1
|
Wirojsaengthong S, Chailapakul O, Tangkijvanich P, Henry CS, Puthongkham P. Size-Dependent Electrochemistry of Laser-Induced Graphene Electrodes. Electrochim Acta 2024; 494:144452. [PMID: 38881690 PMCID: PMC11173329 DOI: 10.1016/j.electacta.2024.144452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Laser-induced graphene (LIG) electrodes have become popular for electrochemical sensor fabrication due to their simplicity for batch production without the use of reagents. The high surface area and favorable electrocatalytic properties also enable the design of small electrochemical devices while retaining the desired electrochemical performance. In this work, we systematically investigated the effect of LIG working electrode size, from 0.8 mm to 4.0 mm diameter, on their electrochemical properties, since it has been widely assumed that the electrochemistry of LIG electrodes is independent of size above the microelectrode size regime. The background and faradaic current from cyclic voltammetry (CV) of an outer-sphere redox probe [Ru(NH3)6]3+ showed that smaller LIG electrodes had a higher electrode roughness factor and electroactive surface ratio than those of the larger electrodes. Moreover, CV of the surface-sensitive redox probes [Fe(CN)6]3- and dopamine revealed that smaller electrodes exhibited better electrocatalytic properties, with enhanced electron transfer kinetics. Scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy showed that the physical and chemical surface structure were different at the electrode center versus the edges, so the electrochemical properties of the smaller electrodes were improved by having rougher surface and more density of the graphitic edge planes, and more oxide-containing groups, leading to better electrochemistry. The difference could be explained by the different photothermal reaction time from the laser scribing process that causes different stable carbon morphology to form on the polymer surface. Our results give a new insight on relationships between surface structure and electrochemistry of LIG electrodes and are useful for designing miniaturized electrochemical devices.
Collapse
Affiliation(s)
- Supacha Wirojsaengthong
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Orawon Chailapakul
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Pumidech Puthongkham
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Qian H, Moreira G, Vanegas D, Tang Y, Pola C, Gomes C, McLamore E, Bliznyuk N. Improving high throughput manufacture of laser-inscribed graphene electrodes via hierarchical clustering. Sci Rep 2024; 14:7980. [PMID: 38575717 PMCID: PMC10995179 DOI: 10.1038/s41598-024-57932-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024] Open
Abstract
Laser-inscribed graphene (LIG), initially developed for graphene supercapacitors, has found widespread use in sensor research and development, particularly as a platform for low-cost electrochemical sensing. However, batch-to-batch variation in LIG fabrication introduces uncertainty that cannot be adequately tracked during manufacturing process, limiting scalability. Therefore, there is an urgent need for robust quality control (QC) methodologies to identify and select similar and functional LIG electrodes for sensor fabrication. For the first time, we have developed a statistical workflow and an open-source hierarchical clustering tool for QC analysis in LIG electrode fabrication. The QC process was challenged with multi-operator cyclic voltammetry (CV) data for bare and metalized LIG. As a proof of concept, we employed the developed QC process for laboratory-scale manufacturing of LIG-based biosensors. The study demonstrates that our QC process can rapidly identify similar LIG electrodes from large batches (n ≥ 36) of electrodes, leading to a reduction in biosensor measurement variation by approximately 13% compared to the control group without QC. The statistical workflow and open-source code presented here provide a versatile toolkit for clustering analysis, opening a pathway toward scalable manufacturing of LIG electrodes in sensing. In addition, we establish a data repository for further study of LIG variation.
Collapse
Affiliation(s)
- Hanyu Qian
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Geisianny Moreira
- Department of Agricultural Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Diana Vanegas
- Environmental Engineering and Earth Sciences Department of Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Yifan Tang
- Department of Plant and Environmental Science, Clemson University, Clemson, SC, 29634, USA
| | - Cicero Pola
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Carmen Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Eric McLamore
- Department of Agricultural Sciences, Clemson University, Clemson, SC, 29634, USA.
- Environmental Engineering and Earth Sciences Department of Engineering, Clemson University, Clemson, SC, 29634, USA.
| | - Nikolay Bliznyuk
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA.
- Departments of Statistics, Biostatistics and Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
3
|
Ganesh PS, Elugoke SE, Lee SH, Kim SY, Ebenso EE. Smart and emerging point of care electrochemical sensors based on nanomaterials for SARS-CoV-2 virus detection: Towards designing a future rapid diagnostic tool. CHEMOSPHERE 2024; 352:141269. [PMID: 38307334 DOI: 10.1016/j.chemosphere.2024.141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
In the recent years, researchers from all over the world have become interested in the fabrication of advanced and innovative electrochemical and/or biosensors for respiratory virus detection with the use of nanotechnology. These fabricated sensors demonstrated a number of benefits, including precision, affordability, accessibility, and miniaturization which makes them a promising test method for point-of-care (PoC) screening for SARS-CoV-2 viral infection. In order to comprehend the principles of electrochemical sensing and the role of various types of sensing interfaces, we comprehensively explored the underlying principles of electroanalytical methods and terminologies related to it in this review. In addition, it is addressed how to fabricate electrochemical sensing devices incorporating nanomaterials as graphene, metal/metal oxides, metal organic frameworks (MOFs), MXenes, quantum dots, and polymers. We took an effort to carefully compile current developments, advantages, drawbacks, possible solutions in nanomaterials based electrochemical sensors.
Collapse
Affiliation(s)
- Pattan Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Saheed Eluwale Elugoke
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Seok-Han Lee
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Eno E Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa.
| |
Collapse
|
4
|
Syafira RS, Devi MJ, Gaffar S, Irkham, Kurnia I, Arnafia W, Einaga Y, Syakir N, Noviyanti AR, Hartati YW. Hydroxyapatite-Gold Modified Screen-Printed Carbon Electrode for Selective SARS-CoV-2 Antibody Immunosensor. ACS APPLIED BIO MATERIALS 2024; 7:950-960. [PMID: 38303668 DOI: 10.1021/acsabm.3c00953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or coronavirus disease 2019 (COVID-19), is still spreading worldwide; therefore, the need for rapid and accurate detection methods remains relevant to maintain the spread of this infectious disease. Electrochemical immunosensors are an alternative method for the rapid detection of the SARS-CoV-2 virus. Herein, we report the development of a screen-printed carbon electrode immunosensor using a hydroxyapatite-gold nanocomposite (SPCE/HA-Au) directly spray-coated with the immobilization receptor binding domain (RBD) Spike to increase the conductivity and surface electrode area. The HA-Au composite synthesis was optimized using the Box-Behnken method, and the resulting composite was characterized by UV-vis spectrophotometry, TEM-EDX, and XRD analysis. The specific interaction of RBD Spike with immunoglobulin G (IgG) antibodies was evaluated by differential pulse voltammetry and electrochemical impedance spectroscopy methods in a [Fe(CN)6]4-/3- solution redox system. The IgG was detected with a detection limit of 0.0561 pg mL-1, and the immunosensor had selectivity and stability of 103-122% and was stable until week 7 with the influence of storage conditions. Also, the immunosensor was tested using real samples from human serum, where the results were confirmed using the chemiluminescent microparticle immunoassay (CMIA) method and showed satisfactory results. Therefore, the developed electrochemical immunosensor can rapidly and accurately detect SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- Ratu Shifa Syafira
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Melania Janisha Devi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Irwan Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Wyanda Arnafia
- Department of Animal Infectious Diseases and Veterinary Public Health, IPB University, Jl. Raya Dramaga, Bogor, West Java 16680, Indonesia
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Norman Syakir
- Department of Physics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Atiek Rostika Noviyanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| |
Collapse
|
5
|
Ataide VN, Pradela-Filho LA, Ameku WA, Negahdary M, Oliveira TG, Santos BG, Paixão TRLC, Angnes L. Paper-based electrochemical biosensors for the diagnosis of viral diseases. Mikrochim Acta 2023; 190:276. [PMID: 37368054 DOI: 10.1007/s00604-023-05856-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Paper-based electrochemical analytical devices (ePADs) have gained significant interest as promising analytical units in recent years because they can be fabricated in simple ways, are low-cost, portable, and disposable platforms that can be applied in various fields. In this sense, paper-based electrochemical biosensors are attractive analytical devices since they can promote diagnose several diseases and potentially allow decentralized analysis. Electrochemical biosensors are versatile, as the measured signal can be improved by using mainly molecular technologies and nanomaterials to attach biomolecules, resulting in an increase in their sensitivity and selectivity. Additionally, they can be implemented in microfluidic devices that drive and control the flow without external pumping and store reagents, and improve the mass transport of analytes, increasing sensor sensitivity. In this review, we focus on the recent developments in electrochemical paper-based devices for viruses' detection, including COVID-19, Dengue, Zika, Hepatitis, Ebola, AIDS, and Influenza, among others, which have caused impacts on people's health, especially in places with scarce resources. Also, we discuss the advantages and disadvantages of the main electrode's fabrication methods, device designs, and biomolecule immobilization strategies. Finally, the perspectives and challenges that need to be overcome to further advance paper-based electrochemical biosensors' applications are critically presented.
Collapse
Affiliation(s)
- Vanessa N Ataide
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil.
| | - Lauro A Pradela-Filho
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Wilson A Ameku
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Thawan G Oliveira
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Berlane G Santos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Thiago R L C Paixão
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Karuppaiah G, Vashist A, Nair M, Veerapandian M, Manickam P. Emerging trends in point-of-care biosensing strategies for molecular architectures and antibodies of SARS-CoV-2. BIOSENSORS & BIOELECTRONICS: X 2023; 13:100324. [PMID: 36844889 PMCID: PMC9941073 DOI: 10.1016/j.biosx.2023.100324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/01/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
COVID-19, a highly contagious viral infection caused by the occurrence of severe acute respiratory syndrome coronavirus (SARS-CoV-2), has turned out to be a viral pandemic then ravaged many countries worldwide. In the recent years, point-of-care (POC) biosensors combined with state-of-the-art bioreceptors, and transducing systems enabled the development of novel diagnostic tools for rapid and reliable detection of biomarkers associated with SARS-CoV-2. The present review thoroughly summarises and discusses various biosensing strategies developed for probing SARS-CoV-2 molecular architectures (viral genome, S Protein, M protein, E protein, N protein and non-structural proteins) and antibodies as a potential diagnostic tool for COVID-19. This review discusses the various structural components of SARS-CoV-2, their binding regions and the bioreceptors used for recognizing the structural components. The various types of clinical specimens investigated for rapid and POC detection of SARS-CoV-2 is also highlighted. The importance of nanotechnology and artificial intelligence (AI) approaches in improving the biosensor performance for real-time and reagent-free monitoring the biomarkers of SARS-CoV-2 is also summarized. This review also encompasses existing practical challenges and prospects for developing new POC biosensors for clinical monitoring of COVID-19.
Collapse
Affiliation(s)
- Gopi Karuppaiah
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
| | - Arti Vashist
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Murugan Veerapandian
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| |
Collapse
|
7
|
Irkham I, Ibrahim AU, Pwavodi PC, Al-Turjman F, Hartati YW. Smart Graphene-Based Electrochemical Nanobiosensor for Clinical Diagnosis: Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:2240. [PMID: 36850837 PMCID: PMC9964617 DOI: 10.3390/s23042240] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The technological improvement in the field of physics, chemistry, electronics, nanotechnology, biology, and molecular biology has contributed to the development of various electrochemical biosensors with a broad range of applications in healthcare settings, food control and monitoring, and environmental monitoring. In the past, conventional biosensors that have employed bioreceptors, such as enzymes, antibodies, Nucleic Acid (NA), etc., and used different transduction methods such as optical, thermal, electrochemical, electrical and magnetic detection, have been developed. Yet, with all the progresses made so far, these biosensors are clouded with many challenges, such as interference with undesirable compound, low sensitivity, specificity, selectivity, and longer processing time. In order to address these challenges, there is high need for developing novel, fast, highly sensitive biosensors with high accuracy and specificity. Scientists explore these gaps by incorporating nanoparticles (NPs) and nanocomposites (NCs) to enhance the desired properties. Graphene nanostructures have emerged as one of the ideal materials for biosensing technology due to their excellent dispersity, ease of functionalization, physiochemical properties, optical properties, good electrical conductivity, etc. The Integration of the Internet of Medical Things (IoMT) in the development of biosensors has the potential to improve diagnosis and treatment of diseases through early diagnosis and on time monitoring. The outcome of this comprehensive review will be useful to understand the significant role of graphene-based electrochemical biosensor integrated with Artificial Intelligence AI and IoMT for clinical diagnostics. The review is further extended to cover open research issues and future aspects of biosensing technology for diagnosis and management of clinical diseases and performance evaluation based on Linear Range (LR) and Limit of Detection (LOD) within the ranges of Micromolar µM (10-6), Nanomolar nM (10-9), Picomolar pM (10-12), femtomolar fM (10-15), and attomolar aM (10-18).
Collapse
Affiliation(s)
- Irkham Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| | - Abdullahi Umar Ibrahim
- Department of Biomedical Engineering, Near East University, Mersin 10, Nicosia 99010, Turkey
| | - Pwadubashiyi Coston Pwavodi
- Department of Bioengineering/Biomedical Engineering, Faculty of Engineering, Cyprus International University, Haspolat, North Cyprus via Mersin 10, Nicosia 99010, Turkey
| | - Fadi Al-Turjman
- Research Center for AI and IoT, Faculty of Engineering, University of Kyrenia, Mersin 10, Kyrenia 99320, Turkey
- Artificial Intelligence Engineering Department, AI and Robotics Institute, Near East University, Mersin 10, Nicosia 99010, Turkey
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| |
Collapse
|
8
|
Nambiar S, Mohan M, Rosin Jose A. Voltammetric Sensors: A Versatile Tool in COVID‐19 Diagnosis and Prognosis. ChemistrySelect 2023. [DOI: 10.1002/slct.202204506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Souparnika Nambiar
- PG and Research Dept. of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala INDIA 682013
| | - Malavika Mohan
- PG and Research Dept. of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala INDIA 682013
| | - Ammu Rosin Jose
- PG and Research Dept. of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala INDIA 682013
| |
Collapse
|
9
|
Tincu B, Burinaru T, Enciu AM, Preda P, Chiriac E, Marculescu C, Avram M, Avram A. Vertical Graphene-Based Biosensor for Tumor Cell Dielectric Signature Evaluation. MICROMACHINES 2022; 13:mi13101671. [PMID: 36296024 PMCID: PMC9610743 DOI: 10.3390/mi13101671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 06/10/2023]
Abstract
The selective and rapid detection of tumor cells is of critical consequence for the theragnostic field of tumorigenesis; conventional methods, such as histopathological diagnostic methods, often require a long analysis time, excessive analytical costs, complex operations, qualified personnel and deliver many false-positive results. We are considering a new approach of an electrochemical biosensor based on graphene, which is evidenced to be a revolutionary nanomaterial enabling the specific and selective capture of tumor cells. In this paper, we report a biosensor fabricated by growing vertically aligned graphene nanosheets on the conductive surface of interdigitated electrodes which is functionalized with anti-EpCAM antibodies. The dielectric signature of the three types of tumor cells is determined by correlating the values from the Nyquist and Bode diagram: charge transfer resistance, electrical double layer capacity, Debye length, characteristic relaxation times of mobile charges, diffusion/adsorption coefficients, and variation in the electrical permittivity complex and of the phase shift with frequency. These characteristics are strongly dependent on the type of membrane molecules and the electromagnetic resonance frequency. We were able to use the fabricated sensor to differentiate between three types of tumor cell lines, HT-29, SW403 and MCF-7, by dielectric signature. The proposed evaluation method showed the permittivity at 1 MHz to be 3.63 nF for SW403 cells, 4.97 nF for HT 29 cells and 6.9 nF for MCF-7 cells.
Collapse
Affiliation(s)
- Bianca Tincu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
- Faculty of Applied Chemistry and Material Science, University “Politehnica” of Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
| | - Tiberiu Burinaru
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
- University of Agronomic Sciences and Veterinary Medicine, 59 Mărăști, 011464 Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, 99–101 Splaiul Independenţei, 050096 Bucharest, Romania
- Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Petruta Preda
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
| | - Eugen Chiriac
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
- Faculty of Applied Chemistry and Material Science, University “Politehnica” of Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
| | - Catalin Marculescu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
| | - Marioara Avram
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
| | - Andrei Avram
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
| |
Collapse
|
10
|
Bassi MDJ, Araujo Todo Bom M, Terribile Budel ML, Maltempi de Souza E, Müller dos Santos M, Roman LS. Optical Biosensor for the Detection of Infectious Diseases Using the Copolymer F8T2 with Application to COVID-19. SENSORS (BASEL, SWITZERLAND) 2022; 22:5673. [PMID: 35957230 PMCID: PMC9370833 DOI: 10.3390/s22155673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
Abstract
The coronavirus pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has accelerated the development of biosensors based on new materials and techniques. Here, we present our effort to develop a fast and affordable optical biosensor using photoluminescence spectroscopy for anti-SARS-CoV-2 antibody detection. The biosensor was fabricated with a thin layer of the semiconductor polymer Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-2,2'-bithiophene-5,5'-diyl)] (F8T2) as a signal transducer material. We mounted the biosensors by depositing a layer of F8T2 and an engineered version of RBD from the SARS-CoV-2 spike protein with a tag to promote hydrophobic interaction between the protein and the polymeric surface. We validated the biosensor sensitivity with decreasing anti-RBD polyclonal IgG concentrations and challenged the biosensor specificity with human serum samples from both COVID-19 negative and positive individuals. The antibody binding to the immobilized antigen shifted the F8T2 photoluminescence spectrum even at the low concentration of 0.0125 µg/mL. A volume as small as one drop of serum (100 µL) was sufficient to distinguish a positive from a negative sample without requiring multiple washing steps and secondary antibody reactions.
Collapse
Affiliation(s)
| | - Maritza Araujo Todo Bom
- Biochemistry Department, Federal University of Paraná, Curitiba 81531-980, Brazil; (M.A.T.B.); (M.L.T.B.); (E.M.d.S.); (M.M.d.S.)
| | - Maria Luisa Terribile Budel
- Biochemistry Department, Federal University of Paraná, Curitiba 81531-980, Brazil; (M.A.T.B.); (M.L.T.B.); (E.M.d.S.); (M.M.d.S.)
| | - Emanuel Maltempi de Souza
- Biochemistry Department, Federal University of Paraná, Curitiba 81531-980, Brazil; (M.A.T.B.); (M.L.T.B.); (E.M.d.S.); (M.M.d.S.)
| | - Marcelo Müller dos Santos
- Biochemistry Department, Federal University of Paraná, Curitiba 81531-980, Brazil; (M.A.T.B.); (M.L.T.B.); (E.M.d.S.); (M.M.d.S.)
| | | |
Collapse
|
11
|
Funari R, Fukuyama H, Shen AQ. Nanoplasmonic multiplex biosensing for COVID-19 vaccines. Biosens Bioelectron 2022; 208:114193. [PMID: 35421841 PMCID: PMC8968208 DOI: 10.1016/j.bios.2022.114193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022]
Abstract
The ongoing emergence of severe acute respiratory syndrome caused by the new coronavirus (SARS-CoV-2) variants requires swift actions in identifying specific antigens and optimizing vaccine development to maximize the humoral response of the patient. Measuring the specificity and the amount of antibody produced by the host immune system with high throughput and accuracy is critical to develop timely diagnostics and therapeutic strategies. Motivated by finding an easy-to-use and cost-effective alternative to existing serological methodologies for multiplex analysis, we develop a proof-of-concept multiplex nanoplasmonic biosensor to capture the humoral response in serums against multiple antigens. Nanoplasmonic sensing relies on the wavelength shift of the localized surface plasmon resonance (LSPR) peak of gold nanostructures upon binding interactions between the antibodies and the immobilized antigens. Here the antigens are first immobilized on different sensing areas by using a mono-biotinylation system based on the high affinity interaction between biotin and streptavidin. We then validate the multiplex platform by detecting the presence of 3 monoclonal antibodies against 3 antigens (2 different hemagglutinins (HAs) from influenza viruses, and the SARS-CoV-2 Spike RBD (receptor binding domain)). We also measure the humoral response in murine sera collected before and after its immunization with the SARS-CoV-2 Spike protein, in good agreement with the results obtained by the ELISA assay. Our nanoplasmonic assays have successfully demonstrated multiple serum antibody profiling, which can be further integrated with microfluidics as an effective high throughput screening platform in future studies for the ongoing SARS-CoV-2 vaccine development.
Collapse
Affiliation(s)
- Riccardo Funari
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan; Dipartimento di Fisica "M. Merlin", Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy.
| | - Hidehiro Fukuyama
- Laboratory for Lymphocyte Differentiations, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan; Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan; INSERM EST, Strasbourg Cedex 2, 67037, France.
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| |
Collapse
|