices for the fast diagnosis of specific genome diseases in the field of biomedicine.
Collapse
Affiliation(s)
- Kumarasamy Jayakumar
- Department of Bioelectronics and Biosensors , Alagappa University , Karaikudi 630003 , India
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry , Nanjing University , Nanjing 210023 , P. R. China
- Institute of Functional Materials and Agricultural Applied Chemistry , Jiangxi Agricultural University , Nanchang 330045 , P. R. China
| | - María Belén Camarada
- Centro de Nanotecnologı́a Aplicada, Facultad de Ciencias , Universidad Mayor , Santiago , Chile
| | - Venkataraman Dharuman
- Department of Bioelectronics and Biosensors , Alagappa University , Karaikudi 630003 , India
| | - Rajendiran Rajesh
- Department of Chemistry , Pondicherry University , Pondicherry 6050114 , India
| | | | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry , Nanjing University , Nanjing 210023 , P. R. China
| | - Mahalingam Maniraj
- UGC-DAE Consortium for Scientific Research , Khandwa Road , Indore 452001 , Madhya Pradesh , India
| | - Abhishek Rai
- UGC-DAE Consortium for Scientific Research , Khandwa Road , Indore 452001 , Madhya Pradesh , India
| | - Sudipta Roy Barman
- UGC-DAE Consortium for Scientific Research , Khandwa Road , Indore 452001 , Madhya Pradesh , India
| | - Yangping Wen
- Institute of Functional Materials and Agricultural Applied Chemistry , Jiangxi Agricultural University , Nanchang 330045 , P. R. China
| |
Collapse
|
45
|
A Microelectrode Array with Reproducible Performance Shows Loss of Consistency Following Functionalization with a Self-Assembled 6-Mercapto-1-hexanol Layer. SENSORS 2018; 18:s18061891. [PMID: 29890722 PMCID: PMC6022024 DOI: 10.3390/s18061891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 11/16/2022]
Abstract
For analytical applications involving label-free biosensors and multiple measurements, i.e., across an electrode array, it is essential to develop complete sensor systems capable of functionalization and of producing highly consistent responses. To achieve this, a multi-microelectrode device bearing twenty-four equivalent 50 µm diameter Pt disc microelectrodes was designed in an integrated 3-electrode system configuration and then fabricated. Cyclic voltammetry and electrochemical impedance spectroscopy were used for initial electrochemical characterization of the individual working electrodes. These confirmed the expected consistency of performance with a high degree of measurement reproducibility for each microelectrode across the array. With the aim of assessing the potential for production of an enhanced multi-electrode sensor for biomedical use, the working electrodes were then functionalized with 6-mercapto-1-hexanol (MCH). This is a well-known and commonly employed surface modification process, which involves the same principles of thiol attachment chemistry and self-assembled monolayer (SAM) formation commonly employed in the functionalization of electrodes and the formation of biosensors. Following this SAM formation, the reproducibility of the observed electrochemical signal between electrodes was seen to decrease markedly, compromising the ability to achieve consistent analytical measurements from the sensor array following this relatively simple and well-established surface modification. To successfully and consistently functionalize the sensors, it was necessary to dilute the constituent molecules by a factor of ten thousand to support adequate SAM formation on microelectrodes. The use of this multi-electrode device therefore demonstrates in a high throughput manner irreproducibility in the SAM formation process at the higher concentration, even though these electrodes are apparently functionalized simultaneously in the same film formation environment, confirming that the often seen significant electrode-to-electrode variation in label-free SAM biosensing films formed under such conditions is not likely to be due to variation in film deposition conditions, but rather kinetically controlled variation in the SAM layer formation process at these microelectrodes.
Collapse
|
46
|
Tripathy S, Gangwar R, Supraja P, Rao AVSSN, Vanjari SRK, Singh SG. Graphene Doped Mn2
O3
Nanofibers as a Facile Electroanalytical DNA Point Mutation Detection Platform for Early Diagnosis of Breast/Ovarian Cancer. ELECTROANAL 2018. [DOI: 10.1002/elan.201800220] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Rahul Gangwar
- Indian Institute of Technology; Hyderabad, Telangana India- 502285
| | - Patta Supraja
- Indian Institute of Technology; Hyderabad, Telangana India- 502285
| | | | | | | |
Collapse
|
47
|
Anharmonic acoustic effects during DNA hybridization on an electrochemical quartz crystal resonator. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
|
49
|
Chen W, Wu C. Synthesis, functionalization, and applications of metal–organic frameworks in biomedicine. Dalton Trans 2018; 47:2114-2133. [DOI: 10.1039/c7dt04116k] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal–organic frameworks (MOFs), also known as coordination polymers, have attracted extensive research interest in the past few decades due to their unique physical structures and potentially vast applications.
Collapse
Affiliation(s)
- Wei Chen
- Institute of Medical Engineering
- School of Basic Medical Sciences
- Xi'an Jiaotong University
- Xi'an
- China
| | - Chunsheng Wu
- Institute of Medical Engineering
- School of Basic Medical Sciences
- Xi'an Jiaotong University
- Xi'an
- China
| |
Collapse
|
50
|
Muñoz J, Montes R, Baeza M. Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensing. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|