1
|
Hussain I, Shehzad MA, Akhtar G, Shafique Ahmad K, Mubeen K, Hassan W, Faried HN, Ahmad S, Aziz M, Yasin S, Al-Abbadi GA, El-Sheikh MA, Elansary HO, Ullah F. Supplemental Sodium Nitroprusside and Spermidine Regulate Water Balance and Chlorophyll Pigments to Improve Sunflower Yield under Terminal Drought. ACS OMEGA 2024; 9:30478-30491. [PMID: 39035905 PMCID: PMC11256320 DOI: 10.1021/acsomega.4c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024]
Abstract
Drought is an inevitable environmental stress that drastically hampers the growth, productivity, and quality of food crops. Exogenous sodium nitroprusside and spermidine have decisive functions in the growth enhancement of plants; nevertheless, their specific role in mediating stress responses to improve drought tolerance in sunflowers at the reproductive stage (terminal drought) remains largely unknown. In the present study, we explored the positive effects of sodium nitroprusside and spermidine on physiological responses to increase in sunflower yield during periods of terminal drought. Initially, various doses (50, 100, 150, 200, 400 μM) for each sodium nitroprusside or spermidine were foliar sprayed to improve water content, chlorophylls, and biomass accumulation in sunflower seedlings under control (100% FC) and drought (60% FC) conditions. Optimized rates (100 μM for sodium nitroprusside) and (100 μM for spermidine) were further tested alone and in combination to assess drought tolerance potential and their ultimate impact on yield under drought stress. Drought exposure caused a marked reduction in relative water content (26%) and chlorophyll a (31%) and b (35%) contents; however, sodium nitroprusside and spermidine at 100 μM significantly improved the growth of sunflower (13%). Furthermore, combined use of sodium nitroprusside and spermidine at 100 + 100 μM markedly improved the achenes per head (16%), 1000-achene weight (14%), and ultimately grain (28%) and oil (21%) yields of sunflowers under drought stress. A strong association was found between the 1000-achene weight and the achene yield of sunflower. Hence, combined sodium nitroprusside and spermidine upregulate water balance and chlorophyll contents to increase sunflower yield under terminal drought.
Collapse
Affiliation(s)
- Israr Hussain
- Department
of Agronomy, Muhammad Nawaz Shareef University
of Agriculture, Multan 66000, Pakistan
| | - Muhammad Asif Shehzad
- Institute
of Plant Breeding and Biotechnology, Muhammad
Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Gulzar Akhtar
- Department
of Horticulture, Muhammad Nawaz Shareef
University of Agriculture, Multan 66000, Pakistan
| | - Khawaja Shafique Ahmad
- Department
of Botany, University of Poonch Rawalakot
(UPR), Rawalakot 12350, Azad Jammu and Kashmir, Pakistan
| | - Khuram Mubeen
- Department
of Agronomy, Muhammad Nawaz Shareef University
of Agriculture, Multan 66000, Pakistan
| | - Waseem Hassan
- Department
of Soil and Environmental Sciences, Muhammad
Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Hafiz Nazar Faried
- Department
of Horticulture, Muhammad Nawaz Shareef
University of Agriculture, Multan 66000, Pakistan
| | - Shabbir Ahmad
- Department
of Food Science and Technology, Muhammad
Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Mudassir Aziz
- Department
of Agronomy, Muhammad Nawaz Shareef University
of Agriculture, Multan 66000, Pakistan
| | - Sanaullah Yasin
- Department
of Soil and Environmental Sciences, Ghazi
University, Dera Ghazi
Khan 32200, Pakistan
| | - Ghanim A. Al-Abbadi
- Department
of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait City 12037, Kuwait
| | - Mohamed A. El-Sheikh
- Botany
and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hosam O. Elansary
- Plant
Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fazal Ullah
- State
Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
da Cruz TI, Rocha DC, Lanna AC, Dedicova B, Vianello RP, Brondani C. Calcium-Dependent Protein Kinase 5 ( OsCPK5) Overexpression in Upland Rice ( Oryza sativa L.) under Water Deficit. PLANTS (BASEL, SWITZERLAND) 2023; 12:3826. [PMID: 38005723 PMCID: PMC10674721 DOI: 10.3390/plants12223826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Water deficit significantly affects global crop growth and productivity, particularly in water-limited environments, such as upland rice cultivation, reducing grain yield. Plants activate various defense mechanisms during water deficit, involving numerous genes and complex metabolic pathways. Exploring homologous genes that are linked to enhanced drought tolerance through the use of genomic data from model organisms can aid in the functional validation of target species. We evaluated the upland rice OsCPK5 gene, an A. thaliana AtCPK6 homolog, by overexpressing it in the BRSMG Curinga cultivar. Transformants were assessed using a semi-automated phenotyping platform under two irrigation conditions: regular watering, and water deficit applied 79 days after seeding, lasting 14 days, followed by irrigation at 80% field capacity. The physiological data and leaf samples were collected at reproductive stages R3, R6, and R8. The genetically modified (GM) plants consistently exhibited higher OsCPK5 gene expression levels across stages, peaking during grain filling, and displayed reduced stomatal conductance and photosynthetic rate and increased water-use efficiency compared to non-GM (NGM) plants under drought. The GM plants also exhibited a higher filled grain percentage under both irrigation conditions. Their drought susceptibility index was 0.9 times lower than that of NGM plants, and they maintained a higher chlorophyll a/b index, indicating sustained photosynthesis. The NGM plants under water deficit exhibited more leaf senescence, while the OsCPK5-overexpressing plants retained their green leaves. Overall, OsCPK5 overexpression induced diverse drought tolerance mechanisms, indicating the potential for future development of more drought-tolerant rice cultivars.
Collapse
Affiliation(s)
- Thaís Ignez da Cruz
- Escola de Agronomia, Universidade Federal de Goiás, Goiânia 74690-900, Brazil;
| | | | - Anna Cristina Lanna
- Embrapa Arroz e Feijão, Santo Antônio de Goiás 75375-000, Brazil; (A.C.L.); (R.P.V.)
| | - Beata Dedicova
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Sundsvägen 10, P.O. Box 101, SE-230 53 Alnarp, Sweden;
| | | | - Claudio Brondani
- Embrapa Arroz e Feijão, Santo Antônio de Goiás 75375-000, Brazil; (A.C.L.); (R.P.V.)
| |
Collapse
|
3
|
Shehzad MA, Hussain I, Akhtar G, Ahmad KS, Nawaz F, Faried HN, Mehmood A. Insights into physiological and metabolic modulations instigated by exogenous sodium nitroprusside and spermidine reveals drought tolerance in Helianthus annuus L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107935. [PMID: 37579683 DOI: 10.1016/j.plaphy.2023.107935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Drought is the most critical climatic factor instigating severe threats to crop production worldwide. As stress ameliorants, exogenous sodium nitroprusside (SNP) or spermidine (Spd) supply has positive responses in alleviating the drought adversities in crops, however, reports regarding their combined effects is still elusive. Here, the protective role of SNP and Spd to confer drought resistance in sunflower (Helianthus annuus L.) through up-regulation of physiological and metabolic processes was investigated. Plants were foliar sprayed with individual or combined SNP (100 μM) or Spd (100 μM). Drought was induced by keeping the soil at 100% (normal) and 60% (drought stress) field capacity levels. Drought exposure caused a marked decline in relative water content (RWC), excised leaf water retention (ELWR), net photosynthesis (PN), transpiration rate (E), stomatal conductance (gs), and sub-stomatal conductance (Ci) with substantial increase in catalase (CAT), superoxide dismutase (SOD), and peroxidase (POX). SNP plus Spd exhibited a considerable increase in CAT, SOD, and POX activities under drought, and helped the plants to retain optimum water status and gas exchange attributes. Similarly, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents were increased significantly to drought; however, a notable decline was recorded in drought prone plants treated with exogenous SNP plus Spd. Moreover, addition of SNP plus Spd under drought caused a remarkable increase in chlorophyll a (Chl a), chlorophyll b (Chl b), chlorophyll total (Chl t), carotenoids (Car), and growth traits like shoot length (SL), root length (RL), shoot fresh weight (SFW), shoot dry weight (SDW), root dry weight (RDW). Combined SNP and Spd application could potentially alleviate the drought-induced damages in sunflower through increased water status (8-10%), antioxidant enzymes (17-28%), chlorophyll pigments (14-21%), and growth performance (12-22%) under drought stress.
Collapse
Affiliation(s)
- Muhammad Asif Shehzad
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan.
| | - Israr Hussain
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Gulzar Akhtar
- Department of Horticulture, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Khawaja Shafique Ahmad
- Department of Botany, University of Poonch Rawalakot (UPR), 12350, Azad Jammu and Kashmir, Pakistan.
| | - Fahim Nawaz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Hafiz Nazar Faried
- Department of Horticulture, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Ansar Mehmood
- Department of Botany, University of Poonch Rawalakot (UPR), 12350, Azad Jammu and Kashmir, Pakistan
| |
Collapse
|
4
|
Davidson KJ, Lamour J, Rogers A, Ely KS, Li Q, McDowell NG, Pivovaroff AL, Wolfe BT, Wright SJ, Zambrano A, Serbin SP. Short-term variation in leaf-level water use efficiency in a tropical forest. THE NEW PHYTOLOGIST 2023; 237:2069-2087. [PMID: 36527230 DOI: 10.1111/nph.18684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The representation of stomatal regulation of transpiration and CO2 assimilation is key to forecasting terrestrial ecosystem responses to global change. Given its importance in determining the relationship between forest productivity and climate, accurate and mechanistic model representation of the relationship between stomatal conductance (gs ) and assimilation is crucial. We assess possible physiological and mechanistic controls on the estimation of the g1 (stomatal slope, inversely proportional to water use efficiency) and g0 (stomatal intercept) parameters, using diurnal gas exchange surveys and leaf-level response curves of six tropical broadleaf evergreen tree species. g1 estimated from ex situ response curves averaged 50% less than g1 estimated from survey data. While g0 and g1 varied between leaves of different phenological stages, the trend was not consistent among species. We identified a diurnal trend associated with g1 and g0 that significantly improved model projections of diurnal trends in transpiration. The accuracy of modeled gs can be improved by accounting for variation in stomatal behavior across diurnal periods, and between measurement approaches, rather than focusing on phenological variation in stomatal behavior. Additional investigation into the primary mechanisms responsible for diurnal variation in g1 will be required to account for this phenomenon in land-surface models.
Collapse
Affiliation(s)
- Kenneth J Davidson
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Building 490A, Upton, NY, 11973, USA
- Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY, 11794, USA
| | - Julien Lamour
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Building 490A, Upton, NY, 11973, USA
| | - Alistair Rogers
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Building 490A, Upton, NY, 11973, USA
| | - Kim S Ely
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Building 490A, Upton, NY, 11973, USA
| | - Qianyu Li
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Building 490A, Upton, NY, 11973, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| | | | - Brett T Wolfe
- School of Renewable Natural Resources, Louisiana State University, Room 227, Renewable Natural Resources Bldg, Baton Rouge, LA, 70803, USA
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Panama
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Panama
| | - Alfonso Zambrano
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Panama
| | - Shawn P Serbin
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Building 490A, Upton, NY, 11973, USA
| |
Collapse
|
5
|
Physiological Comparison of Wheat and Maize Seedlings Responses to Water Stresses. SUSTAINABILITY 2022. [DOI: 10.3390/su14137932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the study was to investigate specific responses of spring wheat (C3 photosynthesis) and maize (C4 photosynthesis) to drought and flooding stress. Analyses of water content, gas exchange intensity, photosynthetic apparatus activity, chlorophyll content, plant height and biological membrane integrity were performed on the 10th day of drought and flooding in both species at the third leaf stage. A specific response of wheat under both drought and flooding conditions involved an increase in ETo/RC ratio, describing electron transport flux converted into a single reaction center in PSII. Correlations between electrolyte leakage and the probability of electron transport beyond the plastoquinone QA, and the amount of energy used for the electron transport were also found. A specific response of maize during flooding was the increase of stomatal conductance. Additionally, a significant correlation between PN/Ci and relative water content was exhibited. Furthermore, the parameters differentiating the studied species only under stressful conditions were rendered. The application of such parameters can be widely used, e.g., for studying the reaction of a potential cultivars to drought and flooding. Providing such information to potential farmers can help better select cultivars for their environmental conditions.
Collapse
|
6
|
Villalobos-Soublett E, Verdugo-Vásquez N, Díaz I, Zurita-Silva A. Adapting Grapevine Productivity and Fitness to Water Deficit by Means of Naturalized Rootstocks. FRONTIERS IN PLANT SCIENCE 2022; 13:870438. [PMID: 35685018 PMCID: PMC9171144 DOI: 10.3389/fpls.2022.870438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Climate change effects are unbalanced in all regions and cultivars linked to the wine industry. However, the impact of extreme weather events, such as drought and rising global temperatures, highlight the potential vulnerability in plant productivity, phenology, and crop water requirements that affect quality and harvests. Among adaptative measures for grapevine cultivars in existing or new winegrowing areas, the use of tolerant rootstocks to abiotic stress has been regarded as a mid-term strategy to face emerging constrains. The aim of this study was to compare naturalized or autochthonous rootstocks influence over grapevine cultivar performance and to characterize their response to deficit irrigation conditions. Data was collected from Cabernet Sauvignon and Syrah grafted plants for over 3 growing seasons (2018-2021) from a hyper-arid experimental field in Vicuña, Chile. Morpho-physiological parameters were determined throughout seasons and combinations where significant effects from rootstocks, irrigation treatment, and cultivar were observed over An and gs, thus modifying CO2 assimilation and intrinsic Water Use Efficiency (WUEi). Primary productivity and yield were also modified by rootstock depending upon cultivar hydric behavior. Interestingly, cluster and berry traits were unaffected despite how water productivity and integral water stress were modulated by rootstock. In both cultivars, it was observed that trait responses varied according to the irrigation conditions, rootstocks, and their respective interactions, thus highlighting a relative influence of the rootstocks in the processes of adaptation to the water deficit. Moreover, harvest date and acidity were modified by deficit irrigation treatment, and rootstocks did not modify phenological stages. Adaptation of grapevines to expected lower water availability might be improved by using suitable tolerant rootstocks, and maturity index can be modified through irrigation management.
Collapse
Affiliation(s)
| | - Nicolás Verdugo-Vásquez
- Centro de Investigación Intihuasi, Instituto de Investigaciones Agropecuarias INIA, La Serena, Chile
| | - Irina Díaz
- Centro de Investigación Raihuén, Instituto de Investigaciones Agropecuarias INIA, San Javier, Chile
| | - Andrés Zurita-Silva
- Centro de Investigación Intihuasi, Instituto de Investigaciones Agropecuarias INIA, La Serena, Chile
| |
Collapse
|
7
|
Cao Q, Li G, Liu F. Elevated CO 2 enhanced water use efficiency of wheat to progressive drought stress but not on maize. FRONTIERS IN PLANT SCIENCE 2022; 13:953712. [PMID: 36466229 PMCID: PMC9714360 DOI: 10.3389/fpls.2022.953712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/28/2022] [Indexed: 05/12/2023]
Abstract
Global rising atmospheric CO2 concentration ([CO2]) and drought stress exert profound influences on crop growth and yield. The objective of the present study was to investigate the responses of leaf gas exchange and plant water use efficiency (WUE) of wheat (C3) and maize (C4) plants to progressive drought stress under ambient (a[CO2], 400 ppm) and elevated (e[CO2], 800 ppm) atmospheric CO2 concentrations. The fraction of transpirable soil water (FTSW) was used to evaluate soil water status in the pots. Under non-drought stress, e[CO2] increased the net photosynthetic rate (An) solely in wheat, and dry matter accumulation (DMA), whereas it decreased stomatal conductance (g s) and water consumption (WC), resulting in enhanced WUE by 27.82% for maize and 49.86% for wheat. After onset of progressive soil drying, maize plants in e[CO2] showed lower FTSW thresholds than wheat, at which e.g. gs (0.31 vs 0.40) and leaf relative water content (0.21 vs 0.43) starts to decrease, indicating e[CO2] conferred a greater drought resistance in maize. Under the combination of e[CO2] and drought stress, enhanced WUE was solely found in wheat, which is mainly associated with increased DMA and unaffected WC. These varied responses of leaf gas exchange and WUE between the two species to combined drought and e[CO2] suggest that specific water management strategies should be developed to optimize crop WUE for different species in a future drier and CO2-enriched environment.
Collapse
Affiliation(s)
- Qingjun Cao
- Key Laboratory of Northeast crop physiology ecology and cultivation, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, Jilin Academy of Agriculture Science, Changchun, China
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Gang Li
- Key Laboratory of Northeast crop physiology ecology and cultivation, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, Jilin Academy of Agriculture Science, Changchun, China
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
- *Correspondence: Fulai Liu,
| |
Collapse
|
8
|
Li F, Guo D, Gao X, Zhao X. Water Deficit Modulates the CO 2 Fertilization Effect on Plant Gas Exchange and Leaf-Level Water Use Efficiency: A Meta-Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:775477. [PMID: 34912360 PMCID: PMC8667667 DOI: 10.3389/fpls.2021.775477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Elevated atmospheric CO2 concentrations ([eCO2]) and soil water deficits significantly influence gas exchange in plant leaves, affecting the carbon-water cycle in terrestrial ecosystems. However, it remains unclear how the soil water deficit modulates the plant CO2 fertilization effect, especially for gas exchange and leaf-level water use efficiency (WUE). Here, we synthesized a comprehensive dataset including 554 observations from 54 individual studies and quantified the responses for leaf gas exchange induced by e[CO2] under water deficit. Moreover, we investigated the contribution of plant net photosynthesis rate (P n ) and transpiration rates (T r) toward WUE in water deficit conditions and e[CO2] using graphical vector analysis (GVA). In summary, e[CO2] significantly increased P n and WUE by 11.9 and 29.3% under well-watered conditions, respectively, whereas the interaction of water deficit and e[CO2] slightly decreased P n by 8.3%. Plants grown under light in an open environment were stimulated to a greater degree compared with plants grown under a lamp in a closed environment. Meanwhile, water deficit reduced P n by 40.5 and 37.8%, while increasing WUE by 24.5 and 21.5% under ambient CO2 concentration (a[CO2]) and e[CO2], respectively. The e[CO2]-induced stimulation of WUE was attributed to the common effect of P n and T r, whereas a water deficit induced increase in WUE was linked to the decrease in T r. These results suggested that water deficit lowered the stimulation of e[CO2] induced in plants. Therefore, fumigation conditions that closely mimic field conditions and multi-factorial experiments such as water availability are needed to predict the response of plants to future climate change.
Collapse
Affiliation(s)
- Fei Li
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang, China
| | - Dagang Guo
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang, China
| | - Xiaodong Gao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- National Engineering Research Center of Water Saving and Irrigation Technology, Yangling, China
- Institute of Soil and Water Conservation, Northwest A&F University, Xianyang, China
| | - Xining Zhao
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- National Engineering Research Center of Water Saving and Irrigation Technology, Yangling, China
| |
Collapse
|
9
|
Alves FM, Joshi M, Djidonou D, Joshi V, Gomes CN, Leskovar DI. Physiological and Biochemical Responses of Tomato Plants Grafted onto Solanum pennellii and Solanum peruvianum under Water-Deficit Conditions. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112236. [PMID: 34834599 PMCID: PMC8625872 DOI: 10.3390/plants10112236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/01/2023]
Abstract
Grafting using suitable rootstocks mitigates the adverse effects caused by environmental stresses such as water deficit in the tomato crop. Solanum pennellii and Solanum peruvianum, the wild relatives of tomato, are used as rootstocks due to their tolerance to water deficit and soil-borne diseases. This study focused on evaluating physiological and biochemical responses of tomato plants grafted onto S. pennellii and S. peruvianum rootstocks during water deficit. The commercial tomato cultivar 'HM 1823' (HM) either self-grafted (HM/HM) or grafted onto S. pennellii (HM/PN), S. peruvianum (HM/PR), and 'Multifort' (HM/MU) rootstocks were subjected to water-deficit stress by withholding irrigation for eight days. The performance of the grafted plants under water deficit was evaluated using physiological and biochemical parameters in vegetative tissues of the grafted plants. Plants grafted using S. pennellii (PN) and S. peruvianum (PR) rootstocks showed higher values of water potential (Ψw), relative water content (RWC), net photosynthetic rate (A), and leaf water use efficiencies (WUE) compared to HM, HM/HM, and HM/MU. Plants grafted onto tomato wild relatives showed the lowest malondialdehyde (MDA) and proline content. This study demonstrated that the rootstocks of wild tomato relatives reduced the effect of water deficit to a greater extent through better physiological, metabolic, and biochemical adjustments than self-grafting plants.
Collapse
Affiliation(s)
- Flávia Maria Alves
- Departamento de Agronomia, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil; (F.M.A.); (C.N.G.)
| | - Madhumita Joshi
- Texas A&M AgriLife Research and Extension Center, Texas A&M University, Uvalde, TX 78801, USA; (M.J.); (V.J.)
| | - Desire Djidonou
- College of Agricultural Sciences and Natural Resources, Texas A&M University, Commerce, TX 75428, USA;
| | - Vijay Joshi
- Texas A&M AgriLife Research and Extension Center, Texas A&M University, Uvalde, TX 78801, USA; (M.J.); (V.J.)
| | - Carlos Nick Gomes
- Departamento de Agronomia, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil; (F.M.A.); (C.N.G.)
| | - Daniel Ivan Leskovar
- Texas A&M AgriLife Research and Extension Center, Texas A&M University, Uvalde, TX 78801, USA; (M.J.); (V.J.)
| |
Collapse
|
10
|
Zhang J, Deng L, Jiang H, Peng C, Huang C, Zhang M, Zhang X. The effects of elevated CO 2, elevated O 3, elevated temperature, and drought on plant leaf gas exchanges: a global meta-analysis of experimental studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15274-15289. [PMID: 33236300 DOI: 10.1007/s11356-020-11728-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Global change significantly influences plant leaf gas exchange, which affects the carbon-water cycle of terrestrial ecosystems. However, the magnitudes of the effects of multiple global change factors on leaf gas exchanges are currently lacking. Therefore, a global meta-analysis of 337 published articles was conducted to determine the effects of elevated CO2 (eCO2), elevated O3 (eO3), elevated temperature (eT), and drought on plant leaf gas exchanges. The results indicated that (1) the overall responses of photosynthesis rate (Pn) and instantaneous water use efficiency (WUEi) to eCO2 increased by 28.6% and 58.6%. But transpiration rate (Tr) and stomatal conductance (gs) responded negatively to eCO2 (- 17.5% and - 17.2%, respectively). Furthermore, all Pn, gs, and WUEi responded negatively to eO3 (- 32.7%, - 24.6%, and - 27.1%), eT (- 23.2%, - 10.8%, and - 28.9%), and drought (- 53.6%, - 59.3%, and - 4.6%, respectively), regardless of functional groups and various complex experimental conditions. (2) Elevated CO2 increased WUEi combined with eO3, eT, and drought (26.6%, 36.0%, and 58.6%, respectively, for eCO2 + eO3, eCO2 + eT, and eCO2 + drought) and mitigated their negative impacts on Pn to some extent. (3) Plant form and foliage type play an important role in the responses of leaf gas exchanges. Trees responded mostly to eCO2, but responded least to eT in Pn, Tr, gs, and WUEi compared with shrubs and herbs. Evergreen broad-leaved species were more responsive to eCO2 and drought. (4) The stress level of each factor can also significantly influence the responses of leaf gas exchanges to environment change. Hopefully, the quantitative results are helpful for the further assessments of the terrestrial carbon-water cycle.
Collapse
Affiliation(s)
- Jinmeng Zhang
- School of Urban and Environment Science, Jiangsu Second Normal University, Nanjing, 211200, China
- International Institutes for Earth System Science, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing, 210023, China
- Center of CEF/ESCER, Department of Biological Science, University of Quebec at Montreal, Montreal, QC, Canada
| | - Lei Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hong Jiang
- International Institutes for Earth System Science, Nanjing University, Nanjing, 210023, China.
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing, 210023, China.
| | - Changhui Peng
- Center of CEF/ESCER, Department of Biological Science, University of Quebec at Montreal, Montreal, QC, Canada
| | - Chunbo Huang
- College of Horticulture and Forestry Sciences, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, China
| | - Minxia Zhang
- International Institutes for Earth System Science, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing, 210023, China
| | - Xiuying Zhang
- International Institutes for Earth System Science, Nanjing University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| |
Collapse
|
11
|
Paganová V, Hus M, Jureková Z. Physiological Performance of Pyrus pyraster L. (Burgsd.) and Sorbus torminalis (L.) Crantz Seedlings under Drought Treatment. PLANTS 2020; 9:plants9111496. [PMID: 33167517 PMCID: PMC7694486 DOI: 10.3390/plants9111496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/04/2022]
Abstract
In this study, seedlings of Pyrus pyraster and Sorbus torminalis were grown for 60 days in the regulated environment of a growth chamber under different water regimes. The measured indicators were the growth and distribution of mass to organs, total biomass, root to shoot mass ratio (R:S), and gas exchange parameters (gs, E, An, and water use efficiency (WUE)). The amount of total biomass was negatively affected by drought. Differences between species were confirmed only for the dry matter of the leaves. P. pyraster maintained the ratio of the mass distribution between belowground and aboveground organs in both variants of the water regime. S. torminalis created more root length for a given dry-mass under drought treatment, but its R:S was lower compared to P. pyraster. The water potential of the leaves (Ψwl) was affected by substrate saturation and interspecific differences. P. pyraster had a demonstrably higher water potential and maintained this difference even after prolonged exposure to drought. After 30 days of different water regimes, Pyrus maintained higher values of gs, An, and E in control and drought treatments, but over a longer period of drought (after 50 days), the differences between species were equalized. The changes of the leaf gas exchange for Pyrus were accompanied by a significant increase in WUE, which was most pronounced on the 40th day of the experiment. A significant and strong relationship between WUE and gs was demonstrated. The results confirmed the different physiological performances of seedlings of tree species and the different mechanisms of their response to water scarcity during drought treatment. P. pyraster presented more acclimation traits, which allowed this taxon to exhibit better performance over a longer period of water scarcity.
Collapse
Affiliation(s)
- Viera Paganová
- Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, 949 76 Nitra, Slovakia;
- Correspondence:
| | - Marek Hus
- Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, 949 76 Nitra, Slovakia;
| | - Zuzana Jureková
- Faculty of European Studies and Regional Development, Slovak University of Agriculture, 949 76 Nitra, Slovakia;
| |
Collapse
|
12
|
Wang Y, Del Campo AD, Wei X, Winkler R, Liu W, Li Q. Responses of forest carbon and water coupling to thinning treatments from leaf to stand scales in a young montane pine forest. CARBON BALANCE AND MANAGEMENT 2020; 15:24. [PMID: 33141394 PMCID: PMC7609426 DOI: 10.1186/s13021-020-00159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Water-use efficiency (WUE) represents the coupling of forest carbon and water. Little is known about the responses of WUE to thinning at multiple spatial scales. The objective of this research was to use field measurements to understand short-term effects of two thinning treatments (T1: 4500 stems ha-1; and T2: 1100 stems ha-1) and the control (NT: 27,000 stems ha-1) on WUE at the three spatial scales (leaf level: the ratio of leaf photosynthesis to leaf transpiration; tree-level: tree growth to tree transpiration; and stand level: net primary production (NPP) to stand transpiration) and intrinsic WUEi (the ratio of leaf photosynthesis to stomatal conductance at leaf-level; and NPP to canopy conductance at stand-level) in a 16-year old natural lodgepole pine forest. Leaf-level measurements were conducted in 2017, while tree- and stand-level measurements were conducted in both 2016 (the normal precipitation year) and 2017 (the drought year). RESULTS The thinning treatments did not significantly affect the tree- and stand-level WUE in the normal year of 2016. However, the thinning significantly affected WUE in the drought year of 2017: T2 exhibited significantly higher tree-level WUE (0.49 mm2 kg-1) than NT (0.08 mm2 kg-1), and compared to NT, the stand-level WUE values in the thinned stands (T1 and T2) were significantly higher, with means of 0.31, 0.56 and 0.70 kg m-3, respectively. However, the leaf-level and stand-level WUEi in the thinned stands in the drought year were significantly lower than those in the unthinned stands. No significant differences in the leaf-level WUE were found among the treatments in 2017. In addition, the thinning did not significantly change the WUE-VPD relationships at any studied spatial scale. CONCLUSIONS The thinning treatments did not cause significant changes in all studied WUE metrics in a normal year. However, their effects were significantly promoted under the drought conditions probably due to the decrease in soil water availability, demonstrating that thinning can improve WUE and consequently support forests to cope with the drought effects. The inconsistent results on the effects of the thinning on forest carbon and water coupling at the spatial scales and the lack of the consistent WUE metrics constraint across-scale comparison and transferring of WUE.
Collapse
Affiliation(s)
- Yi Wang
- Department of Earth, Environmental and Geographic Sciences, University of British Columbia, Okanagan, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
- Department of Geography and Environmental Management, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Antonio D Del Campo
- Research Group in Forest Science and Technology (Re-ForeST), Universitat Politècnica de València, Camí de Vera s/n, E-46022, València, Spain
| | - Xiaohua Wei
- Department of Earth, Environmental and Geographic Sciences, University of British Columbia, Okanagan, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada.
| | - Rita Winkler
- The British Columbia Ministry of Forests Lands, Natural Resource Operations and Rural Development, 515 Columbia St, Kamloops, BC, V2C 2T7, Canada
| | - Wanyi Liu
- Department of Earth, Environmental and Geographic Sciences, University of British Columbia, Okanagan, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Qiang Li
- Department of Earth, Environmental and Geographic Sciences, University of British Columbia, Okanagan, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
13
|
Song L, Pan Y, Gong J, Li X, Liu M, Yang B, Zhang Z, Baoyin T. Physiology of Leymus chinensis under seasonal grazing: Implications for the development of sustainable grazing in a temperate grassland of Inner Mongolia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110984. [PMID: 32579531 DOI: 10.1016/j.jenvman.2020.110984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/17/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Plants have different physiological characteristics as the season changes, grazing management in compliance with plant growth and development characteristics may provide new ideas for sustainable livestock development. However, there has been little research on seasonal grazing and plants physiological responses under it. Here, we studied a typical steppe ecosystem of Inner Mongolia, with Leymus chinensis as the dominant species, in five grazing treatments: continuous grazing, seasonal grazing (which started in spring or in early and late summer), and no grazing (the control). We analyzed growth and resistance of L. chinensis in the five treatments by measuring annual primary productivity, morphological traits and various physiological processes. Compared with continuous grazing, seasonal grazing significantly alleviated grassland degradation. The plants were less affected by stress under spring grazing, with net photosynthesis and non-photochemical quenching closer to the control values and with a lower malondialdehyde content. The annual primary production of plants under grazing started in the early and late summer were 3-4 times the value under continuous grazing. Regrowth under early-summer grazing was greatly improved, and stress resistance was stronger with a higher proline content and high antioxidant enzyme activity. And nutrient accumulation at the end of the growing season such as abundant soluble sugars were transferred from aboveground tissue to the roots in September under late-summer grazing, which benefited regrowth the next year. All these physiological processes were regulated by hormonal changes. Our results highlight how plants response grazing stress in different growing seasons and suggest that seasonal grazing can improve the stress resistance and regrowth capacity of forage vegetation, and applying this knowledge can promote more sustainable grazing practices.
Collapse
Affiliation(s)
- Liangyuan Song
- State Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yan Pan
- State Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; The High School Affiliated to University of Science & Technology Beijing, PR China
| | - Jirui Gong
- State Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Xiaobing Li
- State Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Min Liu
- State Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Key Laboratory of Tourism and Resources Environment in Taishan University, Taian, 271021, China
| | - Bo Yang
- State Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Zihe Zhang
- State Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Taogetao Baoyin
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China.
| |
Collapse
|
14
|
Stallmann J, Schweiger R, Pons CAA, Müller C. Wheat growth, applied water use efficiency and flag leaf metabolome under continuous and pulsed deficit irrigation. Sci Rep 2020; 10:10112. [PMID: 32572060 PMCID: PMC7308318 DOI: 10.1038/s41598-020-66812-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
The intensity and frequency of precipitation events are predicted to change over the coming decades. For many areas, longer periods without rainfall are expected. We investigated the importance of irrigation frequency under water deficit conditions for growth, physiology and chemistry of wheat (Triticum aestivum). Drought-stressed plants received 40% of the water provided for control plants and were either watered every other day (continuous drought, cd) or every eight days (pulsed drought, pd). Maximum quantum yield of photosystem II (Fv/Fm), aboveground biomass, applied water use efficiency (WUEapl) and the flag leaf metabolome were assessed twice during development. Fv/Fm was not affected by irrigation. Drought-exposed plants produced less biomass, but had higher WUEapl than control plants. More metabolic features responded to the pd compared to the cd treatment and more features were increased than decreased in pool size in flag leaves. Salicylic acid glucoside was generally decreased under drought. In pd plants, two benzoxazinoid glucosides were enhanced at the first time point and concentrations of several flavonoid glycosides were modulated. This study extends our knowledge about drought effects on wheat; it highlights that the frequency of watering determines how plant growth, physiology and metabolism are affected by drought.
Collapse
Affiliation(s)
- Jana Stallmann
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Rabea Schweiger
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Caroline A A Pons
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
15
|
Shehzad MA, Nawaz F, Ahmad F, Ahmad N, Masood S. Protective effect of potassium and chitosan supply on growth, physiological processes and antioxidative machinery in sunflower (Helianthus annuus L.) under drought stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109841. [PMID: 31677566 DOI: 10.1016/j.ecoenv.2019.109841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 05/25/2023]
Abstract
Drought stress is one of the extreme effects of climate change causing large losses in production of crop plants. The risk of recurrent droughts has increased in next decades hence, the development of shot-gun, inexpensive and effective approaches is essential to ensure high yield of crops in drought-prone areas of the world. Exogenous application of nutrients such as potassium (K) has been reported to increase abiotic resistance and improve yield in crops however, knowledge regarding interaction of K with osmoprotectants like chitosan (Ct) still remains elusive. Here, we report the effects of individual or combined K (using K2SO4 as a source) or Ct application on growth, physiological processes and antioxidative defense system of sunflower under drought stress. At first, various doses of K (0, 5, 10, 15, 20, 25 g/l) and Ct (0, 0.1, 0.2, 0.3, 0.4, 0.5 g/l) were foliar applied to evaluate their role in improving plant biomass, water status and total chlorophyll in drought-induced seedlings of sunflower. The optimized K (11.48 g/l) and Ct (0.28 g/l) doses were further tested in second experiment to understand the underlying mechanisms of drought tolerance. Foliar K + Ct spray markedly enhanced the leaf gas exchange characteristics, increased proline, soluble proteins, and free amino acids, upregulated antioxidant defense system and helped to maintain plant water status in sunflower exposed to drought stress. The impact of drought stress was more pronounced at vegetative than reproductive stage and positive effects of combined K and Ct application were related to improved physiological and metabolic processes to improve yield and quality of sunflower under drought stress.
Collapse
Affiliation(s)
| | - Fahim Nawaz
- Department of Agronomy, MNS-University of Agriculture, Multan, 66000, Pakistan
| | - Fiaz Ahmad
- Central Cotton Research Institute, Multan, 66000, Pakistan
| | - Naveed Ahmad
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, 38040, Pakistan
| | | |
Collapse
|
16
|
Samuolienė G, Viršilė A, Haimi P, Miliauskienė J. Photoresponse to different lighting strategies during red leaf lettuce growth. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 202:111726. [PMID: 31816516 DOI: 10.1016/j.jphotobiol.2019.111726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/19/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
Abstract
The objective of the study was to investigate the effects of growth-stage specific lighting for the physiological homeostasis of red leaf lettuce (Lactuca sativa L. cv. Red Cos), by measuring the productivity of photosynthesis and primary metabolism. In the experiments, the main photosynthetic photon flux consisted of red (R) and blue (B) light, supplemented with blue, green (G) or UV-A wavelengths. Decrease of fructose, accompanied by significant decrease of stomatal conductance (gs), the ratio of intracellular to ambient CO2 concentration (Ci/Ca), photosynthetic rate (Pr), light adapted actual quantum yield of PSII photochemistry (ΦPSII), biomass formation and significant increase of transpiration rate (Tr) suggest that supplemental UV-A during maturity stage, after supplemental green irradiation during seedling stage (BRG to BRUV) was the least favourable condition for red leaf lettuce. However, constant irradiation with supplemental green (BRG) or supplemental green irradiation after increased blue exposure (B↑R to BRG) resulted in significant increase of Pr, gs, Ci/Ca, and light use efficiency(LUE), and decrease of Tr and Water use efficiency (WUE). Significant increase of leaf area was observed under supplemental green in both seedlings (BR; BRG) and matured plants (B↑R to BRG). Significant increase of specific leaf area was found under supplemental green (BRG) for seedlings and under increased blue (B↑R) for matured plants. Accordingly, the most favourable growth-stage specific lighting spectrum strategy for red leaf lettuce, based on photosynthetic and primary metabolite response, is supplemental green irradiation after increased blue exposure (B↑R to BRG), whereas, the most favourable condition for seedlings is BRG. According to the PCA correlation matrix, associations among the measured data indicate that WUE negatively correlated with gs and Ci/Ca, while LUE positively correlated with gs and Pr. However, weak correlations between ФPSII, LUE and photochemical reflectance index (PRI) suggest that selected light conditions were not optimal for red leaf lettuce.
Collapse
Affiliation(s)
- Giedrė Samuolienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas, str. 30, Lithuania.
| | - Akvilė Viršilė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas, str. 30, Lithuania
| | - Perttu Haimi
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas, str. 30, Lithuania
| | - Jurga Miliauskienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas, str. 30, Lithuania
| |
Collapse
|
17
|
Crop Vulnerability to Weather and Climate Risk: Analysis of Interacting Systems and Adaptation Efficacy for Sustainable Crop Production. SUSTAINABILITY 2019. [DOI: 10.3390/su11236619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change is increasing mean and extreme temperatures in the Southwestern United States, leading to a suite of changes affecting agricultural production. These include changes in water, soils, pathogens, weeds, and pests comprising the production environment. The aim of this synthesis is to describe the anticipated leading agricultural pressures and adaptive responses, many of which are near-term actions with longer-term consequences. In the semiarid Southwestern United States, climate change is expected to increase water scarcity. Surface water shortage is the leading reason for recent diminished crop yields in the Southwest. Drought and lack of water represent the leading regional weather-related cause of crop loss from 1989 to 2017. Thus, water scarcity has been and will continue to be a critical factor leading to regional crop vulnerability. Soils, pathogens, weeds, and insects are components of the agricultural production environment and are directly influenced by near-term weather and long-term climate conditions. Field crops, vegetable crops, and perennial crops have unique production requirements and diverse management options, many already used in farm management, to cope with production environment changes to build climate resilience. Farmers and ranchers continuously respond to changing conditions on a near-term basis. Long-term planning and novel adaptation measures implemented may now build nimble and responsive systems and communities able to cope with future conditions. While decision-support tools and resources are providing increasingly sophisticated approaches to cope with production in the 21st century, we strive to keep pace with the cascading barrage of inter-connected agricultural challenges.
Collapse
|
18
|
Leakey ADB, Ferguson JN, Pignon CP, Wu A, Jin Z, Hammer GL, Lobell DB. Water Use Efficiency as a Constraint and Target for Improving the Resilience and Productivity of C 3 and C 4 Crops. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:781-808. [PMID: 31035829 DOI: 10.1146/annurev-arplant-042817-040305] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The ratio of plant carbon gain to water use, known as water use efficiency (WUE), has long been recognized as a key constraint on crop production and an important target for crop improvement. WUE is a physiologically and genetically complex trait that can be defined at a range of scales. Many component traits directly influence WUE, including photosynthesis, stomatal and mesophyll conductances, and canopy structure. Interactions of carbon and water relations with diverse aspects of the environment and crop development also modulate WUE. As a consequence, enhancing WUE by breeding or biotechnology has proven challenging but not impossible. This review aims to synthesize new knowledge of WUE arising from advances in phenotyping, modeling, physiology, genetics, and molecular biology in the context of classical theoretical principles. In addition, we discuss how rising atmospheric CO2 concentration has created and will continue to create opportunities for enhancing WUE by modifying the trade-off between photosynthesis and transpiration.
Collapse
Affiliation(s)
- Andrew D B Leakey
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - John N Ferguson
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Charles P Pignon
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;
| | - Alex Wu
- Centre for Crop Science and Centre of Excellence for Translational Photosynthesis, University of Queensland, St. Lucia, Queensland 4069, Australia
| | - Zhenong Jin
- Department of Earth System Science and Center for Food Security and Environment, Stanford University, Stanford, California 94305, USA
| | - Graeme L Hammer
- Centre for Crop Science and Centre of Excellence for Translational Photosynthesis, University of Queensland, St. Lucia, Queensland 4069, Australia
| | - David B Lobell
- Department of Earth System Science and Center for Food Security and Environment, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
19
|
Stallmann J, Schweiger R, Müller C. Effects of continuous versuspulsed drought stress on physiology and growth of wheat. PLANT BIOLOGY 2018; 20:1005-1013. [PMID: 0 DOI: 10.1111/plb.12883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/24/2018] [Indexed: 05/11/2023]
Affiliation(s)
- J. Stallmann
- Department of Chemical Ecology; Bielefeld University; Bielefeld Germany
| | - R. Schweiger
- Department of Chemical Ecology; Bielefeld University; Bielefeld Germany
| | - C. Müller
- Department of Chemical Ecology; Bielefeld University; Bielefeld Germany
| |
Collapse
|
20
|
Abstract
To improve sustainability of agriculture, high yielding crop varieties with improved water use efficiency (WUE) are needed. Despite the feasibility of assessing WUE using different measurement techniques, breeding for WUE and high yield is a major challenge. Factors influencing the trait under field conditions are complex, including different scenarios of water availability. Plants with C3 photosynthesis are able to moderately increase WUE by restricting transpiration, resulting in higher intrinsic WUE (iWUE) at the leaf level. However, reduced CO2 uptake negatively influences photosynthesis and possibly growth and yield as well. The negative correlation of growth and WUE could be partly disconnected in model plant species with implications for crops. In this paper, we discuss recent insights obtained for Arabidopsis thaliana (L.) and the potential to translate the findings to C3 and C4 crops. Our data on Zea mays (L.) lines subjected to progressive drought show that there is potential for improvements in WUE of the maize line B73 at the whole plant level (WUEplant). However, changes in iWUE of B73 and Arabidopsis reduced the assimilation rate relatively more in maize. The trade-off observed in the C4 crop possibly limits the effectiveness of approaches aimed at improving iWUE but not necessarily efforts to improve WUEplant.
Collapse
|