1
|
de Freitas Neto LL, Santos RFB, da Silva MA, de Souza Bezerra R, Saldanha-Corrêa F, Espósito BP. Zinc speciation promotes distinct effects on dinoflagellate growth and coral trypsin-like enzyme activity. Biometals 2025:10.1007/s10534-025-00664-y. [PMID: 39810029 DOI: 10.1007/s10534-025-00664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Zinc is an essential metal to living organisms, including corals and their symbiotic microalgae (Symbiodiniaceae). Both Zn(II) deprivation and overload are capable of leading to dysfunctional metabolism, coral bleaching, and even organism death. The present work investigated the effects of chemically defined Zn species (free Zn, ZnO nanoparticles, and the complexes Zn-histidinate and Zn-EDTA) over the growth of the dinoflagellates Symbiodinium microadriaticum, Breviolum minutum, and Effrenium voratum, and on the trypsin-like proteolytic activity of the hydrocoral Millepora alcicornis. B. minutum was the most sensitive strain to any form of added Zn. For the other strains, the complex [Zn(His)2] better translated metal load into growth. This complex was the only tested compound that did not interfere with the trypsin-like activity of Millepora alcicornis extracts. Also, histidine was able to recover the activity of the enzyme inhibited by zinc. [Zn(His)2] is a potential biocarrier of zinc for microalgae or coral cultivation. These findings suggest that the control of chemical speciation of an essential metal could lead to useful compounds that assist autotrophy, while not affecting heterotrophy, in the coral holobiont.
Collapse
Affiliation(s)
| | - Rudã Fernandes Brandão Santos
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco - UFPE, Av. Prof. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - Maria Angélica da Silva
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco - UFPE, Av. Prof. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - Ranilson de Souza Bezerra
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco - UFPE, Av. Prof. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - Flávia Saldanha-Corrêa
- Banco de Microrganismos Aidar & Kutner - BMAK, Instituto Oceanográfico, Universidade de São Paulo, Praça Do Oceanográfico, 191, São Paulo, 05508-120, Brazil
| | - Breno Pannia Espósito
- Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
2
|
Grant GJ, Lim HW, Mohammad TF. A review of ultraviolet filters and their impact on aquatic environments. Photochem Photobiol Sci 2024:10.1007/s43630-024-00674-8. [PMID: 39704908 DOI: 10.1007/s43630-024-00674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
Numerous anthropogenic ultraviolet filters (UVF) have been detected in aquatic environments and concerns have arisen regarding their potential impacts on aquatic organisms. This manuscript reviews the environmental concentrations and potential toxicity of various UVF. The highest concentrations of UVF are typically observed near frequently visited recreational areas and during peak water-activity periods, which suggests that sunscreen application correlates with noticeable alterations in UVF concentrations. Aquatic concentrations of certain filters have sporadically exceeded 10 μg/L, although most measurements remain below 1 µg/L, which is below commonly reported toxicity levels. UVF have also been detected in aquatic organisms, typically ranging from nondetectable levels to a few hundred ng/g, depending on the species. The toxic effects from UVF, such as coral bleaching and diminished growth, have been observed in laboratory settings, however, toxicity tends to manifest only at significantly higher levels than what is typically detected in aquatic environments. Further research is imperative to provide consumers with improved guidance on selecting sunscreen containing UVF that poses the least environmental risk.
Collapse
Affiliation(s)
- Garett J Grant
- Department of Internal Medicine, Transitional Year Residency Program, Henry Ford Hospital, Detroit, MI, USA
- Morehead Family Medicine Residency Program, University of Kentucky, Lexington, KY, USA
| | - Henry W Lim
- Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, MI, USA
| | - Tasneem F Mohammad
- Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, MI, USA.
- Department of Dermatology, Henry Ford Medical Center, New Center One, 3031 W. Grand Boulevard, Suite 800, Detroit, MI, 48202, USA.
| |
Collapse
|
3
|
Cheung BCT, Leong JCH, Chan EYY, Chang TKT, Lau ASU, Lee CGW, Wong ELC, Tse IWY, Liu LD, Kwok MH, Chan MHC, Ngai T, Chui APY. Evaluating the effects of inorganic UV filter titanium dioxide nanoparticles (nano-TiO 2) on early life stages of scleractinian coral Acropora tumida. MARINE POLLUTION BULLETIN 2024; 209:117231. [PMID: 39522399 DOI: 10.1016/j.marpolbul.2024.117231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The extensive use of sunscreen products has led to an increase in the amount of UV filters being detected in marine ecosystems. While the hazards associated with organic UV filters are relatively well-studied, the effects of inorganic UV filters like nano‑titanium dioxide (nano-TiO2) on corals remain unclear. This study investigated the effects of nano-TiO2 UV filters on the fertilization success, embryonic development, and larval survival of the branching coral species Acropora tumida. Our results indicated that nano-TiO2 concentrations ranging from 0.01 mg/L to 10 mg/L had no significant impact on coral fertilization success or embryonic development. However, high concentrations of 5 and 10 mg/L nano-TiO2 significantly reduced larval survival probability compared to control after 4 days exposure. Based on our results, the current environmental concentrations of TiO2 are unlikely to pose serious threats on coral fertilization and larval survival.
Collapse
Affiliation(s)
- Billy C T Cheung
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Justin C H Leong
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Eliana Y Y Chan
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong
| | - Taison K T Chang
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Alice S U Lau
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Candy G W Lee
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Elvis L C Wong
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Ink W Y Tse
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - L D Liu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong
| | - M H Kwok
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong
| | - Michelle H C Chan
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - T Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong
| | - Apple P Y Chui
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
4
|
Nishioka S, Miyata K, Inoue Y, Aoyama K, Yoshioka Y, Miura N, Yamane M, Honda H, Takagi T. Deciphering mechanisms of UV filter (benzophenone-3)- and high temperature-induced adverse effects in the coral Acropora tenuis, using ecotoxicogenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176018. [PMID: 39278489 DOI: 10.1016/j.scitotenv.2024.176018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024]
Abstract
Coral reefs are at risk of bleaching due to various environmental and anthropogenic stressors such as global warming and chemical pollutants. However, there is little understanding of stressor-specific mechanisms that cause coral bleaching. Therefore, conducting accurate ecotoxicological risk assessments and deciphering modes of action of potentially deleterious ultraviolet (UV) filters (sunscreen compounds) are crucial issues. In this study, we evaluated the toxicity and bleaching effect of benzophenone-3 (BP-3), which is widely used in sunscreen products, on the reef-building coral Acropora tenuis. Furthermore, to understand differences in UV filter- and temperature-induced adverse effects, a comparative ecotoxicogenomic approach using RNA-seq was integrated into a toxicity test to clarify differences in gene expression changes induced by BP-3 and heat stress (31 °C). The lethal concentration 50 % (LC50) was calculated as 3.9 mg/L, indicating that the aquatic environmental risk on corals posed by BP-3 was low based on the risk assessment in this study. Differentially expressed genes related to oxidative stress and extracellular matrix organization were involved in coral responses to both BP-3 and heat stress, but their patterns differed. Whereas immune and heat-shock responses were activated in response to heat stress, activation of a drug metabolism pathway and several signal transduction pathways were identified in BP-3 treatment groups. Our study enhances understanding of stress responses in corals induced by UV filters and thermal stress. Using potential gene markers identified in this study for eco-epidemiological surveys of stressed corals, we urgently need to develop effective countermeasures.
Collapse
Affiliation(s)
- Sakiko Nishioka
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi, Japan
| | - Kaede Miyata
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi, Japan
| | - Yasuaki Inoue
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi, Japan
| | - Kako Aoyama
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yuki Yoshioka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Natsuko Miura
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Masayuki Yamane
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi, Japan
| | - Hiroshi Honda
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi, Japan.
| | - Toshiyuki Takagi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
5
|
Ishibashi H, Nishimura S, Tanaka K, Haruta S, Takayama K, Yamashiro H, Takeuchi I. Transcriptome analysis reveals limited toxic effects of the UV-filter benzophenone-3 (BP-3) on the hermatypic coral Acropora tenuis and its symbiotic dinoflagellates. MARINE POLLUTION BULLETIN 2024; 201:116260. [PMID: 38522341 DOI: 10.1016/j.marpolbul.2024.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
This study aimed to investigate the toxic and transcriptomic effects of the ultraviolet filter benzophenone-3 (BP-3) on Acropora tenuis and its symbiotic dinoflagellates while using acetone as a solvent. Seven-day exposure to 50 and 500 μg/L, which is higher than most BP-3 records from coastal waters, did not affect coral colour or dinoflagellate photosynthesis. Differentially expressed genes (DEGs) between seawater and solvent controls were <20 in both corals and dinoflagellates. Eleven coral DEGs were detected after treatment with 50 μg/L BP-3. Fourteen coral DEGs, including several fluorescent protein genes, were detected after treatment with 500 μg/L BP-3. In contrast, no dinoflagellate DEGs were detected in the BP-3 treatment group. These results suggest that the effects of 50-500 μg/L BP-3 on adult A. tenuis and its dinoflagellates are limited. Our experimental methods with lower acetone toxicity provide a basis for establishing standard ecotoxicity tests for corals.
Collapse
Affiliation(s)
- Hiroshi Ishibashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Saori Nishimura
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Kokoro Tanaka
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Shinsuke Haruta
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Kotaro Takayama
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Hideyuki Yamashiro
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, Japan
| | - Ichiro Takeuchi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| |
Collapse
|
6
|
Iguchi A, Iijima M, Mizusawa N, Ohno Y, Yasumoto K, Suzuki A, Suga S, Tanaka K, Zaitsu K. Single-polyp metabolomics for coral health assessment. Sci Rep 2024; 14:3369. [PMID: 38443414 PMCID: PMC10914721 DOI: 10.1038/s41598-024-53294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Coral reef ecosystems supported by environmentally sensitive reef-building corals face serious threats from human activities. Our understanding of these reef threats is hampered by the lack of sufficiently sensitive coral environmental impact assessment systems. In this study, we established a platform for metabolomic analysis at the single-coral-polyp level using state-of-the-art mass spectrometry (probe electrospray ionization/tandem mass spectrometry; PESI/MS/MS) capable of fine-scale analysis. We analyzed the impact of the organic UV filter, benzophenone (BP), which has a negative impact on corals. We also analyzed ammonium and nitrate samples, which affect the environmental sensitivity of coral-zooxanthella (Symbiodiniaceae) holobionts, to provide new insights into coral biology with a focus on metabolites. The method established in this study breaks new ground by combining PESI/MS/MS with a technique for coral polyps that can control the presence or absence of zooxanthellae in corals, enabling functions of zooxanthellae to be assessed on a polyp-by-polyp basis for the first time. This system will clarify biological mechanisms of corals and will become an important model system for environmental impact assessment using marine organisms.
Collapse
Affiliation(s)
- Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan.
- Research Laboratory on Environmentally-Conscious Developments and Technologies [E-Code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8567, Japan.
| | - Mariko Iijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | - Nanami Mizusawa
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yoshikazu Ohno
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Ko Yasumoto
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Atsushi Suzuki
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
- Research Laboratory on Environmentally-Conscious Developments and Technologies [E-Code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8567, Japan
| | - Shunichi Suga
- Research Laboratories, KOSÉ Corporation, 48-18, Sakae-cho, Kita-ku, Tokyo, 114-0005, Japan
| | - Ken Tanaka
- Research Laboratories, KOSÉ Corporation, 48-18, Sakae-cho, Kita-ku, Tokyo, 114-0005, Japan
| | - Kei Zaitsu
- Multimodal Informatics and Wide-Data Analytics Laboratory (MiWA-Lab.), Faculty of Biology-Oriented Science and Technology, Kindai University, Nishimitani, Kinokawa, Wakayama, 649-6493, Japan.
| |
Collapse
|
7
|
Reichert J, Tirpitz V, Oponczewski M, Lin C, Franke N, Ziegler M, Wilke T. Feeding responses of reef-building corals provide species- and concentration-dependent risk assessment of microplastic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169485. [PMID: 38143004 DOI: 10.1016/j.scitotenv.2023.169485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
The negative impacts of microplastic on reef-building corals are often attributed to the feeding responses to these particles. Although reactions to and ingestion of microplastic are frequently reported, a quantitative comparison to natural particles and of the factors influencing these responses is largely missing. Thus, this study aims to compare the feeding rates of corals to microplastic and natural particles, considering factors influencing these responses. Specifically, we I) studied the feeding responses of corals to microplastic, natural food, and non-food particles, II) examined the influence of biotic factors (i.e., biofilm on the particles and presence of natural food), III) evaluated species-specific differences in feeding responses to microplastic particles, and IV) applied a toxicodynamic model for species- and concentration-dependent risk assessments. We assessed the feeding responses of 11 coral species, spanning different life-history strategies and growth forms in experimental feeding trials. The results showed that the feeding responses of corals to microplastic differ from those to naturally occurring particles. Reactions to microplastic and natural food occurred equally often, while sand was more frequently rejected. Yet, the ingestion process was much more selective, and microplastic was ingested less frequently than natural food. The presence of a biofilm and natural food had activating effects on the feeding behavior of the corals on microplastic. Generally, coral species that exhibit a higher degree of heterotrophic feeding also reacted more often to microplastic. The species- and concentration-dependent toxicodynamic risk model built on these data reveals that most tested coral species are unlikely to be at risk under present environmental concentration levels. However, highly heterotrophic feeders, such as Blastomussa merleti, or generally vulnerable species, such as Pocillopora verrucosa, need special consideration. These findings help to better evaluate the responses of corals to microplastic and their risk in an increasingly polluted ocean.
Collapse
Affiliation(s)
- Jessica Reichert
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany; Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, HI, Kāne'ohe, USA.
| | - Vanessa Tirpitz
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Mareike Oponczewski
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Chieh Lin
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Niklas Franke
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Thomas Wilke
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| |
Collapse
|
8
|
Brefeld D, Di Mauro V, Kellermann MY, Nietzer S, Moeller M, Lütjens LH, Pawlowski S, Petersen-Thiery M, Schupp PJ. Acute Toxicity Assays with Adult Coral Fragments: A Method for Standardization. TOXICS 2023; 12:1. [PMID: 38276714 PMCID: PMC10818607 DOI: 10.3390/toxics12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024]
Abstract
Coral reefs are globally declining due to various anthropogenic stressors. Amongst those, chemical pollutants, such as pesticides from agricultural runoff, sewage or an overabundance of personal care products in coastal waters due to intense tourism, may be considered as a local stressor for reef-building corals. The extent to which such chemicals exhibit toxic effects towards corals at environmentally relevant concentrations is currently controversially discussed and existing studies are often based on varying and sometimes deficient test methods. To address this uncertainty, we adapted available methods into a reliable and comprehensive acute coral toxicity test method for the reef-building coral Montipora digitata. The toxicities of the four substances benzophenone-3 (BP-3), Diuron (DCMU), copper (Cu2+ as CuCl2, positive control) and dimethylformamide (DMF, solvent) were assessed in a 96 h semi-static test design. Endpoints such as maximum quantum yield, bleaching, tissue loss and mortality were evaluated with respect to their suitability for regulatory purposes. Overall, the endpoints bleaching and mortality yielded sensitive and robust results for the four tested substances. As the test method follows the principles of internationally standardized testing methods (ISO, OECD), it can be considered suitable for further validation and standardization. Once validated, a standardized test method will help to obtain reproducible toxicity results useful for marine hazard and risk assessment and regulatory decision making.
Collapse
Affiliation(s)
- David Brefeld
- Environmental Biochemistry Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; (V.D.M.)
| | - Valentina Di Mauro
- Environmental Biochemistry Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; (V.D.M.)
| | - Matthias Y. Kellermann
- Environmental Biochemistry Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; (V.D.M.)
| | - Samuel Nietzer
- Environmental Biochemistry Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; (V.D.M.)
| | - Mareen Moeller
- Environmental Biochemistry Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; (V.D.M.)
| | - Laura H. Lütjens
- Department of Product Safety, Regulatory Ecotoxicology, BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | - Sascha Pawlowski
- Department of Product Safety, Regulatory Ecotoxicology, BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | - Mechtild Petersen-Thiery
- Product Stewardship and EHS Data Management, BASF Personal Care and Nutrition GmbH, Rheinpromenade 1, 40789 Monheim am Rhein, Germany
| | - Peter J. Schupp
- Environmental Biochemistry Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; (V.D.M.)
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
| |
Collapse
|
9
|
Santovito A, Pappalardo A, Nota A, Prearo M, Schleicherová D. Lymnaea stagnalis and Ophryotrocha diadema as Model Organisms for Studying Genotoxicological and Physiological Effects of Benzophenone-3. TOXICS 2023; 11:827. [PMID: 37888678 PMCID: PMC10610920 DOI: 10.3390/toxics11100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Benzophenone-3 (BP-3) is a lipophilic organic compound that occurs naturally in flower pigments. Since it adsorbs ultraviolet (UV) radiation in the UVA and UVB regions, it is one of the most common UV filters found in sunscreen and cosmetic products. We explored by in vivo micronuclei (MNi) assay the genotoxic effects of BP-3 on hemocytes from the freshwater gastropod Lymnaea stagnalis. We also studied its possible toxic effects on life-history traits: body growth in L. stagnalis and egg production of both L. stagnalis and the marine polychaete worm Ophryotrocha diadema. Adult individuals were exposed to increasing concentrations of BP-3 (0.025, 0.050, 0.100, and 0.200 mg/L) once a week for 4 weeks. In L. stagnalis, exposure to BP-3 at concentrations of both 0.2 and 0.1 mg/L produced genotoxic effects on the micronuclei frequencies, but only concentrations of 0.2 mg/L affected the NBUDs frequencies. Similarly, negative effects on body growth were observed at the concentrations of 0.2 and 0.1 mg/L and a significant reduction of egg production at 0.2 mg/L. In O. diadema, a negative correlation between egg production and increasing BP-3 concentrations was observed. Our findings suggest the need for more stringent measures to reduce the presence of BP-3 in the environment.
Collapse
Affiliation(s)
- Alfredo Santovito
- Department of Life Sciences and Systems Biology, Via Accademia Albertina 13, 10123 Turin, Italy; (A.P.); (A.N.); (D.S.)
| | - Alessia Pappalardo
- Department of Life Sciences and Systems Biology, Via Accademia Albertina 13, 10123 Turin, Italy; (A.P.); (A.N.); (D.S.)
| | - Alessandro Nota
- Department of Life Sciences and Systems Biology, Via Accademia Albertina 13, 10123 Turin, Italy; (A.P.); (A.N.); (D.S.)
| | - Marino Prearo
- IZS PLV (Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta), Via Bologna 148, 10154 Torino, Italy;
| | - Dáša Schleicherová
- Department of Life Sciences and Systems Biology, Via Accademia Albertina 13, 10123 Turin, Italy; (A.P.); (A.N.); (D.S.)
- IZS PLV (Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta), Via Bologna 148, 10154 Torino, Italy;
| |
Collapse
|
10
|
He T, Tsui MMP, Mayfield AB, Liu PJ, Chen TH, Wang LH, Fan TY, Lam PKS, Murphy MB. Organic ultraviolet filter mixture promotes bleaching of reef corals upon the threat of elevated seawater temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162744. [PMID: 36907390 DOI: 10.1016/j.scitotenv.2023.162744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/13/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Global reef degradation is a critical environmental health issue that has triggered intensive research on ocean warming, but the implications of emerging contaminants in coral habitats are largely overlooked. Laboratory experiments assessing organic ultraviolet (UV) filter exposure have shown that these chemicals negatively affect coral health; their ubiquitous occurrence in association with ocean warming may pose great challenges to coral health. We investigated both short- (10-day) and long-term (60-day) single and co-exposures of coral nubbins to environmentally relevant organic UV filter mixtures (200 ng/L of 12 compounds) and elevated water temperatures (30 °C) to investigate their effects and potential mechanisms of action. The initial 10-day exposure of Seriatopora caliendrum resulted in bleaching only under co-exposure conditions (compounds + temperature). The 60-day mesocosm study entailed the same exposure settings with nubbins of three species (S. caliendrum, Pocillopora acuta and Montipora aequituberculata). Bleaching (37.5 %) and mortality (12.5 %) of S. caliendrum were observed under UV filter mixture exposure. In the co-exposure treatment, 100 % S. caliendrum and P. acuta bleached associating with 100 % and 50 % mortality, respectively, and significant increase of catalase activities in P. acuta and M. aequituberculata nubbins were found. Biochemical and molecular analyses indicated significant alteration of oxidative stress and metabolic enzymes. The results suggest that upon the adverse effects of thermal stress, organic UV filter mixture at environmental concentrations can cause bleaching in corals by inducing a significant oxidative stress and detoxification burden, suggesting that emerging contaminants may play a unique role in global reef degradation.
Collapse
Affiliation(s)
- Tangtian He
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Mirabelle M P Tsui
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Anderson B Mayfield
- Khaled bin Sultan Living Oceans Foundation, 130 Severn Ave., Annapolis, MD 21403, USA
| | - Pi-Jen Liu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan, ROC
| | - Te-Hao Chen
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan, ROC
| | - Li-Hsueh Wang
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan, ROC
| | - Tung-Yung Fan
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan, ROC
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Margaret B Murphy
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
11
|
Lau SH, Su CL, Yu TY, Zhong Y, Xu X, Jane WN, Chang YT. The use of immobilised bacteria cross-linked within magnetic alginate beads enhances the treatment of benzophenone-type UV filter chemicals by the SBR system. CHEMOSPHERE 2023; 334:139038. [PMID: 37244550 DOI: 10.1016/j.chemosphere.2023.139038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Benzophenone-n compounds (BPs) are applied in a broad spectrum of commercial products, one of which is sunscreen. These chemicals are frequently detected in a variety of environmental matrices worldwide, especially water bodies. BPs are defined as emerging contaminants as well as endocrine-disrupting contaminants; thus, it has become necessary to develop aggressive and green treatments to remove BPs. In this study, we used immobilised BP-biodegrading bacteria linked to reusable magnetic alginate beads (MABs). The MABs were added to a sequencing batch reactor (SBR) system to enhance the removal of 2,4-dihydroxybenzophenone (BP-1) and oxybenzone (BP-3) from sewage. The BP-1 and BP-3 biodegrading bacteria in the MABs consisted of strains from up to three genera to allow for efficient biodegradation. The strains used were Pseudomonas spp., Gordonia sp., and Rhodococcus sp. The optimal composition of the MABs consisted of 3% (w/v) alginate and 10% (w/v) magnetite. The MABs resulted in 60.8%-81.7% recovery by weight after 28 days, and there was a continuous release of bacteria. Moreover, the biological treatment of the BPs sewage improved after adding 100 g of BP1-MABs (1:27) and also 100 g BP3-MABs (1:27) into the SBR system at a hydraulic retention time (HRT) of 8 h. Compared with the SBR system without MABs, the removal rates of BP-1 and BP-3 increased from 64.2% to 71.5% and from 78.1% to 84.1%, respectively. Furthermore, the COD removal increased from 36.1% to 42.1%, and total nitrogen increased from 30.5% to 33.2%. Total phosphorus remained constant at 29%. The bacterial community analysis showed that the Pseudomonas population was <2% before the MAB addition, but increased to 56.1% by day 14. In contrast, the Gordonia sp. And Rhodococcus sp. Populations (<2%) remained unchanged throughout the 14-day treatment period.
Collapse
Affiliation(s)
- Sai Hung Lau
- Department of Microbiology, Soochow University, Taipei, 11102, Taiwan
| | - Ching-Lun Su
- Department of Microbiology, Soochow University, Taipei, 11102, Taiwan
| | - Ting-Yu Yu
- Department of Microbiology, Soochow University, Taipei, 11102, Taiwan
| | - YuYing Zhong
- School of Ocean, Fuzhou University, Fuzhou, 362200, China
| | - XinYuan Xu
- School of Ocean, Fuzhou University, Fuzhou, 362200, China
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Yi-Tang Chang
- Department of Microbiology, Soochow University, Taipei, 11102, Taiwan.
| |
Collapse
|
12
|
Ouédraogo DY, Mell H, Perceval O, Burga K, Domart-Coulon I, Hédouin L, Delaunay M, Guillaume MMM, Castelin M, Calvayrac C, Kerkhof O, Sordello R, Reyjol Y, Ferrier-Pagès C. What are the toxicity thresholds of chemical pollutants for tropical reef-building corals? A systematic review. ENVIRONMENTAL EVIDENCE 2023; 12:4. [PMID: 39294817 PMCID: PMC11378836 DOI: 10.1186/s13750-023-00298-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/22/2023] [Indexed: 09/21/2024]
Abstract
BACKGROUND Tropical coral reefs cover only ca. 0.1% of the Earth's surface but harbour exceptional marine biodiversity and provide vital ecosystem services to millions of people living nearby. They are currently threatened by global (e.g. climate change) and local (e.g. chemical pollution) stressors that interact in multiple ways. While global stressors cannot be mitigated by local actions alone, local stressors can be reduced through ecosystem management. Here, we aimed to systematically review experimental studies assessing the toxicity of chemical pollutants to tropical reef-building corals to generate accessible and usable knowledge and data that can be used to calculate measurement endpoints in ecological risk assessment. From the quantitative estimates of effects, we determined toxicity thresholds as the highest exposures tested at which no statistically significant adverse effects were observed, and we compared them to regulatory predicted no effect concentrations for the protection of marine organisms, to assess whether these reference values are indeed protective of corals. METHODS The evidence was taken from a systematic map of the impacts of chemicals arising from human activity on tropical reef-building corals published in 2021. All studies in the map database corresponding to the knowledge cluster "Evidence on the ecotoxicological effects of chemicals on corals" were selected. To identify subsequently published literature, the search was updated using a subset of the search string used for the systematic map. Titles, abstracts and full-texts were screened according to the criteria defining the selected cluster of the map. Because the eligibility criteria for the systematic review are narrower than the criteria used to define the cluster in the systematic map, additional screening was performed. Studies included were critically appraised and each study was rated as low, unclear, medium, or high risk of bias. Data were extracted from the studies and synthesised according to a strategy dependent on the type of exposure and outcome. REVIEW FINDINGS The systematic review reports the known effects of chemical exposures on corals from 847 studies corresponding to 181 articles. A total of 697 studies (161 articles) were included in the quantitative synthesis and 150 studies (50 articles) in the narrative synthesis of the findings. The quantitative synthesis records the effects of 2706 exposure concentrations-durations of 164 chemicals or mixtures of chemicals, and identifies 105 toxicity thresholds corresponding to 56 chemicals or mixtures of chemicals. When toxicity thresholds were compared to reference values set for the protection of marine organisms by environmental agencies, the reference values appear to be protective of corals for all but three chemicals assessed: the metal copper and the pesticides diuron and irgarol 1051. CONCLUSIONS This open-access database of known ecotoxicological effects of chemical exposures on corals can assist managers in the ecological risk assessment of chemicals, by allowing easy determination of various ecotoxicological thresholds. Several limitations of the toxicity tests synthesised here were noted (in particular the lack of measurement of effective concentrations for more than half of the studies). Overall, most of the currently available data on coral toxicity should be replicated independently and extended to corals from less studied geographical regions and functional groups.
Collapse
Affiliation(s)
- Dakis-Yaoba Ouédraogo
- Direction de L'Expertise, Muséum National d'Histoire Naturelle (MNHN), 75005, Paris, France.
| | - Hugo Mell
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | - Olivier Perceval
- Office Français de la Biodiversité (OFB), 94300, Vincennes, France
| | - Karen Burga
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94701, Maisons-Alfort Cedex, France
| | - Isabelle Domart-Coulon
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, CNRS-Muséum National d'Histoire Naturelle (MNHN), 75005, Paris, France
| | - Laetitia Hédouin
- Laboratoire d'Excellence CORAIL, 66860, Perpignan, France
- USR 3278 CRIOBE, PSL Université Paris : EPHE-UPVD-CNRS, 98729, Papetoai, Mo'orea, French Polynesia
| | - Mathilde Delaunay
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | - Mireille M M Guillaume
- Laboratoire d'Excellence CORAIL, 66860, Perpignan, France
- Laboratoire de Biologie Des Organismes et Ecosystèmes Aquatiques (BOrEA), Muséum National d'Histoire Naturelle-CNRS - SorbonneU - IRD - UCN - UA EcoFunc - Aviv, 75005, Paris, France
| | - Magalie Castelin
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle - CNRS - Sorbonne Université - EPHE - Université des Antilles, 75005, Paris, France
| | - Christophe Calvayrac
- Biocapteurs Analyses Environnement, University of Perpignan via Domitia, 66000, Perpignan, France
- Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Sorbonne Universités - CNRS, 66650, Banyuls Sur Mer, France
| | - Odile Kerkhof
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94701, Maisons-Alfort Cedex, France
| | - Romain Sordello
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | - Yorick Reyjol
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | | |
Collapse
|
13
|
Khanna U, Singh K. Reef safe sunscreens: A call to action. J Eur Acad Dermatol Venereol 2023; 37:e314-e315. [PMID: 36394366 DOI: 10.1111/jdv.18763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Urmi Khanna
- Division of Dermatology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kavish Singh
- Department of Medicine, Maimonides Medical Center, Brooklyn, New York, USA
| |
Collapse
|
14
|
Balkrishna A, Tomar M, Bhattacharya K, Varshney A. Withania somnifera-derived carbon dots protect human epidermal cells against UVB-induced cell death and support growth factor-mediated wound healing. NANOSCALE ADVANCES 2023; 5:1331-1344. [PMID: 36866265 PMCID: PMC9972854 DOI: 10.1039/d2na00545j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
Solar radiation comprising UVA and UVB regions is considered a skin-damaging factor inducing inflammation, oxidative stress, hyperpigmentation, and photo-aging. Photoluminescent carbon dots (CDs) were synthesized from the root extract of a Withania somnifera (L.) Dunal plant and urea, using a one-step microwave method. These Withania somnifera CDs (wsCDs) were 14.4 ± 0.18 d nm in diameter and presented photoluminescence. UV absorbance showed the presence of π-π* (C[double bond, length as m-dash]C) and n-π* (C[double bond, length as m-dash]O) transition regions in wsCDs. FTIR analysis indicated the presence of nitrogen and carboxylic functional groups on the surface of wsCDs. HPLC analysis of wsCDs showed the presence of withanoside IV, withanoside V, and withanolide A. The wsCDs were found to be biocompatible in human skin epidermal (A431) cells and hindered UVB irradiation-induced loss of metabolic activity and oxidative stress. The wsCDs supported rapid dermal wound healing through augmented TGF-β1 and EGF gene expression levels in A431 cells. Finally, wsCDs were found to be biodegradable through a myeloperoxidase-catalyzed peroxidation reaction. The study concluded that under in vitro conditions, Withania somnifera root extract-derived biocompatible carbon dots provided photo-protection against UVB-stimulated epidermal cell damage and supported rapid wound healing.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute Haridwar India
- Department of Allied and Applied Sciences, University of Patanjali Haridwar India
- Patanjali Yog Peeth (UK) Trust 40 Lambhill Street, Kinning Park UK
| | - Meenu Tomar
- Drug Discovery and Development Division, Patanjali Research Institute Haridwar India
| | - Kunal Bhattacharya
- Drug Discovery and Development Division, Patanjali Research Institute Haridwar India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute Haridwar India
- Department of Allied and Applied Sciences, University of Patanjali Haridwar India
- Special Centre for Systems Medicine, Jawahar Lal Nehru University New Delhi India
| |
Collapse
|
15
|
Chatzigianni M, Pavlou P, Siamidi A, Vlachou M, Varvaresou A, Papageorgiou S. Environmental impacts due to the use of sunscreen products: a mini-review. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1331-1345. [PMID: 36173495 PMCID: PMC9652235 DOI: 10.1007/s10646-022-02592-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Sunscreen use has increased in recent years, as sunscreen products minimize the damaging effects of solar radiation. Active ingredients called ultraviolet (UV) filters or UV agents, either organic or inorganic, responsible for defending skin tissue against harmful UV rays, are incorporated in sunscreen formulations. UV agents have a serious impact on many members of bio communities, and they are transferred to the environment either directly or indirectly. Many organic UV filters are found to be accumulated in marine environments because of high values of the octanol/water partition coefficient. However, due to the fact that UV agents are not stable in water, unwanted by-products may be formed. Experimental studies or field observations have shown that organic UV filters tend to bioaccumulate in various aquatic animals, such as corals, algae, arthropods, mollusks, echinoderms, marine vertebrates. This review was conducted in order to understand the effects of UV agents on both the environment and marine biota. In vivo and in vitro studies of UV filters show a wide range of adverse effects on the environment and exposed organisms. Coral bleaching receives considerable attention, but the scientific data identify potential toxicities of endocrine, neurologic, neoplastic and developmental pathways. However, more controlled environmental studies and long-term human use data are limited. Several jurisdictions have prohibited specific UV filters, but this does not adequately address the dichotomy of the benefits of photoprotection vs lack of eco-friendly, safe, and approved alternatives.
Collapse
Affiliation(s)
- Myrto Chatzigianni
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
| | - Panagoula Pavlou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece.
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece.
| | - Angeliki Siamidi
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Marilena Vlachou
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Athanasia Varvaresou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
| | - Spyridon Papageorgiou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
| |
Collapse
|
16
|
Downs CA, Diaz-Cruz MS, White WT, Rice M, Jim L, Punihaole C, Dant M, Gautam K, Woodley CM, Walsh KO, Perry J, Downs EM, Bishop L, Garg A, King K, Paltin T, McKinley EB, Beers AI, Anbumani S, Bagshaw J. Beach showers as sources of contamination for sunscreen pollution in marine protected areas and areas of intensive beach tourism in Hawaii, USA. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129546. [PMID: 35941056 DOI: 10.1016/j.jhazmat.2022.129546] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
In 2019, sands in nearby runoff streams from public beach showers were sampled on three islands in the State of Hawaii and tested for over 18 different petrochemical UV filters. Beach sands that are directly in the plume discharge of beach showers on three of the islands of Hawaii (Maui, Oahu, Hawai'i) were found to be contaminated with a wide array of petrochemical-based UV-filters that are found in sunscreens. Sands from beach showers across all three islands had a mean concentration of 5619 ng/g of oxybenzone with the highest concentration of 34,518 ng/g of oxybenzone at a beach shower in the Waikiki area of Honolulu. Octocrylene was detected at a majority of the beach shower locations, with a mean concentration of 296.3 ng/g across 13 sampling sites with the highest concentration of 1075 ng/g at the beach shower in Waikiki. Avobenzone, octinoxate, 4-methylbenzylidene camphor and benzophenone-2 were detected, as well as breakdown products of oxybenzone, including benzophenone-1, 2,2'-dihydroxy-4-methoxybenzophenone, and 4-hydroxybenzophenone. Dioxybenzone (DHMB) presented the highest concentration in water (75.4 ng/mL), whereas octocrylene was detected in all water samples. Some of these same target analytes were detected in water samples on coral reefs that are adjacent to the beach showers. Risk assessments for both sand and water samples at a majority of the sampling sites had a Risk Quotient > 1, indicating that these chemicals could pose a serious threat to beach zones and coral reef habitats. There are almost a dozen mitigation options that could be employed to quickly reduce contaminant loads associated with discharges from these beach showers, like those currently being employed (post-study sampling and analysis) in the State of Hawaii, including banning the use of sunscreens using petrochemical-based UV filters or educating tourists before they arrive on the beach.
Collapse
Affiliation(s)
- C A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA 24533, USA.
| | - M Silvia Diaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | | | - Marc Rice
- Hawai'i Preparatory Academy, 65-1692 Kohala Mountain Road, Kamuela, HI 96743, USA
| | - Laura Jim
- Hawai'i Preparatory Academy, 65-1692 Kohala Mountain Road, Kamuela, HI 96743, USA
| | - Cindi Punihaole
- Kahalu`u Bay Education Center, The Kohala Center, P.O. Box 437462, Kamuela, HI 967, USA
| | - Mendy Dant
- Fair Wind Cruises, Kailua Kona, HI 96740, USA
| | - Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Cheryl M Woodley
- US National Oceanic & Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Coral Disease & Health Program, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC 29412, USA
| | - Kahelelani O Walsh
- Hawai'i Preparatory Academy, 65-1692 Kohala Mountain Road, Kamuela, HI 96743, USA
| | - Jenna Perry
- Hawai'i Preparatory Academy, 65-1692 Kohala Mountain Road, Kamuela, HI 96743, USA
| | - Evelyn M Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA 24533, USA
| | - Lisa Bishop
- Friends of Hanauma Bay, P.O. Box 25761, Honolulu, HI 96825-07610, USA
| | - Achal Garg
- Chemists Without Borders, Sacramento, CA 95835, USA
| | - Kelly King
- Maui County Council, 200 S. High St., Wailuku, HI 96793, USA
| | - Tamara Paltin
- Maui County Council, 200 S. High St., Wailuku, HI 96793, USA
| | | | - Axel I Beers
- Maui County Council, 200 S. High St., Wailuku, HI 96793, USA
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jeff Bagshaw
- Hawaii Division of Forestry and Wildlife, 685 Haleakala Hwy, Kahului, HI 96732, USA
| |
Collapse
|