1
|
Md Moniruzzaman, Khan MM, Sultana Z, Md Shahjahan, Islam MS. Assessment of sub-lethal effects of Celcron on Java barb through erythrocyte morphology and acetylcholinesterase activity: Implications for environmental health in aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176231. [PMID: 39270872 DOI: 10.1016/j.scitotenv.2024.176231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Industrialization and the extensive use of chemicals have raised significant concerns about their environmental impacts, particularly on aquatic ecosystems. This study evaluated the sub-lethal effects of Celcron (Cec), an organophosphate insecticide, on the Java barb (Barbonymus gonionotus) through erythrocyte morphology and acetylcholinesterase (AChE) activity, aiming to refine biomarkers for environmental health assessments. We hypothesized that sub-lethal Cec exposure would induce significant erythrocyte abnormalities and decrease AChE activity in Java barb, with variable recovery rates between gill and kidney tissues. To test this, we exposed the juvenile Java barbs to two sub-lethal Cec concentrations - 0.01 ppm (10 % of the LC50) and 0.05 ppm (50 % of the LC50) -for 60 days. After the exposure period, the fish were placed in pesticide-free water to allow for recovery. Results indicated a significant decline in AChE activity in both liver and kidney tissues, with activity levels showing gradual recovery over time. Erythrocyte abnormalities, including nuclear and cellular changes, were significantly elevated in response to Cec exposure. The frequency of nuclear abnormalities such as micronuclei and binucleation increased in a concentration- and duration-dependent manner, with the gill blood exhibiting higher sensitivity and slower recovery compared to kidney blood. Cellular abnormalities such as twin, teardrop and spindle-shaped cells were also more prevalent in Cec-treated fish. Recovery from these abnormalities was observed but varied between gill and kidney blood, with gill blood showing higher sensitivity and slower recovery compared to kidney blood. This study underscores the utility of AChE activity and erythrocyte abnormalities as biomarkers for assessing pesticide impacts on aquatic organisms. The findings highlight the sensitivity of fish erythrocytes to environmental contaminants and emphasize the need for continued research to better understand the long-term effects of pesticide exposure on aquatic health and ecosystem stability.
Collapse
Affiliation(s)
- Md Moniruzzaman
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mst Mansura Khan
- Dept. of Cellular and Molecular Biology, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University, Bangladesh
| | - Zakia Sultana
- Department of Fisheries Biology and Genetics, Khulna Agricultural University, Khulna, Bangladesh
| | - Md Shahjahan
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - M Sadiqul Islam
- Department of Marine Fisheries Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|
2
|
Zhou X, Gao S, Yue M, Zhu S, Liu Q, Zhao XE. Recent advances in analytical methods of oxidative stress biomarkers induced by environmental pollutant exposure. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
3
|
Rebuli ME. Phosphatidylethanolamines as biomarkers of e-cigarette or vaping product use-associated lung injury. Pediatr Pulmonol 2022; 57:1792-1794. [PMID: 35488453 PMCID: PMC11305483 DOI: 10.1002/ppul.25951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 04/28/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Meghan E Rebuli
- Department of Pediatrics, Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Shao Y, Cornwell W, Xu K, Kirchhoff A, Saasoud F, Lu Y, Jiang X, Criner GJ, Wang H, Rogers TJ, Yang X. Chronic Exposure to the Combination of Cigarette Smoke and Morphine Decreases CD4 + Regulatory T Cell Numbers by Reprogramming the Treg Cell Transcriptome. Front Immunol 2022; 13:887681. [PMID: 35514978 PMCID: PMC9065607 DOI: 10.3389/fimmu.2022.887681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
There is a high incidence of tobacco use among intravenous opioid drug users. It is well established that opioids and tobacco smoke induce a degree of immune activation, and recent work suggests that the combination of these drugs promotes further activation of the immune system. Our approach involved the treatment of wild-type mice with cigarette smoke (SM) for a period of eight weeks, and the chronic continuous administration of morphine (M) via mini-pumps for the final four weeks. In an effort to examine the responses of CD4+CD25highCD127low regulatory T (Treg) cells, the major immune suppressive cell type, to the combined chronic administration of SM and M, we determined the frequency of these cells in the spleen, lymph nodes and lungs. Flow cytometric analyses showed that SM and M individually, and the combination (SM + M) have differential effects on the numbers of Treg in the spleen, lymph node, and lung. Either SM or M alone increased Treg cell numbers in the spleen, but SM+M did not. Furthermore, SM + M decreased Treg cell numbers in the lymph node and lung. We then performed RNA-Seq on Treg cells from mice treated with SM, M, or SM + M, and we found that the S + M induced a number of significant changes in the transcriptome, that were not as apparent following treatment with either SM or M alone. This included an activation of TWEAK, PI3K/AKT and OXPHOS pathways and a shift to Th17 immunity. Our results have provided novel insights on tissue Treg cell changes, which we suggest are the result of transcriptomic reprogramming induced by SM, M, and SM + M, respectively. We believe these results may lead to the identification of novel therapeutic targets for suppressing smoke and opioid induced Treg cell impairment.
Collapse
Affiliation(s)
- Ying Shao
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - William Cornwell
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Aaron Kirchhoff
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saasoud
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Gerard J. Criner
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Thomas J. Rogers
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
5
|
ZHU S, ZHAO XE, LIU H. [Recent advances in chemical derivatization-based chromatography-mass spectrometry methods for analysis of aldehyde biomarkers]. Se Pu 2021; 39:845-854. [PMID: 34212585 PMCID: PMC9404091 DOI: 10.3724/sp.j.1123.2021.02023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 11/25/2022] Open
Abstract
Human exposure to chemical pollutants in the environment can cause a variety of diseases, including cancer, diabetes, cardiovascular disease, and neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, etc.). Exogenous and environmental pollutant exposure-induced endogenous aldehydes are highly reactive electrophilic compounds that can form covalently modified products with a variety of important biological molecules in the human body, thus inducing toxic effects. Exposome research has become a hotspot since it was first proposed in 2005. Exposure studies can map the complex relationships between biomarkers and disease risk. Therefore, the measurable and characteristic changes of all biomarkers together constitute a key basis for exposome research. Aldehydes are among the main components of chemical exposure. Because of the physical and chemical properties of aldehydes and the existence of multiple matrix interferences in the samples, it is particularly difficult to analyze and characterize them. The analysis and detection methods for aldehydes mainly include sensing analysis, electrochemical methods, fluorescence imaging, chromatography, mass spectrometry (MS), and chromatography-MS. Analytical techniques based on gas chromatography-MS (GC-MS) and liquid chromatography-MS (LC-MS) have emerged as the main methods for chemical exposome research. Chemical derivatization, especially stable isotope labeling derivatization (also known as chemical isotope labeling) combined with LC-MS analytical techniques, can help circumvent the problems encountered in targeted and non-targeted metabolome and exposome analysis. The combination of chemical derivatization with chromatography-MS is one of the most important solutions for the accurate analysis of aldehydes in complex samples. Over the past five years, the development and application of chromatography-MS analytical methods based on chemical derivatization have become key topics in aldehyde analysis. This paper summarizes and reviews the latest progress in GC-MS and LC-MS methods based on chemical derivatization (2015-2020). The review focuses on analytical method development for aldehyde exposure biomarkers in bio-matrices (blood, urine, saliva, biological tissue, etc.). Various derivatization reagents for labeling small-molecule aldehydes, qualitative/quantitative analytical methods and their application value, advantages/disadvantages of different analytical methods for aldehyde exposure biomarkers, and future development trends are also included. The manuscript contents may aid the integrated development of exposome, metabolomics, and lipidomics, as well as research on the environment, ecology, and health. To clarify the complex actions of exogenous and endogenous aldehydes in physiological and pathological events, it is necessary to improve the analysis and characterization techniques and tools for studying the "aldehydome." With the development and application of sophisticated mass spectrometers, advances in high-performance chromatographic separation and bioinformatics, and advent of single-cell analysis and MS imaging, future aldehyde exposome analytical methods will have higher sensitivity and throughput. This in turn would be more useful for screening and identifying unknown aldehyde compounds and discovering new exposome biomarkers.
Collapse
|
6
|
de Araújo ML, Gomes BC, Devóz PP, Duarte NDAA, Ribeiro DL, de Araújo AL, Batista BL, Antunes LMG, Barbosa F, Rodrigues AS, Rueff J, Barcelos GRM. Association Between miR-148a and DNA Methylation Profile in Individuals Exposed to Lead (Pb). Front Genet 2021; 12:620744. [PMID: 33679885 PMCID: PMC7928366 DOI: 10.3389/fgene.2021.620744] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Experimental and epidemiologic studies have shown that lead (Pb) is able to induce epigenetic modifications, such as changes in DNA methylation profiles, in chromatin remodeling, as well as the expression of non-coding RNAs (ncRNAs). However, very little is known about the interactions between microRNAs (miRNAs) expression and DNA methylation status in individuals exposed to the metal. The aim of the present study was to investigate the impact of hsa-miR-148a expression on DNA methylation status, in 85 workers exposed to Pb. Blood and plasma lead levels (BLL and PLL, respectively) were determined by ICP-MS; expression of the miRNA-148a was quantified by RT-qPCR (TaqMan assay) and assessment of the global DNA methylation profile (by measurement of 5-methylcytosine; % 5-mC) was performed by ELISA. An inverse association was seen between miR-148a and % 5-mC DNA, as a function of BLL and PLL (β = −3.7; p = 0.071 and β = −4.1; p = 0.049, respectively) adjusted for age, BMI, smoking, and alcohol consumption. Taken together, our study provides further evidence concerning the interactions between DNA methylation profile and miR-148a, in individuals exposed to Pb.
Collapse
Affiliation(s)
- Marília Ladeira de Araújo
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Bruno Costa Gomes
- Center for Toxicogenomics and Human Health, NOVA Medical School (NMS), Universidade Nova de Lisboa, Lisbon, Portugal
| | - Paula Pícoli Devóz
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Bruno Lemos Batista
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - António Sebastião Rodrigues
- Center for Toxicogenomics and Human Health, NOVA Medical School (NMS), Universidade Nova de Lisboa, Lisbon, Portugal
| | - José Rueff
- Center for Toxicogenomics and Human Health, NOVA Medical School (NMS), Universidade Nova de Lisboa, Lisbon, Portugal
| | | |
Collapse
|