1
|
Almeida M, Silva T, Solstad RG, Lillebø AI, Calado R, Vieira H. How Significant Are Marine Invertebrate Collagens? Exploring Trends in Research and Innovation. Mar Drugs 2024; 23:2. [PMID: 39852504 DOI: 10.3390/md23010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/26/2025] Open
Abstract
This review is focused on the research, innovation and technological breakthroughs on marine invertebrate collagens and their applications. The findings reveal that research dates back to the 1970s, and after a period of reduced activity, interest in collagens from several marine invertebrate groups was renewed around 2008, likely driven by the increased commercial interest in these biomolecules of marine origin. Research and development are predominantly reported from China and Japan, highlighting significant research interest in cnidarians (jellyfish), echinoderms (sea cucumbers, sea urchins and starfish), molluscs (squid and cuttlefish) and sponges. Co-word analysis of the literature highlights applications in regenerative medicine, the properties of hydrolysates, and biology and biochemistry studies. Innovation and the technological landscape, however, focus on fewer taxonomic groups, possibly reflecting the challenge of sustainably sourcing raw materials, with a higher number of patents coming from Asia. Globally, jellyfish collagen is the most prominent marine invertebrate source, while Asia also emphasizes the use of collagens derived from molluscs and sea cucumbers. Europe, despite fewer patents, explores a broader range of taxonomic groups. Globally, key applications registered are mostly in medical, dental and toiletry areas, with peptide preparations spanning multiple animal groups. The food domain is notably relevant for molluscs and sea cucumbers. Market trends show a strong presence of cosmetic and supplement products, aligning with market reports that predict a growing demand for marine collagens in cosmetics and personalized nutrition, particularly in targeted health supplements.
Collapse
Affiliation(s)
- Mariana Almeida
- CESAM-Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tiago Silva
- 3B's Research Group, I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, 4805-694 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Runar Gjerp Solstad
- Nofima, Norwegian Institute of Food Fisheries and Aquaculture Research, Muninbakken 9-13, 9019 Tromsø, Norway
| | - Ana I Lillebø
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Vieira
- CESAM-Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Naveed M, Chan MWH, Aslam S, Wang F, Sajjad A, Ullah A, Saleem N, Haider MS, Arija V. Nutritional composition assessment and antimicrobial activity of Catostylus perezi, jellyfish blooms along the coast of Pakistan: an awareness to avoid food neophobia in Pakistan. Nat Prod Res 2024; 38:3957-3963. [PMID: 37850438 DOI: 10.1080/14786419.2023.2269597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/20/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
This study highlighted the nutritional importance of Catostylus perezi (an edible jellyfish) in Pakistan; a society where a large proportion of the population suffers from malnutrition, while C. perezi, a blessing of the sea, is wasted or exported. In the present study, the amino acid and fatty acid profiles of the oral arms and umbrella of C. perezi were determined by HPLC. The total amino acid concentration (ΣAA) in the oral arms was 151.19 mg/100g, while in the umbrella it was 100.17 mg/100g. The ratio of total essential amino acids to total non-essential amino acids (TEAA/TNEAA) was 0.72 in the oral arms, while it was 0.70 in the umbrella. Higher amount of ω-3 with lower ratio of ω-6/ω-3 in oral arms (0.52), rather umbrella (ω-6/ω-3 ratio; 0.62). The antimicrobial activity, MIC, MBC, and MFC of the whole body of the edible jellyfish were determined. On the basis of polarity, different solvents were used, e.g. water, methanol, dichloromethane, chloroform, and n-hexane. Among all the extracts, the water extract gave the highest ZOI against C. xerosis (29 mm), while the n-hexane extract gave the lowest ZOI against S. aureus (MRSA) ATCC 33591 (8.20 mm). The water extract of C. perezi had high potential against C. xerosis with the highest AMI and PAI (1.53 and 153, respectively), while the same extract had the highest TAI against E. coli (81.43 mL/g). For fungi/yeast, the methanolic extract had the highest ZOI (29.70 mm) against S. cerevisiae and the lowest MIC/MFC (2.40 µg/mL) against the same pathogen. The n-Hexane extract gave the lowest ZOI (11.10 mm) against P. variotii and the highest MIC/MFC (31.60 µg/mL) against Penicillium sp. Atomic force microscopy (AFM) was used to analyse the disintegrating effect of the extracts (with the highest antimicrobial effect) on the cells of selected Gram-positive, Gram-negative and yeast species. The amino acid and fatty acid profiles and antimicrobial assessment showed that C. perezi has great nutritional importance, so the use of C. perezi as food is highly recommended for the Pakistani community.
Collapse
Affiliation(s)
- Muhammad Naveed
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Malik Wajid Hussain Chan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Centre of Excellence in Marine Biology, University of Karachi, Karachi, Pakistan
- Department of Chemistry, Faculty of Science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Sadar Aslam
- Department of Zoology, University of Baltistan, Skardu, Pakistan
| | - Fenghuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Anas Sajjad
- Muhammad Institute of Medical and Allied Sciences, Multan, Government College University Faisalabad, Pakistan
| | - Asad Ullah
- Food and Marine Resources Research Center, PCSIR Laboratories Complex, Karachi, Pakistan
| | - Nida Saleem
- Food and Marine Resources Research Center, PCSIR Laboratories Complex, Karachi, Pakistan
| | - Muhammad Samee Haider
- Food and Marine Resources Research Center, PCSIR Laboratories Complex, Karachi, Pakistan
| | - Victoria Arija
- Preventive Medicine and Public Health. Nutrition and Mental Health Research Group (NUTRISAM), Rovira I Virgili University, Tarragona, Spain
- Department of Basic Medical Sciences, Universitat Rovira I Virgili, Tarragona, Spain
| |
Collapse
|
3
|
Bhuyan MS, Islam MT, Haider SMB, Yacoubi L, Khan M, Ali MM, Pandit D, Huda MM, Akter S, Rabbi MRI, Kundu NK, Hasan MM, Mojumder IA, Mansour L, Rabaoui LJ. Assessment of heavy metals and proximate composition in jellyfish (Lobonemoides robustus Stiasny, 1920) collected from Cox's Bazar coast: Human health risk assessment. MARINE POLLUTION BULLETIN 2024; 207:116899. [PMID: 39232411 DOI: 10.1016/j.marpolbul.2024.116899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/11/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
Jellyfish are known for experiencing periodic blooms in population, which occur when their density increases suddenly. The present study assessed the level of heavy metals and proximate composition in the jellyfish Lobonemoides robustus collected from Cox's Bazar coast of Bangladesh. This is the first study conducted in Bangladesh. Most of the studied metals were not possible to detect in L. robustus samples because concentrations were below the detection limit. Ca, Na, Se, and Mg were found to have safe levels in the L. robustus while the amount of Pb was recorded 0.39 ppm. The findings of Target Hazard Quotient, and Carcinogenic Risk indicate that the L. robustus is safe for human consumption (both for children and adults). Hence, it is suitable for consumption and can be exported. This study emphasizes the need for regular marine environment monitoring to ensure that the seafood harvested from these waters is safe for consumption.
Collapse
Affiliation(s)
- Md Simul Bhuyan
- Bangladesh Oceanographic Research Institute (BORI), Cox's Bazar-4730, Bangladesh; Department of Aquatic Resource Management, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Md Tarikul Islam
- Bangladesh Oceanographic Research Institute (BORI), Cox's Bazar-4730, Bangladesh
| | | | - Lamia Yacoubi
- University of Tunis El Manar, Faculty of Science of Tunis, Laboratory of Biodiversity & Parasitology of Aquatic Ecosystems (LR18ES05), University Campus, 2092 Tunis, Tunisia
| | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Debasish Pandit
- Department of Aquatic Resource Management, Sylhet Agricultural University, Sylhet 3100, Bangladesh; Department of Fishery Resources Conservation and Management, Faculty of Fisheries and Ocean Sciences, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Md Mainul Huda
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Sheuly Akter
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | | | - Nayan Kumer Kundu
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Md Mehedi Hasan
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | | | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
4
|
Chi X, Zhang F, Sun S. Modulation of fatty acid profiles and turnover dynamics in jellyfish polyps through copepod diets: Insights into trophic interactions and nutrient flux. Ecol Evol 2024; 14:e70332. [PMID: 39440205 PMCID: PMC11494245 DOI: 10.1002/ece3.70332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Fatty acids (FAs) are vital biomolecules crucial for determining food quality for higher trophic levels. To investigate FA transfer and turnover time in predators, we conducted a diet switch experiment using jellyfish polyps. These polyps were fed food sources including Artemia sinica nauplii and FA-manipulated copepod Pseudodiaptomus annandalei, maintained on distinct algal diets with varied FA compositions. Our findings reveal that copepods may have a strong potential to synthesize long-chain polyunsaturated FA to maintain biochemical homeostasis when consuming low-quality food. Consequently, the species-specific fatty acid composition within plankton, combined with effects of seasonal environmental fluctuations and climate change, leads to changes in the FA composition of foundational food web components. These alterations create a complex "nutrient black box" effect as they propagate up trophic levels. Our study shows that jellyfish polyps fail to accumulate EPA and DHA but display high levels of ARA compared to their zooplankton and phytoplankton food sources, suggesting a potential association with dietary EPA and DHA through an unidentified pathway. Certain FA components indicate variations in the turnover time when polyps undergo a dietary shift. Understanding the trajectory of FA metabolism across the "phytoplankton-zooplankton" interface, along with its turnover time, provides crucial insights for modeling diet estimation of components within food webs.
Collapse
Affiliation(s)
- Xupeng Chi
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Ecology and Environmental Science, Laoshan LaboratoryQingdaoChina
| | - Fang Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Ecology and Environmental Science, Laoshan LaboratoryQingdaoChina
- College of Marine ScienceUniversity of Chinese Academy of SciencesQingdaoChina
| | - Song Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Ecology and Environmental Science, Laoshan LaboratoryQingdaoChina
- College of Marine ScienceUniversity of Chinese Academy of SciencesQingdaoChina
| |
Collapse
|
5
|
Brotz L, Angel DL, D'Ambra I, Enrique-Navarro A, Lauritano C, Thibault D, Prieto L. Rhizostomes as a resource: The expanding exploitation of jellyfish by humans. ADVANCES IN MARINE BIOLOGY 2024; 98:511-547. [PMID: 39547754 DOI: 10.1016/bs.amb.2024.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
While jellyfish are often considered to be a nuisance, their value to ecosystems and for human exploitation is shifting this perception. People have been eating jellyfish for millennia. In recent decades, the scale of jellyfish fisheries has expanded dramatically, with annual catches in the hundreds of thousands of tonnes. The overwhelming majority of jellyfish species targeted for human consumption are from the order Rhizostomeae, which can also be fed to livestock and certain species in mariculture operations. The use of rhizostome jellyfish is expanding beyond food applications, such as pharmaceuticals and cosmetics, especially for collagen and other bioactive compounds. Jellyfish collagen is high in antioxidants, can act as an immunostimulator, and has applications for tissue engineering and medical implements. Jellyfish venom extracts exhibit high biological activities, including those that are antihypertensive, antimicrobial, and anticancer. Jellyfish can also be used as fertilizers and insecticides, and jellyfish mucus appears to have potential as a filter for nanoparticles and microplastics, suggesting possible applications in wastewater treatment. Most of these applications are still in developmental stages, and beyond their use as food, jellyfish are not targeted at commercial scale, apart from collagen extraction. As research advances, exploitation of jellyfish is expected to continue expanding. Given the lack of knowledge and understanding regarding jellyfish fisheries and their management, caution should be exhibited to avoid overfishing.
Collapse
Affiliation(s)
- Lucas Brotz
- Sea Around Us, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada; SeaLifeBase, Quantitative Aquatics, Khush Hall, International Rice Research Institute (IRRI), Los Baños, Philippines.
| | - Dror L Angel
- Department of Maritime Civilizations & Recanati Institute for Maritime Studies, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Isabella D'Ambra
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy; National Center for Future Biodiversity (NFBC), Palermo, Italy
| | - Angélica Enrique-Navarro
- Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (ICMAN), Consejo Superior de Investigaciones Científicas (CSIC), Puerto Real Cádiz, Spain
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Delphine Thibault
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Laura Prieto
- Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (ICMAN), Consejo Superior de Investigaciones Científicas (CSIC), Puerto Real Cádiz, Spain
| |
Collapse
|
6
|
Cadar E, Pesterau AM, Sirbu R, Negreanu-Pirjol BS, Tomescu CL. Jellyfishes—Significant Marine Resources with Potential in the Wound-Healing Process: A Review. Mar Drugs 2023; 21:md21040201. [PMID: 37103346 PMCID: PMC10142942 DOI: 10.3390/md21040201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The wound-healing process is a significant area of interest in the medical field, and it is influenced by both external and patient-specific factors. The aim of this review paper is to highlight the proven wound-healing potential of the biocompounds found in jellyfish (such as polysaccharide compounds, collagen, collagen peptides and amino acids). There are aspects of the wound-healing process that can benefit from polysaccharides (JSPs) and collagen-based materials, as these materials have been shown to limit exposure to bacteria and promote tissue regeneration. A second demonstrated benefit of jellyfish-derived biocompounds is their immunostimulatory effects on growth factors such as (TNF-α), (IFN-γ) and (TGF), which are involved in wound healing. A third benefit of collagens and polysaccharides (JSP) is their antioxidant action. Aspects related to chronic wound care are specifically addressed, and within this general theme, molecular pathways related to tissue regeneration are explored in depth. Only distinct varieties of jellyfish that are specifically enriched in the biocompounds involved in these pathways and live in European marine habitats are presented. The advantages of jellyfish collagens over mammalian collagens are highlighted by the fact that jellyfish collagens are not considered transmitters of diseases (spongiform encephalopathy) or various allergic reactions. Jellyfish collagen extracts stimulate an immune response in vivo without inducing allergic complications. More studies are needed to explore more varieties of jellyfish that can be exploited for their biocomponents, which may be useful in wound healing.
Collapse
|
7
|
Jellyfish as Food: A Narrative Review. Foods 2022; 11:foods11182773. [PMID: 36140901 PMCID: PMC9498191 DOI: 10.3390/foods11182773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Abstract
Studies toward a sustainable future conducted by international organizations uniformly agree about having to change some of our present consumer behaviors. Regarding food, suggestions include eating locally farmed, less industrialized and renewable food to promote health and circularity, and limiting waste. Jellyfish are frequently sorted and discarded after being caught with fish in fishing nets and gear. In contrast, we propose utilizing this by-catch as food. This review discusses the economic value and sustainability of jellyfish, the technologies used to prepare them for human consumption, their nutritional profile and health impacts and, finally, consumer acceptability and sensory evaluation of jellyfish food products. This discussion is critical for promoting jellyfish as an important aquatic resource to support blue and circular economies.
Collapse
|
8
|
D’Ambra I, Merquiol L. Jellyfish from Fisheries By-Catches as a Sustainable Source of High-Value Compounds with Biotechnological Applications. Mar Drugs 2022; 20:266. [PMID: 35447939 PMCID: PMC9029601 DOI: 10.3390/md20040266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
The world's population growth and consequent increased demand for food, energy and materials together with the decrease of some natural resources have highlighted the compelling need to use sustainably existing resources and find alternative sources to satisfy the needs of growing and longer-aging populations. In this review, we explore the potential use of a specific fisheries by-catch, jellyfish, as a sustainable source of high-value compounds. Jellyfish are often caught up with fish into fishing gear and nets, then sorted and discarded. Conversely, we suggest that this by-catch may be used to obtain food, nutraceutical products, collagen, toxins and fluorescent compounds to be used for biomedical applications and mucus for biomaterials. These applications are based on studies which indicate the feasibility of using jellyfish for biotechnology. Because jellyfish exhibit seasonal fluctuations in abundance, jellyfish by-catches likely follow the same pattern. Therefore, this resource may not be constantly available throughout the year, so the exploitation of the variable abundances needs to be optimized. Despite the lack of data about jellyfish by-catches, the high value of their compounds and their wide range of applications suggest that jellyfish by-catches are a resource which is discarded at present, but needs to be re-evaluated for exploitation within the context of a circular economy in the era of zero waste.
Collapse
Affiliation(s)
- Isabella D’Ambra
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | | |
Collapse
|
9
|
Ranasinghe RASN, Wijesekara WLI, Perera PRD, Senanayake SA, Pathmalal MM, Marapana RAUJ. Nutritional Value and Potential Applications of Jellyfish. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2060717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- R. A. S. N. Ranasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - W. L. I. Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - P. R. D. Perera
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - S. A. Senanayake
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - M. M. Pathmalal
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - R. A. U. J. Marapana
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|