1
|
Yan S, Ma H, Ren Y, Wang P, Liu D, Ding N, Liu Y, Chen Q, Ren S, Mou Y. Perfluorooctane sulfonate causes HK-2 cell injury through ferroptosis and endoplasmic reticulum stress pathways. Toxicol Ind Health 2025; 41:73-82. [PMID: 39560653 DOI: 10.1177/07482337241300722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is a synthetic persistent organic compound that is widely used in industrial products. Studies have shown that PFOS can accumulate in environment and pose a threat to human health. As the kidney is the main excretory organ for PFOS, it is important to study PFOS damage to the kidney to investigate its toxicity. Human proximal tubular epithelial cells (HK-2) were treated with 200 μM PFOS or 1 μM Fer-1. Cell viability, the levels of MDA, GSH, intracellular iron ion, and GPX-4 were determined. The expression of KIM-1 and endoplasmic reticulum stress (ERS) related proteins were determined. The expression levels of KIM-1, a marker of renal tubular injury, and ERS-related proteins, GRP78, ATF6, IRE1, and PERK, were significantly increased in HK-2 cells exposed to PFOS. The levels of MDA and intracellular total iron ion also were significantly increased in HK-2 cells exposed to PFOS and the levels of GSH and GPX-4 were significantly decreased. PFOS can damage HK-2 cells through ferroptosis and endoplasmic reticulum stress, which provides a theoretical foundation for exploring the toxicity of PFOS to the kidney.
Collapse
Affiliation(s)
- Shuqi Yan
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Haoyan Ma
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yuwan Ren
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Pingwei Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Dongge Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Na Ding
- High-Tech Area Good Doctor Friendship Comprehensive Outpatient Department, Changchun, China
| | - Yanping Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Qianqian Chen
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Shuping Ren
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yan Mou
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Li L, Ren J, Guo M, An Z, Duan W, Lv J, Tan Z, Yang J, Zhu Y, Yang H, Liu Y, Ma Y, Guo H. SAP130 mediates crosstalk between hepatocyte ferroptosis and M1 macrophage polarization in PFOS-induced hepatotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175612. [PMID: 39163934 DOI: 10.1016/j.scitotenv.2024.175612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant widely utilized in industrial manufacturing and daily life, leading to significant environmental accumulation and various public health issues. This study aims to characterize spliceosome-associated protein 130 (SAP130) as a key mediator of crosstalk between hepatocytes and macrophages, elucidating its role in PFOS-induced liver inflammation. The data demonstrate that PFOS exposure induces ferroptosis in mouse liver and AML12 cells. During ferroptosis, SAP130 is released from injured hepatocytes into the microenvironment, binding to macrophage-inducible C-type lectin (Mincle) and activating the Mincle/Syk signaling pathway in macrophages, ultimately promoting M1 polarization and exacerbating liver injury. Treatment with the ferroptosis inhibitor Ferrostatin-1 reduces SAP130 release, inhibits Mincle/Syk signaling activation, and mitigates inflammatory response. Furthermore, siSAP130 suppresses the activation of the Mincle signaling pathway and M1 polarization in BMDM cells. Conversely, treatment with the ferroptosis agonist Erastin enhances paracrine secretion of SAP130 and exacerbates inflammation. These findings emphasize the significance of hepatocyte-macrophage crosstalk as a critical pathway for PFOS-induced liver injury in mice while highlighting SAP130 as a pivotal regulator of ferroptosis and inflammation, thereby elucidating the potential mechanism of PFOS-induced liver injury.
Collapse
Affiliation(s)
- Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Wenjing Duan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Junli Lv
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Zhenzhen Tan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jing Yang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yiming Zhu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Huiling Yang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, PR China.
| |
Collapse
|
3
|
Li T, Björvang RD, Hao J, Di Nisio V, Damdimopoulos A, Lindskog C, Papaikonomou K, Damdimopoulou P. Persistent organic pollutants dysregulate energy homeostasis in human ovaries in vitro. ENVIRONMENT INTERNATIONAL 2024; 187:108710. [PMID: 38701644 DOI: 10.1016/j.envint.2024.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Exposure to persistent organic pollutants (POPs), such as dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs), has historically been linked to population collapses in wildlife. Despite international regulations, these legacy chemicals are still currently detected in women of reproductive age, and their levels correlate with reduced ovarian reserve, longer time-to-pregnancy, and higher risk of infertility. However, the specific modes of action underlying these associations remain unclear. Here, we examined the effects of five commonly occurring POPs - hexachlorobenzene (HCB), p,p'-dichlorodiphenyldichloroethylene (DDE), 2,3,3',4,4',5-hexachlorobiphenyl (PCB156), 2,2',3,4,4',5,5'-heptachlorobiphenyl (PCB180), perfluorooctane sulfonate (PFOS) - and their mixture on human ovaries in vitro. We exposed human ovarian cancer cell lines COV434, KGN, and PA1 as well as primary ovarian cells for 24 h, and ovarian tissue containing unilaminar follicles for 6 days. RNA-sequencing of samples exposed to concentrations covering epidemiologically relevant levels revealed significant gene expression changes related to central energy metabolism in the exposed cells, indicating glycolysis, oxidative phosphorylation, fatty acid metabolism, and reactive oxygen species as potential shared targets of POP exposures in ovarian cells. Alpha-enolase (ENO1), lactate dehydrogenase A (LDHA), cytochrome C oxidase subunit 4I1 (COX4I1), ATP synthase F1 subunit alpha (ATP5A), and glutathione peroxidase 4 (GPX4) were validated as targets through qPCR in additional cell culture experiments in KGN. In ovarian tissue cultures, we observed significant effects of exposure on follicle growth and atresia as well as protein expression. All POP exposures, except PCB180, decreased unilaminar follicle proportion and increased follicle atresia. Immunostaining confirmed altered expression of LDHA, ATP5A, and GPX4 in the exposed tissues. Moreover, POP exposures modified ATP production in KGN and tissue culture. In conclusion, our results demonstrate the disruption of cellular energy metabolism as a novel mode of action underlying POP-mediated interference of follicle growth in human ovaries.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | - Richelle D Björvang
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| | - Jie Hao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, PR China.
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | | | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine Research Program, Uppsala University, Uppsala, Sweden.
| | - Kiriaki Papaikonomou
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | - Pauliina Damdimopoulou
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Mokra K, Kaczmarska I, Bukowska B. Perfluorooctane sulfonate (PFOS) and its selected analogs induce various cell death types in peripheral blood mononuclear cells. CHEMOSPHERE 2024; 354:141664. [PMID: 38485001 DOI: 10.1016/j.chemosphere.2024.141664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
The perfluoalkyl substance (PFASs) perfluorooctane sulfonate (PFOS) has been widely used in industry. However, PFOS is a persistent organic pollutant and has been gradually replaced by its short-chain analogs, perfluorohexane sulfonate (PFHxS) and perfluorobutane sulfonate (PFBS). PFASs are extremely persistent and are very frequently detected among the general population. The aim of the study was to determine the effect of selected PFASs on peripheral blood mononuclear cells (PBMCs) and the mechanisms of their action. PBMCs were exposed to PFOS, PFBS and PFHxS at concentrations ranging from 0.02 to 400 μM for 24 h, they were then tested for viability, apoptosis (changes in cytosolic calcium ions level and caspase-3, -8 and -9 activation), ferroptosis (changes in chelatable iron ions level and lipid peroxidation), and autophagy (LC3-II and Raptor level assay). PFOS exposure decreased cell viability, increased calcium ion level and caspase-8 activation; it also enhanced lipid peroxidation and increased the intracellular pool of chelatable iron ions as well as LC3-II protein content. In contrast, short-chain PFBS and PFHxS induced significant changes in the markers of apoptosis but had no substantial impact on ferroptosis or autophagy markers over a wide range of concentrations. Our results indicate that only PFOS demonstrated pro-ferroptotic and pro-autophagic potential but observed changes occurred at relatively high exposure. A short-chain substitute (PFBS) exhibited strong pro-apoptotic potential at concentrations related to occupational exposure. While the short-chain PFASs strongly affected the mitochondrial pathway of apoptosis, apoptosis itself was only induced by PFBS via the intrinsic and extrinsic pathways. It seems that the length of the carbon chain in PFASs appears to determine the cell death mechanisms activated in human PBMCs following exposure. Our findings provide a new insight into the immune toxicity mechanism induced by these compounds.
Collapse
Affiliation(s)
- Katarzyna Mokra
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, 141/143 Pomorska St., 90-236, Lodz, Poland.
| | - Izabela Kaczmarska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Bożena Bukowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, 141/143 Pomorska St., 90-236, Lodz, Poland
| |
Collapse
|
5
|
Shi B, Zhang Z, Xing J, Liu Q, Cai J, Zhang Z. Perfluorooctane sulfonate causes pyroptosis and lipid metabolism disorders through ROS-mediated NLRP3 inflammasome activation in grass carp hepatocyte. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106839. [PMID: 38228041 DOI: 10.1016/j.aquatox.2024.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
The surfactant perfluorooctane sulfonate (PFOS) is widely produced worldwide. It is a persistent organic pollutant in the aquatic environment and poses a serious threat to aquatic organisms, as PFOS exposure can cause liver injury in a wide range of organisms. However, it is unclear whether PFOS exposure-induced hepatocellular injury in fish is associated with ROS-mediated activation of NLRP3 inflammasome. In this study, various PFOS concentrations were applied to L8824 cells, a cell line of grass carp hepatocytes. The detrimental impacts of PFOS on oxidative stress, pyroptosis, lipid metabolism, and the discharge of inflammatory factors were examined. MCC950 and N-acetylcysteine were employed to hinder the PFOS-stimulated activation of the NLRP3 inflammasome and the excessive generation of reactive oxygen species in L8824 cells, respectively. This study demonstrated that treatment with PFOS resulted in oxidative stress and activation of NLRP3 inflammasome in L8824 cells. This led to increased expression levels of indicators related to pyroptosis, accompanied by the upregulation of pro-inflammatory cytokine expression as well as downregulation of anti-inflammatory factors. In addition, following PFOS exposure, the expression levels of genes related to lipid synthesis were upregulated and lipid catabolism-related genes were downregulated. Surprisingly, both N-acetylcysteine and MCC950 interventions significantly reduced PFOS-induced L8824 cell pyroptosis and lipid metabolism disorders. In conclusion, this research demonstrated that PFOS drives NLRP3 inflammasome activation through oxidative stress induced by reactive oxygen species overload. This in turn leads to pyroptosis and lipid metabolism disorders.
Collapse
Affiliation(s)
- Bendong Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhuoqi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiao Xing
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|