1
|
Iamsaard K, Khongdee N, Rukkhun R, Sarin C, Klomjek P, Umponstira C. Does the Incorporation of Biochar into Biodegradable Mulch Films Provide Agricultural Soil Benefits? Polymers (Basel) 2024; 16:3434. [PMID: 39684179 DOI: 10.3390/polym16233434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
The pollution caused by plastic mulch film in agriculture has garnered significant attention. To safeguard the ecosystem from the detrimental effects of plastic pollution, it is imperative to investigate the use of biodegradable materials for manufacturing agricultural plastic film. Biochar has emerged as a feasible substance for the production of biodegradable mulch film (BDM), providing significant agricultural soil benefits. Although biochar has been widely applied in BDM manufacturing, the effect of biochar-filled plastic mulch film on soil carbon stock after its degradation has not been well documented. This study provides an overview of the current stage of biochar incorporated with BDM and summarizes its possible pathway on soil carbon stock contribution. The application of biochar-incorporated BDM can lead to substantial changes in soil microbial diversity, thereby influencing the emissions of greenhouse gases. These alterations may ultimately yield unforeseen repercussions on the carbon cycles. However, in light of the current knowledge vacuum and potential challenges, additional study is necessary to ascertain if biochar-incorporated BDM can effectively mitigate the issues of residual mulch film and microplastic contamination in agricultural land. Significant progress remains necessary before BDM may fully supplant traditional agricultural mulch film in agricultural production.
Collapse
Affiliation(s)
- Kesinee Iamsaard
- Department of Natural Resource and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Nuttapon Khongdee
- Department of Highland Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Raweerat Rukkhun
- Faculty of Natural Resources, Prince of Songkla University, Songkhla 90110, Thailand
| | - Charoon Sarin
- Department of Natural Resource and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Pantip Klomjek
- Department of Natural Resource and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Chanin Umponstira
- Department of Natural Resource and Environment, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
2
|
Mora-Maldonado LE, Estrada-Monje A, Zitzumbo-Guzmán R, Rodríguez-Sánchez I, Baldenegro-Pérez L, Piñón-Balderrama CI, Rodríguez-Llamazares S, Zaragoza-Contreras EA. Recycling of Bovine Hair Waste Through the Design of a Compatibilizing Agent for Sustainable Thermoplastic Starch-Untreated Bovine Hair Composites. Polymers (Basel) 2024; 16:3432. [PMID: 39684177 DOI: 10.3390/polym16233432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Bovine hair waste was chemically modified to obtain a coupling agent (CA) for the compatibilization of thermoplastic starch (TPS)-unmodified bovine hair waste (UH) composites. The composites processed with CA presented improved tensile strength (3.5 MPa) compared to TPS-UH composites without CA (1.25 MPa). An interaction mechanism to describe the improvement in mechanical properties and thermal stability was postulated based on Fourier-transform infrared spectroscopy (FTIR) and density functional theory (DFT). In addition, optical and electron microscopy showed that CA favored the adhesion of UH to TPS. Global results suggested the formation of a CA-UH network that interacts with the TPS matrix. Obtaining composites from waste from the tanning industry can contribute to the development of a more responsible and sustainable industry and represents an opportunity to reduce the environmental impact of one of the most important industries globally. It is worth mentioning that this research is aligned with the sustainable development goals (SDGs) proposed by the United Nations, which promotes sustainable industrialization and the promotion of innovation.
Collapse
Affiliation(s)
| | | | | | - Isis Rodríguez-Sánchez
- Departamento de Formación Básica Disciplinaria, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, UPIIG-IPN, Silao de la Victoria 36275, Mexico
| | | | - Claudia Ivone Piñón-Balderrama
- Centro de Investigación en Materiales Avanzados, S.C. Miguel de Cervantes No. 180, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico
| | - Saddys Rodríguez-Llamazares
- Centro de Investigación de Polímeros Avanzados, Edificio Laboratorio CIPA, Avenida Collao 1202, Concepción 4051381, Chile
| | - Erasto Armando Zaragoza-Contreras
- Centro de Investigación en Materiales Avanzados, S.C. Miguel de Cervantes No. 180, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico
| |
Collapse
|
3
|
Zhang W, Zhang T, Zhong Y, Zhang Y, Wang L, Zhu F, Wang X, Zhou L, Zhou X. Dynamic borate ester bond reinforced hydroxyethyl cellulose/corn starch crosslinked film for simple recycling and regeneration. Int J Biol Macromol 2024; 279:135231. [PMID: 39218188 DOI: 10.1016/j.ijbiomac.2024.135231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Endowing biodegradable plastics with easy recyclability can reduce competition with food resources and further enhance their environmental friendliness. In this work, 4-carboxyphenylboronic acid was grafted onto the side chains of hydroxyethyl cellulose and compounded with inexpensive cornstarch. Upon the introduction of tannic acid, stable and reversible borate ester bond rapidly formed, yielding composite biodegradable plastic films with outstanding mechanical properties and facile recyclability. The formation of a dynamic cross-linked network mitigates the aggregation of gelatinized starch molecules, enhancing the flexibility and durability of the crosslinked film. Testing revealed that while maintaining high tensile strength, the elongation at break of the crosslinked film increased by 952.86 %. The static water contact angle was improved from 32.74° to 78.82°, with a change of <5° within 1 min, demonstrating enhanced water resistance. Excellent antioxidant and thermal stability were also characterized, the crosslinked film can be easily dissolved by heating in water at pH = 6.5 and reshaped in water at pH = 7.2. After five times of regeneration, the tensile strength loss was as low as 5.68 %. This eco-friendly and efficient recycling process is promising during green chemistry.
Collapse
Affiliation(s)
- Wenshuo Zhang
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430079, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Zhang
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246133, China; Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430079, China.
| | - Yuye Zhong
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Yinhui Zhang
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Laiguo Wang
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246133, China
| | - Feng Zhu
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246133, China
| | - Xie Wang
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246133, China
| | - Le Zhou
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246133, China
| | - Xuehua Zhou
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246133, China
| |
Collapse
|
4
|
Saleem U, Asrar M, Jabeen F, Makhdoom Hussain S, Hussain D. Determination of insecticidal potential of selected plant extracts against fall armyworm ( Spodoptera frugiperda) larvae. Heliyon 2024; 10:e39593. [PMID: 39498049 PMCID: PMC11532869 DOI: 10.1016/j.heliyon.2024.e39593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a devastating pest that attacks a wide range of crops, including sugarcane, rice, and maize. The purpose of this study is to evaluate the toxicity potential of native plant extracts (Azadirachta indica, Eucalyptus globulus, Parthenium hysterophorus, Cannabis sativa, Citrullus colocynthis, Nicotiana tabacum) against S. frugiperda. Four different concentrations (50, 100, 200, and 400 ppm) of the ethanolic plant extracts was evaluated against S. frugiperda third-instar larvae to determine their median lethal concentration (LC50). After 72 h of exposure, the LC50 values of A. indica, E. globulus, P. hysterophorus, C. sativa, C. colocynthis, N. tabacum, and positive control (Spinetoram) were 186.104, 518.438, 320.027, 334.259, 252.651, 720.980 and 189.369 ppm respectively. The maximum percent mortality was caused by the highest concentration (400 ppm) of A. indica (64 ± 0.18), E. globulus (48 ± 0.22), P. hysterophorus (56 ± 0.18), C. sativa (56 ± 0.18), C. colocynthis (60 ± 0.00), and N. tabacum (40 ± 0.28), after 72 h of treatment while Spinetoram induced 100 ± 0.00 percent mortality of S. frugiperda and only 4 ± 0.18 percent mortality was recorded in a control group. Results showed that all plant extracts were found to be effective against S. frugiperda. The compounds from the two most effective ethanolic plant extracts were identified by using Gas chromatography-mass spectrometry analysis (GC-MS). The key compounds identified in neem leaf extract and kortuma fruit extract are predominantly biologically active molecules. Many of them were volatile compounds that belonged to different chemical categories, such as fatty acids, hydrocarbons, esters, terpenoids, phenolic compounds, and amines. Terpenes exhibited a wide range of different biological activities, such as serving as insecticides and antifeedant. The presence of various functional groups in the plant extract was determined by conducting a Fourier Transform Infrared Spectroscopy (FTIR). Farmers should employ these kinds of environmental friendly insecticides to lessen the impact of fall armyworm because these products are cheaper to use and better for the economy and the environment.
Collapse
Affiliation(s)
- Usama Saleem
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Muhammad Asrar
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Syed Makhdoom Hussain
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Dilbar Hussain
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad, Punjab, Pakistan
| |
Collapse
|
5
|
Pei J, Palanisamy CP, Srinivasan GP, Panagal M, Kumar SSD, Mironescu M. A comprehensive review on starch-based sustainable edible films loaded with bioactive components for food packaging. Int J Biol Macromol 2024; 274:133332. [PMID: 38914408 DOI: 10.1016/j.ijbiomac.2024.133332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Biopolymers like starch, a renewable and widely available resource, are increasingly being used to fabricate the films for eco-friendly packaging solutions. Starch-based edible films offer significant advantages for food packaging, including biodegradability and the ability to extend shelf life. However, they also present challenges such as moisture sensitivity and limited barrier properties compared to synthetic materials. These limitations can be mitigated by incorporating bioactive components, such as antimicrobial agents or antioxidants, which enhance the film's resistance to moisture and improve its barrier properties, making it a more viable option for food packaging. This review explores the emerging field of starch-based sustainable edible films enhanced with bioactive components for food packaging applications. It delves into fabrication techniques, structural properties, and functional attributes, highlighting the potential of these innovative films to reduce environmental impact and preserve food quality. Key topics discussed include sustainability issues, processing methods, performance characteristics, and potential applications in the food industry. The review provides a comprehensive overview of current research and developments in starch-based edible films, presenting them as promising alternatives to conventional food packaging that can help reduce plastic waste and environmental impact.
Collapse
Affiliation(s)
- Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Guru Prasad Srinivasan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mani Panagal
- Department of Biotechnology, Annai College of Arts and Science, Kovilacheri, Kumbakonam, Tamil Nadu 612503, India
| | | | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania.
| |
Collapse
|
6
|
Sadeghi M. The untold story of starch as a catalyst for organic reactions. RSC Adv 2024; 14:12676-12702. [PMID: 38645516 PMCID: PMC11027044 DOI: 10.1039/d4ra00775a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Starch is one of the members of the polysaccharide family. This biopolymer has shown many potential applications in different fields such as catalytic reactions, water treatment, packaging, and food industries. In recent years, using starch as a catalyst has attracted much attention. From a catalytic point of view, starch can be used in organic chemistry reactions as a catalyst or catalyst support. Reports show that as a catalyst, simple starch can promote many heterocyclic compound reactions. On the other hand, functionalized starch is not only capable of advancing the synthesis of heterocycles but also is a good candidate catalyst for other reactions including oxidation and coupling reactions. This review tries to provide a fair survey of published organic reactions which include using starch as a catalyst or a part of the main catalyst. Therefore, the other types of starch applications are not the subject of this review.
Collapse
Affiliation(s)
- Masoud Sadeghi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box: 87317-51167 Kashan Iran
| |
Collapse
|
7
|
Hassan F, Mu B, Yang Y. Natural polysaccharides and proteins-based films for potential food packaging and mulch applications: A review. Int J Biol Macromol 2024; 261:129628. [PMID: 38272415 DOI: 10.1016/j.ijbiomac.2024.129628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Conventional nondegradable packaging and mulch films, after reaching the end of their use, become a major source of waste and are primarily disposed of in landfills. Accumulation of non-degradable film residues in the soil leads to diminished soil fertility, reduced crop yield, and can potentially affect humans. Application of degradable films is still limited due to the high cost, poor mechanical, and gas barrier properties of current biobased synthetic polymers. In this respect, natural polysaccharides and proteins can offer potential solutions. Having versatile functional groups, three-dimensional network structures, biodegradability, ease of processing, and the potential for surface modifications make polysaccharides and proteins excellent candidates for quality films. Besides, their low-cost availability as industrial waste/byproducts makes them cost-effective alternatives. This review paper covers the performance properties, cost assessment, and in-depth analysis of macromolecular structures of some natural polysaccharides and proteins-based films that have great potential for packaging and mulch applications. Proper dissolution of biopolymers to improve molecular interactions and entanglement, and establishment of crosslinkages to form an ordered and cohesive polymeric structure can help to obtain films with good properties. Simple aqueous-based film formulation techniques and utilization of waste/byproducts can stimulate the adoption of affordable biobased films on a large-scale.
Collapse
Affiliation(s)
- Faqrul Hassan
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States
| | - Bingnan Mu
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States
| | - Yiqi Yang
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States; Department of Biological Systems Engineering, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States.
| |
Collapse
|
8
|
Lin L, Tu Y, Li Z, Wu H, Mao H, Wang C. Synthesis and application of multifunctional lignin-modified cationic waterborne polyurethane in textiles. Int J Biol Macromol 2024; 262:130063. [PMID: 38340925 DOI: 10.1016/j.ijbiomac.2024.130063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Waterborne polyurethanes (WPUs) often have limitations like inadequate weathering resistance and thermal stability. To overcome these shortcomings, lignin has been selected as a modifier for its abundant availability, renewability, and biocompatibility. This study synthesized a cationic WPU using isophorone diisocyanate and polyethylene glycol as raw materials. Hydrophilicity was attained through the inclusion of dihydroxyethyl dodecylamine as a chain extender, while the introduction of epoxy monomers and lignin served to modify the polyurethane. Furthermore, a dye dispersion for cotton fabric dyeing was prepared by combining the synthesized polyurethane, chitosan, and dyes. The cationic nature of the polyurethane played a crucial role in facilitating dye adhesion and uptake on the fabric surface, resulting in improved dyeing performance. The incorporation of epoxy side chains and chitosan cross-linking contributed to the excellent color fastness of the dyed fabrics. Moreover, the incorporation of lignin and chitosan endowed the fabric with antibacterial properties. Simultaneously, it provided effective UV protection, characterized by a high UV protection factor value for the fabrics. This lignin-modified WPU exhibits tremendous potential in applications such as textile coatings, adhesives, and color fixation agents. It effectively addresses the limitations of traditional WPUs and offers notable advantages, including a renewable source, cost-effectiveness, and biocompatibility.
Collapse
Affiliation(s)
- Ling Lin
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Yuanfang Tu
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ziyin Li
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | - Huanling Wu
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | - Haiyan Mao
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chunxia Wang
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
9
|
Gnoffo C, Frache A. Identification of Plastics in Mixtures and Blends through Pyrolysis-Gas Chromatography/Mass Spectrometry. Polymers (Basel) 2023; 16:71. [PMID: 38201736 PMCID: PMC10780318 DOI: 10.3390/polym16010071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
In this paper, the possibility of detecting polymers in plastic mixtures and extruded blends has been investigated. Pyrolysis-gas chromatography/mass spectrometry (py-GC/MS) allows researchers to identify multicomponent mixtures and low amounts of polymers without high spatial resolution, background noise and constituents mix interfering, as with molecular spectrometry techniques normally used for this purpose, such as Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy and differential scanning calorimetry (DSC). In total, 15 solid mixtures of low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polyamide (PA) and polycarbonate (PC) in various combinations have been qualitatively analyzed after choosing their characteristic pyrolysis products and each polymer has been detected in every mix; thus, in extruded blends of high-density polyethylene (HDPE), PP and PS had varying weight percentages of the individual constituents ranging from 10 up to 90. Moreover, quantitative analysis of these polymers has been achieved in every blend with a trend that can be considered linear with coefficients of determination higher than 0.9, even though the limits of quantification are lower with respect to the ones reported in the literature, probably due to the extrusion process.
Collapse
Affiliation(s)
| | - Alberto Frache
- Department of Applied Science and Technology, Politecnico di Torino, V.le Teresa Michel, 5, 15121 Alessandria, Italy;
| |
Collapse
|
10
|
Liu Y, Gao L, Chen L, Zhou W, Wang C, Ma L. Exploring carbohydrate extraction from biomass using deep eutectic solvents: Factors and mechanisms. iScience 2023; 26:107671. [PMID: 37680471 PMCID: PMC10480316 DOI: 10.1016/j.isci.2023.107671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
Deep eutectic solvents (DESs) are increasingly being recognized as sustainable and promising solvents because of their unique properties: low melting point, low cost, and biocompatibility. Some DESs possess high viscosity, remarkable stability, and minimal toxicity, enhancing their appeal for diverse applications. Notably, they hold promise in biomass pretreatment, a crucial step in biomass conversion, although their potential in algal biomass carbohydrates extraction remains largely unexplored. Understanding the correlation between DESs' properties and their behavior in carbohydrate extraction, alongside cellulose degradation mechanisms, remains a gap. This review provides an overview of the use of DESs in extracting carbohydrates from lignocellulosic and algal biomass, explores the factors that influence the behavior of DESs in carbohydrate extraction, and sheds light on the mechanism of cellulose degradation by DESs. Additionally, the review discusses potential future developments and applications of DESs, particularly extracting carbohydrates from algal biomass.
Collapse
Affiliation(s)
- Yong Liu
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031 P.R. China
| | - Lingling Gao
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031 P.R. China
| | - Lungang Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, P.R. China
| | - Wenguang Zhou
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031 P.R. China
| | - Chenguang Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P.R. China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, P.R. China
| |
Collapse
|
11
|
Li J, Wiebenga A, Lipzen A, Ng V, Tejomurthula S, Zhang Y, Grigoriev IV, Peng M, de Vries RP. Comparative Genomics and Transcriptomics Analyses Reveal Divergent Plant Biomass-Degrading Strategies in Fungi. J Fungi (Basel) 2023; 9:860. [PMID: 37623631 PMCID: PMC10455118 DOI: 10.3390/jof9080860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Plant biomass is one of the most abundant renewable carbon sources, which holds great potential for replacing current fossil-based production of fuels and chemicals. In nature, fungi can efficiently degrade plant polysaccharides by secreting a broad range of carbohydrate-active enzymes (CAZymes), such as cellulases, hemicellulases, and pectinases. Due to the crucial role of plant biomass-degrading (PBD) CAZymes in fungal growth and related biotechnology applications, investigation of their genomic diversity and transcriptional dynamics has attracted increasing attention. In this project, we systematically compared the genome content of PBD CAZymes in six taxonomically distant species, Aspergillus niger, Aspergillus nidulans, Penicillium subrubescens, Trichoderma reesei, Phanerochaete chrysosporium, and Dichomitus squalens, as well as their transcriptome profiles during growth on nine monosaccharides. Considerable genomic variation and remarkable transcriptomic diversity of CAZymes were identified, implying the preferred carbon source of these fungi and their different methods of transcription regulation. In addition, the specific carbon utilization ability inferred from genomics and transcriptomics was compared with fungal growth profiles on corresponding sugars, to improve our understanding of the conversion process. This study enhances our understanding of genomic and transcriptomic diversity of fungal plant polysaccharide-degrading enzymes and provides new insights into designing enzyme mixtures and metabolic engineering of fungi for related industrial applications.
Collapse
Affiliation(s)
- Jiajia Li
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (J.L.); (M.P.)
| | - Ad Wiebenga
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (J.L.); (M.P.)
| | - Anna Lipzen
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA; (A.L.); (V.N.); (S.T.); (Y.Z.); (I.V.G.)
| | - Vivian Ng
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA; (A.L.); (V.N.); (S.T.); (Y.Z.); (I.V.G.)
| | - Sravanthi Tejomurthula
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA; (A.L.); (V.N.); (S.T.); (Y.Z.); (I.V.G.)
| | - Yu Zhang
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA; (A.L.); (V.N.); (S.T.); (Y.Z.); (I.V.G.)
| | - Igor V. Grigoriev
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA; (A.L.); (V.N.); (S.T.); (Y.Z.); (I.V.G.)
- Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (J.L.); (M.P.)
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (J.L.); (M.P.)
| |
Collapse
|
12
|
Iskalieva A, Yesmurat M, Al Azzam KM, Ainakulova D, Yerbolat Y, Negim ES, Ibrahim MNM, Gulzhakhan Y. Effect of Polyethylene Glycol Methyl Ether Methacrylate on the Biodegradability of Polyvinyl Alcohol/Starch Blend Films. Polymers (Basel) 2023; 15:3165. [PMID: 37571059 PMCID: PMC10421226 DOI: 10.3390/polym15153165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Blend copolymers (PVA/S) were grafted with polyethylene glycol methyl methacrylate (PEGMA) with different ratios. Potassium persulfate was used as an initiator. The blend copolymer (PVA/S) was created by combining poly(vinyl alcohol) (PVA) with starch (S) in various ratios. The main idea was to study the effect of different ratios of the used raw materials on the biodegradability of plastic films. The resulting polymers (PVA/S/PEGMA) were analyzed using FTIR spectroscopy to investigate the hydrogen bond interaction between PVA, S, and PEGMA in the mixtures. TGA and SEM analyses were used to characterize the polymers (PVA/S/AA). The biodegradability and mechanical properties of the PVA/S/PEGMA blend films were evaluated. The findings revealed that the mechanical properties of the blend films are highly influenced by PEGMA. The time of degradation of the films immersed in soil and Coca-Cola increases as the contents of PVA and S and the molecular weight (MW) of PEGMA increase in the terpolymer. The M8 sample (PVA/S/PEGMA in the ratio of 3:1:2, respectively) with a MW of 950 g/mol produced the lowest elongation at break (67.5%), whereas M1 (PVA/S/PEGMA in the ratio of 1:1:1, respectively) with a MW of 300 g/mol produced the most (150%). The film's tensile strength and elongation at break were improved by grafting PEGMA onto the blending polymer (PAV-b-S). Tg and Tm increased when the PEGMA MW increased from 300 to 950. Tg (48.4 °C) and Tm (190.9 °C) were the lowest in M1 (300), while Tg (84.8 °C) and Tm (190.9 °C) were greatest in M1 (950) at 209.3 °C. The increased chain and molecular weight of PEGMA account for the increase in Tg and Tm of the copolymers.
Collapse
Affiliation(s)
- Asylzat Iskalieva
- School of Chemical Engineering, Kazakh-British Technical University, Str. Tole bi, 59, Almaty 050000, Kazakhstan
| | - Mateyev Yesmurat
- «LF COMPANY» LLP, Zhambyl Region, Village Named after B. Momyshuly, Zhibek Zholy Str., 3b, Almaty 080300, Kazakhstan;
| | - Khaldun M. Al Azzam
- Pharmacological and Diagnostic Research Center (PDRC), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Dana Ainakulova
- School of Materials Science and Green Technologies, Kazakh-British Technical University, St. Tole bi, 59, Almaty 050000, Kazakhstan; (D.A.); (E.-S.N.)
| | - Yerzhanov Yerbolat
- School of Chemical Engineering, Kazakh-British Technical University, Str. Tole bi, 59, Almaty 050000, Kazakhstan
| | - El-Sayed Negim
- School of Materials Science and Green Technologies, Kazakh-British Technical University, St. Tole bi, 59, Almaty 050000, Kazakhstan; (D.A.); (E.-S.N.)
- School of Petroleum Engineering, Satbayev University, 22 Satpayev Street, Almaty 050013, Kazakhstan;
| | | | - Yeligbayeva Gulzhakhan
- School of Petroleum Engineering, Satbayev University, 22 Satpayev Street, Almaty 050013, Kazakhstan;
| |
Collapse
|
13
|
Sharip NS, Tengku Yasim-Anuar TA, Husin H, Norrrahim MNF. Barley thermoplastic starch nanocomposite films reinforced with nanocellulose. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Abstract
Despite being one of the starch producers, barley has yet to be widely studied for thermoplastic starch applications, including nanocellulose thermoplastic composites, due to its uses in the food and beverage industries. However, only 20% of barley is used in the malting industry to produce both alcoholic and non-alcoholic beverages, and 5% is used as an ingredient in a wide variety of foods. As the fourth most important cereal in the world after wheat, corn, and rice, barley can be considered an interesting biomass source to produce biodegradable thermoplastics, stemming from its starch constitution. Therefore, this review attempts to highlight the barley starch properties and its potential utilization for nanocellulose thermoplastic starch composites. Several studies involving barley-based starch in thermoplastic production and nanocellulose reinforcement for properties enhancement are also reviewed, particularly in the attempt to provide various options to reduce and replace the uses of harmful petroleum-based plastic.
Collapse
Affiliation(s)
- Nur Sharmila Sharip
- Research and Development Department , Nextgreen Pulp & Paper Sdn Bhd , Taman Tun Dr Ismail, 60000 Kuala Lumpur , Malaysia
| | | | - Hazwani Husin
- Research and Development Department , Nextgreen Pulp & Paper Sdn Bhd , Taman Tun Dr Ismail, 60000 Kuala Lumpur , Malaysia
| | - Mohd Nor Faiz Norrrahim
- Research Center for Chemical Defence , Universiti Pertahanan Nasional Malaysia , Kem Sungai Besi, 57000 Kuala Lumpur , Malaysia
| |
Collapse
|
14
|
Chopra S, Pande K, Puranam P, Deshmukh AD, Bhone A, Kale R, Galande A, Mehtre B, Tagad J, Tidake S. Explication of mechanism governing atmospheric degradation of 3D-printed poly(lactic acid) (PLA) with different in-fill pattern and varying in-fill density. RSC Adv 2023; 13:7135-7152. [PMID: 36875872 PMCID: PMC9982827 DOI: 10.1039/d2ra07061h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
With the popularity of 3D-printing technology, poly(lactic acid) (PLA) has become a very good option for layer by layer printing as it is easy to handle, environment friendly, has low costs and most importantly, it is highly adaptable to different materials including carbon, nylon and some other fibres. PLA is an aliphatic poly-ester that is 100% bio-based and is bio-degradable as well. It is one of the rare bio-polymers to compete with traditional polymers in terms of performance and environmental impact. However, PLA is sensitive to water and susceptible to degradation under natural conditions of ultra-violet rays (UV), humidity, fumes, etc. There are many reports on the bio-degradation and photo-degradation of PLA which deal with the accelerated weathering test. However, the accelerated weathering test instruments lack the ability to correlate the stabilities maintained by the test with the actual occurrences during natural exposure. Thus, an attempt has been made in the present work to expose the 3D-printed PLA samples to actual atmospheric conditions of Aurangabad city (M.S.) in India. The degradation of PLA after the exposure is studied and a mechanism is elucidated. Additionally, the tensile properties of the PLA samples are evaluated to correlate the extent of degradation and the material performance. It was found that though the performance of PLA deteriorates with the exposure time, the combination of in-fill pattern and volume plays an important role on the tensile properties and the extent of degradation. It is concluded herein that with natural exposure, the degradation of PLA occurs in two stages, supported by a side reaction. Thus, this study offers a new perspective towards the life of components in actual application by exposing PLA to the natural atmosphere and evaluating its strength and structure.
Collapse
Affiliation(s)
- Swamini Chopra
- Centre of Excellence in Materials and Metallurgy, Mechanical Engineering Department, Maharashtra Institute of Technology Aurangabad India
| | - Kavita Pande
- Director, Matverse Vision Pvt. Ltd. Nagpur India
| | - Priadarshni Puranam
- Department of Mechanical Engineering, Marathwada Institute of Technology Aurangabad India
| | - Abhay D Deshmukh
- Department of Physics, Rashtrasant Tukdoji Maharaj Nagpur University Nagpur India
| | - Avinash Bhone
- Centre of Excellence in Materials and Metallurgy, Mechanical Engineering Department, Maharashtra Institute of Technology Aurangabad India
| | - Rameshwar Kale
- Centre of Excellence in Materials and Metallurgy, Mechanical Engineering Department, Maharashtra Institute of Technology Aurangabad India
| | - Abhishek Galande
- Centre of Excellence in Materials and Metallurgy, Mechanical Engineering Department, Maharashtra Institute of Technology Aurangabad India
| | - Balaji Mehtre
- Centre of Excellence in Materials and Metallurgy, Mechanical Engineering Department, Maharashtra Institute of Technology Aurangabad India
| | - Jaydeep Tagad
- Centre of Excellence in Materials and Metallurgy, Mechanical Engineering Department, Maharashtra Institute of Technology Aurangabad India
| | - Shrikant Tidake
- Centre of Excellence in Materials and Metallurgy, Mechanical Engineering Department, Maharashtra Institute of Technology Aurangabad India
| |
Collapse
|
15
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Kennedy JF. Encapsulating biocontrol bacteria with starch as a safe and edible biopolymer to alleviate plant diseases: A review. Carbohydr Polym 2023; 302:120384. [PMID: 36604062 DOI: 10.1016/j.carbpol.2022.120384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Healthy foods with few artificial additives are in high demand among consumers. Preserving conventional pesticides, frequently used as chemicals to control phytopathogens, is challenging. Therefore, we proposed an innovative approach to protect agricultural products in this review. Biocontrol bacteria are safe alternatives with low stability and low efficiency in the free-form formulation. The encapsulation technique for covering active compounds (e.g., antimicrobials) represents a more efficient protection technology because encapsulation causes the controlled release of bioactive materials and reduces the application doses. Of the biopolymers able to form a capsule, starch exhibits several advantages, such as its ready availability, cost-effectively, edible, colorless, and tasteless. Nevertheless, the poor mechanical properties of starch can be improved with other edible biopolymers. In addition, applying formulations incorporated with more than one antimicrobial material offers synergistic effects. This review presented the starch-based capsules used to enclose antimicrobial agents as effective tools against phytopathogens.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, 7618411764 Kerman, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
16
|
Phan VH, Tai Y, Chiang T, Yu C. Synthesis of poly(lactide‐
co
‐glycolide) containing high glycolide contents by ring‐opening polymerization as well as their structural characterizations, thermal properties, morphologies, and hydrophilicity. J Appl Polym Sci 2022. [DOI: 10.1002/app.53328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Van Hoang‐Khang Phan
- Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Yi‐Hsin Tai
- Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Tai‐Chin Chiang
- Global Development Engineering Program National Taiwan University of Science and Technology Taipei Taiwan
| | - Chin‐Yang Yu
- Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei Taiwan
| |
Collapse
|
17
|
Podgorbunskikh E, Sapozhnikov A, Kuskov T, Gurova D, Kopylova A, Bychkov A, Lomovsky O. Comprehensive Enzymatic Conversion of Starch for the Food Industry. Polymers (Basel) 2022; 14:4575. [PMID: 36365568 PMCID: PMC9656788 DOI: 10.3390/polym14214575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 10/29/2023] Open
Abstract
This study demonstrated the feasibility of comprehensive enzymatic conversion of starch for non-waste applications in food industry. Enzymatic conversion of starch gives rise to nano-sized particles that can be used for manufacturing biodegradable and edible packaging materials and glucose syrup for replacing sugar in confectionery formulations. The 96 h enzymatic hydrolysis yielded starch nanoparticles smaller than 100 nm. Films based on nano-sized starch particles have promising physicochemical properties for manufacturing biodegradable and edible packaging materials. Such properties as reduced moisture content, increased homogeneity, crystallinity, and high initial thermal stability improve the mechanical and performance characteristics of the final food packaging materials. During film formation from starch subjected to preliminary mechanical amorphization, the polymer chain is recrystallized. The C-type crystal structure of starch is converted to the B-type structure. The supernatant obtained by starch hydrolysis can be used for producing glucose syrup. The resulting glucose syrup can be used as a sugar substitute in production of confectionery products. No objective technological differences in properties of glucose syrup obtained by comprehensive conversion of starch and the commercially available glucose syrup derived from sucrose were revealed.
Collapse
Affiliation(s)
- Ekaterina Podgorbunskikh
- Laboratory of Mechanochemistry, Institute of Solid State Chemistry and Mechanochemistry SB RAS, 18 Kutateladze Str., 630090 Novosibirsk, Russia
| | - Aleksandr Sapozhnikov
- Faculty of Business, Novosibirsk State Technical University, 20 Prospekt K. Marksa, 630073 Novosibirsk, Russia
| | - Timofei Kuskov
- Laboratory of Mechanochemistry, Institute of Solid State Chemistry and Mechanochemistry SB RAS, 18 Kutateladze Str., 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia
| | - Daria Gurova
- Faculty of Business, Novosibirsk State Technical University, 20 Prospekt K. Marksa, 630073 Novosibirsk, Russia
| | - Anastasiia Kopylova
- Faculty of Business, Novosibirsk State Technical University, 20 Prospekt K. Marksa, 630073 Novosibirsk, Russia
| | - Aleksey Bychkov
- Laboratory of Mechanochemistry, Institute of Solid State Chemistry and Mechanochemistry SB RAS, 18 Kutateladze Str., 630090 Novosibirsk, Russia
- Faculty of Business, Novosibirsk State Technical University, 20 Prospekt K. Marksa, 630073 Novosibirsk, Russia
| | - Oleg Lomovsky
- Laboratory of Mechanochemistry, Institute of Solid State Chemistry and Mechanochemistry SB RAS, 18 Kutateladze Str., 630090 Novosibirsk, Russia
| |
Collapse
|
18
|
Gamage A, Thiviya P, Mani S, Ponnusamy PG, Manamperi A, Evon P, Merah O, Madhujith T. Environmental Properties and Applications of Biodegradable Starch-Based Nanocomposites. Polymers (Basel) 2022; 14:polym14214578. [PMID: 36365571 PMCID: PMC9656360 DOI: 10.3390/polym14214578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, the demand for environmental sustainability has caused a great interest in finding novel polymer materials from natural resources that are both biodegradable and eco-friendly. Natural biodegradable polymers can displace the usage of petroleum-based synthetic polymers due to their renewability, low toxicity, low costs, biocompatibility, and biodegradability. The development of novel starch-based bionanocomposites with improved properties has drawn specific attention recently in many applications, including food, agriculture, packaging, environmental remediation, textile, cosmetic, pharmaceutical, and biomedical fields. This paper discusses starch-based nanocomposites, mainly with nanocellulose, chitin nanoparticles, nanoclay, and carbon-based materials, and their applications in the agriculture, packaging, biomedical, and environment fields. This paper also focused on the lifecycle analysis and degradation of various starch-based nanocomposites.
Collapse
Affiliation(s)
- Ashoka Gamage
- Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Correspondence: (A.G.); (O.M.); Tel.: +94-714430714 (A.G.); +33-5-3432-3523 (O.M.)
| | - Punniamoorthy Thiviya
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Sudhagar Mani
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | | | - Asanga Manamperi
- Department of Chemical Engineering, College of Engineering, Kettering University, Flint, MI 48504-6214, USA
| | - Philippe Evon
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de la Recherche Agronomique, Université de Toulouse, CEDEX 4, 31030 Toulouse, France
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de la Recherche Agronomique, Université de Toulouse, CEDEX 4, 31030 Toulouse, France
- Département Génie Biologique, IUT A, Université Paul Sabatier, 32000 Auch, France
- Correspondence: (A.G.); (O.M.); Tel.: +94-714430714 (A.G.); +33-5-3432-3523 (O.M.)
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| |
Collapse
|
19
|
Life Cycle Assessment and Life Cycle Cost of an Innovative Carbon Paper Sensor for 17α-Ethinylestradiol and Comparison with the Classical Chromatographic Method. SUSTAINABILITY 2022. [DOI: 10.3390/su14148896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nowadays there is a growing concern with the environment and sustainability, which means that better methods, including pollutants analysis, with less consumption of materials, organic solvents, and energy, need to be developed. Considering the almost inexistent information about the topic, the main goal of this work was to compare the environmental impacts of two analytical methods, a traditional one based on liquid chromatography with fluorescence detection and a newly developed carbon paper sensor. The selected analyte was 17α-ethinylestradiol, which is a contaminant of emergent concern in aquatic ecosystems due to its endocrine disruptor behavior. The life cycle assessment data showed that the sensor detection presents an almost negligible environmental impact when compared with the extraction step (the same for both methods) and the liquid chromatographic determination (roughly 80 times higher than with the sensor). The sensor values for all categories of damage are below 3% of the total method impacts, i.e., 1.6, 1.9, 2.4, and 2.9% for resources, climate change, human health, and ecosystem quality. The extraction represents 98.1% of the sensor environmental impacts (and 99.6% of its life cycle costing) and 38.8% of the chromatographic method. This study evidences the need of developing and applying greener analytical (detection and extraction) strategies.
Collapse
|