1
|
Guimarães-Ervilha LO, Assis MQ, Bento IPDS, Lopes IDS, Iasbik-Lima T, Carvalho RPR, Machado-Neves M. Exploring the endocrine-disrupting potential of atrazine for male reproduction: A systematic review and meta-analysis. Reprod Biol 2024; 25:100989. [PMID: 39708576 DOI: 10.1016/j.repbio.2024.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Atrazine is an herbicide widely used on plantations worldwide. Experimental studies suggest that the herbicide impairs male reproductive function in mammals. This systematic review and meta-analysis aimed to evaluate the impact of atrazine exposure on the levels of hormones from the hypothalamic-pituitary-testicular axis using murine as the animal model. After an extensive literature search, we selected 25 articles for the systematic review. Bias analysis and methodological quality assessments were examined using the SYRCLE Risk of Bias tool. Moreover, 20 out of the 25 studies were eligible for performing a meta-analysis to evaluate the intensity of atrazine damage on the levels of intratesticular testosterone and serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, estradiol, and progesterone. The meta-analysis revealed that atrazine exposure decreased serum FSH, LH, and testosterone levels, besides increased serum estradiol and progesterone levels. Atrazine also caused a reduction in intratesticular testosterone levels. Exposure to atrazine in high concentrations (≥ 100 mg Kg-1) was the main cause of endocrine disruption, regardless of the exposure time. None of the studies have tested doses relevant to human health risk. Oxidative stress and inflammation are involved in atrazine toxicity, impairing the gonadotropin release by the pituitary, disturbing steroidogenesis, and affecting the male hormone regulatory system. We may conclude that hormone disturbances lead to a failure in testicular steroidogenesis, with possible implications for male reproductive function. The registration number on the Prospero platform is CRD42024495626.
Collapse
Affiliation(s)
| | | | | | | | - Thainá Iasbik-Lima
- Universidade Federal de Viçosa, Departamento de Biologia Geral, Vicosa, Brasil
| | | | | |
Collapse
|
2
|
Chen J, Dai XY, Malhi KK, Xu XW, Tang YX, Li XW, Li JL. A New Insight into the Mechanism of Atrazine-Induced Neurotoxicity: Triggering Neural Stem Cell Senescence by Activating the Integrated Stress Response Pathway. RESEARCH (WASHINGTON, D.C.) 2024; 7:0547. [PMID: 39679284 PMCID: PMC11638487 DOI: 10.34133/research.0547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Atrazine (AT), a widely utilized chemical herbicide, causes widespread contamination of agricultural water bodies. Recently, exposure to AT has been linked to the development of age-related neurodegenerative diseases (NDs), suggesting its neurotoxicity potential. As an endocrine disruptor, AT targets the hypothalamus, a crucial part of the neuroendocrine system. However, the toxicological mechanism of AT exposure to the hypothalamus and its correlation with ND development remain unexplored. Our results indicated that AT exposure caused significant morphological and structural damage to the hypothalamus, leading to the loss of mature and intact neurons and microglial activation. Furthermore, hypothalamic neural stem cells (HtNSCs) were recruited to areas of neuronal damage caused by AT. Through in vivo and in vitro experiments, we clarified the outcomes of AT-induced HtNSC recruitment alongside the loss of mature/intact neurons. Mechanistically, AT induces senescence in these recruited HtNSCs by activating integrated stress response signaling. This consequently hinders the repair of damaged neurons by inhibiting HtNSC proliferation and differentiation. Overall, our findings underscore the pivotal role of the integrated stress response pathway in AT-induced HtNSC senescence and hypothalamic damage. Additionally, the present study offers novel perspectives to understand the mechanisms of AT-induced neurotoxicity and provides preliminary evidence linking AT contamination to the development of NDs.
Collapse
Affiliation(s)
- Jian Chen
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xue-Yan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology,
Jiangxi Agricultural University, Nanchang 330045, P.R. China
| | - Kanwar K. Malhi
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiang-Wen Xu
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yi-Xi Tang
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiao-Wei Li
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment,
Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
3
|
Stradtman SC, Swihart JN, Moore K, Akoro IN, Ahkin Chin Tai JK, Tamagno WA, Freeman JL. Integrated Analysis of Neuroendocrine and Neurotransmission Pathways Following Developmental Atrazine Exposure in Zebrafish. Int J Mol Sci 2024; 25:13066. [PMID: 39684776 DOI: 10.3390/ijms252313066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Atrazine is an endocrine-disrupting herbicide, with exposure impacting adverse outcomes along multiple endocrine pathways. This study investigated the neuroendocrine system as the central target of atrazine toxicity, examining effects of early developmental exposures on neurohormones and genes associated with kisspeptin, hypothalamic, pituitary, and dopamine systems. Zebrafish were exposed to 0, 0.3, 3, or 30 ppb (µg/L) atrazine during two developmental time windows. For neurohormone assessments, exposure was ceased at the end of embryogenesis (72 h post-fertilization, hpf) and analyzed immediately or grown to 0.5, 2, or 2.5 years post-fertilization (ypf). Gene expression was measured immediately after 1-72 hpf or 72-120 hpf exposure. Estradiol decreased in the 0.3 and 30 ppb groups in 0.5 ypf female brains, while dopamine decreased in the same treatment groups at 72 hpf. Increases were also observed in 2.5 ypf female brains (3 ppb) for estradiol and in 2 ypf female and male brains (3 and 30 ppb) for dopamine. Gene expression alterations occurred for the follicle-stimulating hormone (fsh) at 72 hpf and the growth hormone (gh1) at 72 and 120 hpf. Overall, results indicated that developmental atrazine exposure has immediate and long-term sex-specific effects on neurohormonal systems.
Collapse
Affiliation(s)
- Sydney C Stradtman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jenna N Swihart
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Kaylin Moore
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Isabelle N Akoro
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Khoshnood Z. A review on toxic effects of pesticides in Zebrafish, Danio rerio and common carp, Cyprinus carpio, emphasising Atrazine herbicide. Toxicol Rep 2024; 13:101694. [PMID: 39131695 PMCID: PMC11314875 DOI: 10.1016/j.toxrep.2024.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
The widespread use of pesticides has emerged as a pressing environmental concern nowadays. These chemical compounds pose a significant threat to aquatic organisms due to their toxic effects. Zebrafish and common carp are two common species used in pesticide toxicity studies. Atrazine, a widely used herbicide, is one of the most prevalent globally, detectable in nearly all surface waters. This article examines existing literature to provide a comprehensive review of the toxic effects of Atrazine on Zebrafish and common carp. The findings reveal that exposure to atrazine triggers a range of biochemical, physiological, behavioral, and genetic alterations in these fish species, even at concentrations deemed environmentally relevant. These changes could have severe consequences, including increased mortality rates, reproductive failures, and potentially leading to fish populations decline. It is, therefore, imperative to prioritize stringent regulatory measures to curb the usage of this herbicide and safeguard fish species as unintended victims of aquatic ecosystems.
Collapse
Affiliation(s)
- Zahra Khoshnood
- Department of Biology, Dezful Branch, Islamic Azad University, Dezful, Iran
| |
Collapse
|
5
|
Yang TN, Huang NN, Wang YX, Jian PA, Ma XY, Li XN, Li JL. Melatonin protects spermatogenic cells against DNA damage and necroptosis induced by atrazine. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106209. [PMID: 39672631 DOI: 10.1016/j.pestbp.2024.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/26/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Atrazine (ATZ), a widely used triazine herbicide, has been shown to disrupt reproductive development in organisms. Melatonin (MLT) is a natural hormone and has been shown to have strong antioxidant properties. Due to its lipophilicity, it can cross biological barriers freely and act on germ cells directly. However, the mechanism through which melatonin affects atrazine-induced damage to male sperm cells remains unclear. This study aimed to investigate the effects of ATZ on spermatocyte development and to elucidate MLT's role in preventing ATZ-induced spermatogenesis failure. Pubertal mice were randomly divided into four groups: blank control group (Con), 5 mg/kg melatonin group (MLT), 170 mg/kg atrazine group (ATZ), and ATZ + MLT group. GC-1 cell culture was employed to access the in vitro effects of MLT and ATZ on spermatogonia. The results indicate that atrazine affected protein and metabolite composition, and reduced sperm viability, sperm motility (VAP, VSL and VCL) and levels of proteins related to spermatogenesis function in the mice testis. Melatonin alleviated the development of cellular DNA damage and necroptosis caused by atrazine both in vivo and in vitro. Moreover, we proposed that it was GC-1 cells developing necroptosis, but not other cell types in the testis. In conclusion, this study suggests that atrazine disrupts the development process, causing DNA damage in spermatozoa during spermatogenesis. Additionally, ATZ-induced necroptosis specifically targets spermatogenic cells. Notably, melatonin alleviates atrazine-induced necroptosis and DNA damage in spermatogenic cells. This study provides new insights into potential therapeutic strategies for atrazine-induced male infertility.
Collapse
Affiliation(s)
- Tian-Ning Yang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ning-Ning Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Xiang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ping-An Jian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
6
|
Rajagopalan AK, Varghese S, Padmanabhan A, Thayyullathil T. Low-tech innovation: biomimetic solid-contact potentiometric sensor for nanomolar-level atrazine detection. ANAL SCI 2024; 40:2199-2212. [PMID: 39283472 DOI: 10.1007/s44211-024-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/19/2024] [Indexed: 11/26/2024]
Abstract
Despite the fact that there are already a number of solid-contact-based ion-selective electrodes designed for atrazine detection, our ground-breaking contribution lies in introducing the first-ever atrazine potentioselectrode, enabling the ultra-sensitive detection of atrazine at nanomolar levels. Solid-contact ion-selective electrodes can offer advantages, such as improved stability, reproducibility, sensitivity, and selectivity compared to their liquid-contact counterparts. Here, a biomimetic potentiometric sensor for Atrazine was developed using economic, light weight, and flexible carbon cloth as solid-contact material. Our methodology entails the synthesis of a molecularly imprinted polymer (MIP) through straightforward precipitation polymerization, showcasing a streamlined and efficient method for creating highly specific molecular recognition elements. The validation of template removal is confirmed via meticulous analysis employing EDX and FTIR techniques, ensuring the efficacy of our methodology. The resulting sensing membrane are casted by dispersing the MIP in 2-nitrophenyl octyl ether plasticizer and embedding it within a PVC matrix containing sodium tetraphenyl borate as a lipophilic additive. The developed sensor responds to atrazine in the pH range of 2.8-3.3 over a wide concentration range of 1 × 10-8 M to 1 × 10-5 M & 1 × 10-5 M to 1 × 10-1 M with respective slopes of 29.2 mv & 58.7 mV and a limit of detection of 1 × 10-9 M. An impressive feature of this sensor lies in its swift response time, registering a rapid reaction within a mere 10 s. Emphasize the sensor's commendable attributes of reproducibility, selectivity, and sensitivity underscoring its successful application in field monitoring.
Collapse
Affiliation(s)
- Anjana Kolarveetil Rajagopalan
- Department of Chemistry, St. Joseph's College (Autonomous), Devagiri, Affiliated to University of Calicut, Calicut, 673008, Kerala, India
| | - Saumya Varghese
- Department of Chemistry, St. Joseph's College (Autonomous), Devagiri, Affiliated to University of Calicut, Calicut, 673008, Kerala, India.
| | - Aneesh Padmanabhan
- Department of Chemistry, St. Joseph's College (Autonomous), Devagiri, Affiliated to University of Calicut, Calicut, 673008, Kerala, India
| | - Theertha Thayyullathil
- Department of Chemistry, St. Joseph's College (Autonomous), Devagiri, Affiliated to University of Calicut, Calicut, 673008, Kerala, India
| |
Collapse
|
7
|
Chen J, Dai XY, Li XW, Tang YX, Xu XW, Li JL. Lycopene mitigates atrazine-induced hypothalamic neural stem cell senescence by modulating the integrated stress response pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156114. [PMID: 39418974 DOI: 10.1016/j.phymed.2024.156114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/31/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Atrazine, a widely used herbicide, has become a major pollutant in agricultural water bodies. Pesticide contamination, including atrazine, is linked to a high incidence of age-related neurodegenerative diseases, suggesting its neurotoxic potential. Lycopene, a potent antioxidant, is renowned for its diverse pharmacological effects, especially its neuroprotective properties. However, the underlying pharmacological mechanisms of lycopene and its impact on potential pathways against atrazine-induced hypothalamic damage have not been elucidated. PURPOSE Our study aimed to elucidate how lycopene ameliorates hypothalamic injury triggered by atrazine exposure, with a special focus on the pluripotency of neural stem cells (NSCs) and pathways involved in cell senescence. METHODS Mice were administered lycopene and/or atrazine via gavage for 21 days. The C17.2 NSC cell line and specific molecular inhibitors were utilized to examine the potential protective effects of lycopene in vitro. Morphological changes and ultrastructural damage in the hypothalamus were observed by hematoxylin-eosin staining and transmission electron microscopy, respectively. The mechanisms of action of lycopene were explored through various methods, including senescence β-galactosidase staining, multiplex immunofluorescence, Western blotting and qRT‒PCR. RESULTS Our results indicated that lycopene notably ameliorated atrazine-induced histological and ultrastructural damage, as well as the loss of intact and mature neurons in mouse hypothalami. Additionally, hypothalamic NSCs (HtNSCs) and microglia were recruited to areas of neuronal injury after atrazine exposure; intriguingly, lycopene treatment reduced this recruitment. Through in vivo and in vitro assays, we elucidated the outcomes of atrazine-induced HtNSC recruitment and neuronal loss, along with the neuroprotective mechanisms of lycopene. Mechanistically, lycopene prevents atrazine-induced senescence in HtNSCs and enhances their proliferation and differentiation by inhibiting the integrated stress response (ISR) signaling pathway, thus promoting the renewal of damaged neurons in the hypothalamus. CONCLUSIONS Collectively, the results of the present study reveal, for the first time, that lycopene mitigates atrazine-induced HtNSC senescence by modulating the ISR signaling pathway. These findings offer novel insights into the role of lycopene in preventing and alleviating NSC senescence and suggest its potential development as a new therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Yan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, PR China
| | - Xiao-Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi-Xi Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiang-Wen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
8
|
Li P, Song W, Xu N, Wang Z, Pang H, Wang D. Soybean isoflavones protect dopaminergic neurons from atrazine damage by inhibiting VPS13A to increase autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117225. [PMID: 39427538 DOI: 10.1016/j.ecoenv.2024.117225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Atrazine (ATR) is a broad-spectrum herbicide with dopaminergic (DAergic) neurotoxicity that can cause Parkinson's disease (PD)-like syndrome. However, research on preventing ATR neurotoxicity is unclear. Soybean isoflavones (SI) are natural plant compounds with neuroprotective effects. In this study, we found that pre-administration of SI prevented ATR-induced motor dysfunction and substantia nigra pathological damage. RNA-seq datasets revealed that the neuroprotective effect of SI was related to autophagy. Further experiments showed that ATR inhibited autophagy, and SI pre-administration before ATR exposure increased autophagy. In addition, single-cell data analysis combined with experimental verification showed that the gene VPS13A was a key target by which SI protected DAergic neurons from ATR damage, and inhibiting VPS13A-induced autophagy was a key mechanism enabling SI prevention of neuron damage. Together, these findings provide new insights for the development of preventive measures and intervention targets protecting against functional neuronal damage caused by ATR and other herbicides.
Collapse
Affiliation(s)
- Peng Li
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center for Medical Statistic and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Weiyi Song
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center for Medical Statistic and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Nuo Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zijie Wang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center for Medical Statistic and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Haoying Pang
- First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dandan Wang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center for Medical Statistic and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
9
|
Yang TN, Wang YX, Jian PA, Ma XY, Ren YF, Huang NN, Li XN, Li JL. Rab8a Is a Key Target That Melatonin Prevents Lipid Disorder from Atrazine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23511-23519. [PMID: 39382334 DOI: 10.1021/acs.jafc.4c07006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Atrazine (ATZ), a widely used herbicide, disrupts mitochondrial function and lipid metabolism in the liver. Melatonin (MLT), a naturally synthesized hormone, combats mitochondrial dysfunction and alleviates lipid toxicity. However, the mechanisms behind ATZ-induced lipid metabolism toxicity and the protective effects of MLT remain unexplored. Mice were randomly assigned to four groups: control (Con), 5 mg/kg MLT, 170 mg/kg ATZ, and a cotreatment group receiving 170 mg/kg ATZ with 5 mg/kg MLT (ATZ+MLT). Additionally, we analyzed the effects of MLT and Rab8a on mRNA and proteins related to mitochondrial function and lipid metabolism disrupted by ATZ in AML12 cells. In conclusion, ATZ induced mitochondrial stress and disrupted fatty acid metabolism in mouse hepatocytes and AML12 cells. Exogenous MLT restores Rab8a levels, regulating fatty acid utilization in mitochondria and mitochondrial function. Notably, targeting Rab8a does not significantly affect mitochondrial function but prevents ATZ-induced lipid metabolism disorders in hepatocytes.
Collapse
Affiliation(s)
- Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yu-Xiang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ping-An Jian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yi-Fei Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ning-Ning Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
10
|
Zhang H, Duan J, Luo P, Zhu L, Liu Y. Degradation of Atrazine in Water by Dielectric Barrier Discharge Combined with Periodate Oxidation: Enhanced Performance, Degradation Pathways, and Toxicity Assessment. TOXICS 2024; 12:746. [PMID: 39453166 PMCID: PMC11511528 DOI: 10.3390/toxics12100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
The widespread occurrence of atrazine (ATZ) in water environments presents a considerable risk to human health and ecosystems. Herein, the performance of dielectric barrier discharge integrated with periodate (DBD/PI) for ATZ decomposition was evaluated. Results demonstrated that the DBD/PI system improved ATZ decomposition efficiency by 18.2-22.5% compared to the sole DBD system. After 10 min treatment, the decomposition efficiency attained 82.4% at a discharge power of 68 W, a PI dosage of 0.02 mM, and an initial ATZ concentration of 10 mg/L. As the PI dosage increased, the decomposition efficiency exhibited a trend of initially increasing, followed by a decrease. Acidic conditions were more favorable for ATZ removal compared to alkaline and neutral conditions. Electron paramagnetic resonance (EPR) was adopted for characterizing the active species produced in the DBD/PI system, and quenching experiments revealed their influence on ATZ decomposition following a sequence of 1O2 > O2-• > IO3• > OH•. The decomposition pathways were proposed based on the theoretical calculations and intermediate identification. Additionally, the toxic effects of ATZ and its intermediates were assessed. This study demonstrates that the DBD/PI treatment represents an effective strategy for the decomposition of ATZ in aquatic environments.
Collapse
Affiliation(s)
- Han Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; (H.Z.); (J.D.); (P.L.); (L.Z.)
| | - Jinping Duan
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; (H.Z.); (J.D.); (P.L.); (L.Z.)
| | - Pengcheng Luo
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; (H.Z.); (J.D.); (P.L.); (L.Z.)
| | - Luxiang Zhu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; (H.Z.); (J.D.); (P.L.); (L.Z.)
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; (H.Z.); (J.D.); (P.L.); (L.Z.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
11
|
Gajendra G, Pulimi M, Natarajan C, Mukherjee A. Occurrence, Toxicodynamics, and Mechanistic Insights for Atrazine Degradation in the Environment. WATER, AIR, & SOIL POLLUTION 2024; 235:649. [DOI: 10.1007/s11270-024-07439-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/11/2024] [Indexed: 01/12/2025]
|
12
|
Arabi S, Heidari-Beni M, Poursafa P, Roshanaei M, Kelishadi R. A review of the potential adverse health impacts of atrazine in humans. REVIEWS ON ENVIRONMENTAL HEALTH 2024:reveh-2024-0094. [PMID: 39279140 DOI: 10.1515/reveh-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Atrazine is a widely used chlorinated triazine herbicide in agricultural settings, which has raised concerns over its potential adverse effects on human health. The extensive application of atrazine has resulted in its pervasive presence in the environment, contaminating soil, groundwater, and surface water. While earlier research suggested that atrazine is unlikely to pose a health concern, recent evidence has indicated the necessity to reassess this point of view. This review aims to assess the recent evidence on atrazine's adverse effects on human health, focusing on (i) Cancer, (ii) Metabolic Diseases, (iii) Reproductive System, (iv) Neural System, and (v) Epigenetic Effects. Strategies to mitigate atrazine contamination and limitations of previous studies are also discussed. We strongly believe that further investigation is necessary to determine the potential detrimental consequences of atrazine in humans, particularly in developing countries, where herbicides are widely used without stringent safety regulations. Therefore, the current review will be beneficial for guiding future research and regulatory measures concerning the use of atrazine.
Collapse
Affiliation(s)
- Sina Arabi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahar Heidari-Beni
- Department of Nutrition, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parinaz Poursafa
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Minaalsadat Roshanaei
- School of Pharmacy and Pharmaceutical Sciences, Islamic Azad University Pharmaceutical Sciences Branch, Tehran, Iran
| | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, 48455 Isfahan University of Medical Sciences , Isfahan, Iran
| |
Collapse
|
13
|
Gao Y, Xiao M, Zou H, Nurwono G, Zgonc D, Birch Q, Nadagouda MN, Park JO, Blotevogel J, Liu C, Hoek EMV, Mahendra S. Laccase Immobilized on Arginine-Functionalized Boron Nitride Nanosheets for Enhanced Atrazine Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39132890 DOI: 10.1021/acs.est.4c02849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Enzyme-mediated systems have been widely employed for the biotransformation of environmental contaminants. However, the catalytic performance of free enzymes is restricted by the rapid loss of their catalytic activity, stability, and reusability. In this work, we developed an enzyme immobilization platform by elaborately anchoring fungal laccase onto arginine-functionalized boron nitride nanosheets (BNNS-Arg@Lac). BNNS-Arg@Lac showcased ∼75% immobilization yield and enhanced stability against fluctuating pH values and temperatures, along with remarkable reusability across six consecutive cycles, outperforming free natural laccase (nlaccase). A model pollutant, atrazine, was selected for a proof-of-concept demonstration, given the substantial environmental and public health concerns in agriculture runoff. BNNS-Arg@Lac-catalyzed atrazine degradation rate was nearly twice that of nlaccase. Moreover, BNNS-Arg@Lac consistently demonstrated superior atrazine degradation in synthetic agricultural wastewater and various mediator systems compared to nlaccase. Comprehensive product analysis unraveled distinct degradation pathways for BNNS-Arg@Lac and nlaccase. Overall, this research provides a foundation for the future development of enzyme-nanomaterial hybrids for degrading environmental chemicals and may unlock new potential for green and efficient resource recovery and waste management strategies.
Collapse
Affiliation(s)
- Yifan Gao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, 580 Portola Plaza, Los Angeles, California 90095, United States
| | - Minhao Xiao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, 580 Portola Plaza, Los Angeles, California 90095, United States
| | - Haiyuan Zou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Glenn Nurwono
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - David Zgonc
- Department of Civil and Environmental Engineering, University of California, Los Angeles, 580 Portola Plaza, Los Angeles, California 90095, United States
| | - Quinn Birch
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Mallikarjuna N Nadagouda
- Office of Research & Development Center for Environmental Solutions & Emergency Response, United States Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Junyoung O Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, Los Angeles, California 90095, United States
| | - Jens Blotevogel
- CSIRO Environment, Waite Campus, Urrbrae, SA 5064, Australia
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Eric M V Hoek
- Department of Civil and Environmental Engineering, University of California, Los Angeles, 580 Portola Plaza, Los Angeles, California 90095, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, 580 Portola Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
14
|
Deng S, Chen C, Wang Y, Liu S, Zhao J, Cao B, Jiang D, Jiang Z, Zhang Y. Advances in understanding and mitigating Atrazine's environmental and health impact: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121530. [PMID: 38905799 DOI: 10.1016/j.jenvman.2024.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Atrazine is a widely used herbicide in agriculture, and it has garnered significant attention because of its potential risks to the environment and human health. The extensive utilization of atrazine, alongside its persistence in water and soil, underscores the critical need to develop safe and efficient removal strategies. This comprehensive review aims to spotlight atrazine's potential impact on ecosystems and public health, particularly its enduring presence in soil, water, and plants. As a known toxic endocrine disruptor, atrazine poses environmental and health risks. The review navigates through innovative removal techniques across soil and water environments, elucidating microbial degradation, phytoremediation, and advanced methodologies such as electrokinetic-assisted phytoremediation (EKPR) and photocatalysis. The review notably emphasizes the complex process of atrazine degradation and ongoing scientific efforts to address this, recognizing its potential risks to both the environment and human health.
Collapse
Affiliation(s)
- Shijie Deng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cairu Chen
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuhang Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shanqi Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiaying Zhao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bo Cao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Duo Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130132, PR China.
| |
Collapse
|
15
|
Yin J, Huang M, Duan R, Huang W, Zhang Y. Effects of atrazine on movement, metabolism and gene expression in Pelophylax nigromaculatus larvae under global warming. ENVIRONMENTAL RESEARCH 2024; 252:119007. [PMID: 38677404 DOI: 10.1016/j.envres.2024.119007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Global warming and environmental pollutants both pose a threat to the behavior and physiology of animals, but research on the combined effects of the two is limited. Atrazine, a widely used herbicide, has toxic effects on organisms. In this study, the effects of environmental concentrations of atrazine exposure (100 μg/L) for seven days on the movement, metabolism and gene expression related to motility of Pelophylax nigromaculatus larvae (GS8) were investigated under global warming. The results showed that compared to the optimal growth temperature (18 °C), atrazine treatment under global warming (21 °C) significantly increased the average speed (about 11.2 times) and maximum acceleration (about 1.98 times) of P. nigromaculatus larvae, altered the relative abundance of 539 metabolites, including Formyl-5-hydroxykynurenamine, 2,4-Dihydroxybenzophenone, and FAPy-adenine, and changed the nucleotide metabolism, pyrimidine metabolism, glycerophospholipid metabolism, and purine metabolism, as well as increased the gene expression of SPLA2 (about 6.46 times) and CHK (about 3.25 times). In summary, atrazine treatment under global warming caused metabolic disorders in amphibian larvae and increased the expression of some movement-related genes in the brain, resulting in abnormally active.
Collapse
Affiliation(s)
- Jiawei Yin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, 417000, Hunan, China.
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China.
| | - Wentao Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Yuhao Zhang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| |
Collapse
|
16
|
Guo Q, Zhai W, Li P, Xiong Y, Li H, Liu X, Zhou Z, Li B, Wang P, Liu D. Nitrogen fertiliser-domesticated microbes change the persistence and metabolic profile of atrazine in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133974. [PMID: 38518695 DOI: 10.1016/j.jhazmat.2024.133974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/11/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Pesticides and fertilisers are frequently used and may co-exist on farmlands. The overfertilisation of soil may have a profound influence on pesticide residues, but the mechanism remains unclear. The effects of chemical fertilisers on the environmental behaviour of atrazine and their underlying mechanisms were investigated. The present outcomes indicated that the degradation of atrazine was inhibited and the half-life was prolonged 6.0 and 7.6 times by urea and compound fertilisers (NPK) at 1.0 mg/g (nitrogen content), respectively. This result, which was confirmed in both sterilised and transfected soils, was attributed to the inhibitory effect of nitrogen fertilisers on soil microorganisms. The abundance of soil bacteria was inhibited by nitrogen fertilisers, and five families of potential atrazine degraders (Micrococcaceae, Rhizobiaceae, Bryobacteraceae, Chitinophagaceae, and Sphingomonadaceae) were strongly and positively (R > 0.8, sig < 0.05) related to the decreased functional genes (atzA and trzN), which inhibited hydroxylation metabolism and ultimately increased the half-life of atrazine. In addition, nitrogen fertilisers decreased the sorption and vertical migration behaviour of atrazine in sandy loam might increase the in-situ residual and ecological risk. Our findings verified the weakened atrazine degradation with nitrogen fertilisers, providing new insights into the potential risks and mechanisms of atrazine in the context of overfertilisation.
Collapse
Affiliation(s)
- Qiqi Guo
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Wangjing Zhai
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Pengxi Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Yabing Xiong
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Huimin Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Bingxue Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China.
| |
Collapse
|
17
|
Sánchez-Yépez J, Acevedo-Huergo T, Mendoza-Trejo MS, Corona R, Hernández-Plata I, Viñuela-Berni V, Giordano M, Rodríguez VM. Early and transitory hypoactivity and olfactory alterations after chronic atrazine exposure in female Sprague-Dawley rats. Neurotoxicology 2024; 101:68-81. [PMID: 38340903 DOI: 10.1016/j.neuro.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Several studies have shown that chronic exposure to the herbicide atrazine (ATR) causes alterations in locomotor activity and markers of the dopaminergic systems of male rats. However, few studies have evaluated the sex-dependent effects of atrazine exposure. The aim of the present study was to evaluate whether chronic ATR exposure causes alterations in behavioral performance and dopaminergic systems of female rats. At weaning, two groups of rats were exposed to 1 or 10 mg ATR/kg body weight daily thorough the food, while the control group received food without ATR for 14 months. Spontaneous locomotor activity was evaluated monthly for 12 months, while anxiety, egocentric and spatial memory, motor coordination, and olfactory function tasks were evaluated between 13 and 14 months of ATR exposure. Tyrosine hydroxylase (TH) and monoamine content in brain tissue were assessed at the end of ATR treatment. Female rats treated with 1 or 10 mg ATR showed vertical hypoactivity compared to the control group only in the first month of ATR exposure. Impairments in olfactory functions were found due to ATR exposure. Nevertheless, no alterations in anxiety, spatial and egocentric memory, or motor coordination tasks were observed, while the levels of TH and dopamine and its metabolites in brain tissue were similar among groups. These results suggest that female rats could present greater sensitivity to the neurotoxic effects of ATR on spontaneous locomotor activity in the early stages of development. However, they are unaffected by chronic ATR exposure later in life compared to male rats. More studies are necessary to unravel the sex-related differences observed after chronic ATR exposure.
Collapse
Affiliation(s)
- Jonathan Sánchez-Yépez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Triana Acevedo-Huergo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Maria Soledad Mendoza-Trejo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Rebeca Corona
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Isela Hernández-Plata
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Verónica Viñuela-Berni
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Magda Giordano
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Verónica M Rodríguez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| |
Collapse
|
18
|
Fuller N, Kimbrough KL, Davenport E, Edwards ME, Jacob A, Chandramouli B, Johnson WE. Contaminants of Concern and Spatiotemporal Metabolomic Changes in Quagga Mussels (Dreissena bugensis rostriformis) from the Milwaukee Estuary (Wisconsin, USA). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:307-323. [PMID: 37877769 DOI: 10.1002/etc.5776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Environmental metabolomics has emerged as a promising technique in the field of biomonitoring and as an indicator of aquatic ecosystem health. In the Milwaukee Estuary (Wisconsin, USA), previous studies have used a nontargeted metabolomic approach to distinguish between zebra mussels (Dreissena polymorpha) collected from sites of varying contamination. To further elucidate the potential effects of contaminants on bivalve health in the Milwaukee Estuary, the present study adopted a caging approach to study the metabolome of quagga mussels (Dreissena bugensis rostriformis) deployed in six sites of varying contamination for 2, 5, or 55 days. Caged mussels were co-deployed with two types of passive sampler (polar organic chemical integrative samplers and semipermeable membrane devices) and data loggers. In conjunction, in situ quagga mussels were collected from the four sites studied previously and analyzed for residues of contaminants and metabolomics using a targeted approach. For the caging study, temporal differences in the metabolomic response were observed with few significant changes observed after 2 and 5 days, but larger differences (up to 97 significantly different metabolites) to the metabolome in all sites after 55 days. A suite of metabolic pathways were altered, including biosynthesis and metabolism of amino acids, and upmodulation of phospholipids at all sites, suggesting a potential biological influence such as gametogenesis. In the caging study, average temperatures appeared to have a greater effect on the metabolome than contaminants, despite a large concentration gradient in polycyclic aromatic hydrocarbons residues measured in passive samplers and mussel tissue. Conversely, significant differences between the metabolome of mussels collected in situ from all three contaminated sites and the offshore reference site were observed. Overall, these findings highlight the importance of contextualizing the effects of environmental conditions and reproductive processes on the metabolome of model organisms to facilitate the wider use of this technique for biomonitoring and environmental health assessments. Environ Toxicol Chem 2024;43:307-323. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
| | - Kimani L Kimbrough
- National Centers for Coastal Ocean Science, National Oceanic and Atmospheric Administration National Ocean Service, Silver Spring, Maryland, USA
| | - Erik Davenport
- National Centers for Coastal Ocean Science, National Oceanic and Atmospheric Administration National Ocean Service, Silver Spring, Maryland, USA
| | - Michael E Edwards
- National Centers for Coastal Ocean Science, National Oceanic and Atmospheric Administration National Ocean Service, Silver Spring, Maryland, USA
| | | | | | - W Edward Johnson
- National Centers for Coastal Ocean Science, National Oceanic and Atmospheric Administration National Ocean Service, Silver Spring, Maryland, USA
| |
Collapse
|
19
|
Qi L, Yang J, Li J. Exploring the potential mechanism of atrazine-induced dopaminergic neurotoxicity based on integration strategy. Environ Health Prev Med 2024; 29:46. [PMID: 39231689 PMCID: PMC11391274 DOI: 10.1265/ehpm.24-00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Atrazine (ATR), a commonly used herbicide, is linked to dopaminergic neurotoxicity, which may cause symptoms resembling Parkinson's disease (PD). This study aims to reveal the molecular regulatory networks responsible for ATR exposure and its effects on dopaminergic neurotoxicity based on an integration strategy. METHODS Our approach involved network toxicology, construction of protein-protein interaction (PPI) networks, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, as well as molecular docking techniques. Subsequently, we validated the predicted results in PC12 cells in vitro. RESULTS An integrated analysis strategy indicating that 5 hub targets, including mitogen-activated protein kinase 3 (Mapk3), catalase (Cat), heme oxygenase 1 (Hmox1), tumor protein p53 (Tp53), and prostaglandin-endoperoxide synthase 2 (Ptgs2), may play a crucial role in ATR-induced dopaminergic injury. Molecular docking indicated that the 5 hub targets exhibited certain binding activity with ATR. Cell counting kit-8 (CCK8) results illustrated a dose-response relationship in PC12 cells. Real-time quantitative polymerase chain reaction (RT-qPCR) displayed notable changes in the expression of hub targets mRNA levels, with the exception of Mapk3. Western blotting results suggested that ATR treatment in PC12 cells resulted in an upregulation of the Cat, Hmox1, and p-Mapk3 protein expression levels while causing a downregulation in Tp53, Ptgs2, and Mapk3. CONCLUSION Our findings indicated that 5 hub targets identified could play a vital role in ATR-induced dopaminergic neurotoxicity in PC12 cells. These results provide preliminary support for further investigation into the molecular mechanism of ATR-induced toxicity.
Collapse
Affiliation(s)
- Ling Qi
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University
| | - Jingran Yang
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University
| | - Jianan Li
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University
| |
Collapse
|
20
|
Lahimer M, Abou Diwan M, Montjean D, Cabry R, Bach V, Ajina M, Ben Ali H, Benkhalifa M, Khorsi-Cauet H. Endocrine disrupting chemicals and male fertility: from physiological to molecular effects. Front Public Health 2023; 11:1232646. [PMID: 37886048 PMCID: PMC10598475 DOI: 10.3389/fpubh.2023.1232646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
The deleterious effects of chemical or non-chemical endocrine disruptors (EDs) on male fertility potential is well documented but still not fully elucidated. For example, the detection of industrial chemicals' metabolites in seminal plasma and follicular fluid can affect efficiency of the gametogenesis, the maturation and competency of gametes and has guided scientists to hypothesize that endocrine disrupting chemicals (EDCs) may disrupt hormonal homoeostasis by leading to a wide range of hormonal control impairments. The effects of EDCs exposure on reproductive health are highly dependent on factors including the type of EDCs, the duration of exposure, individual susceptibility, and the presence of other co-factors. Research and scientists continue to study these complex interactions. The aim of this review is to summarize the literature to better understand the potential reproductive health risks of EDCs in France.
Collapse
Affiliation(s)
- Marwa Lahimer
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, Amiens, France
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
- Exercise Physiology and Physiopathology: from Integrated to Molecular “Biology, Medicine and Health” (Code: LR19ES09), Sousse, Tunisia
| | - Maria Abou Diwan
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| | - Debbie Montjean
- Fertilys, Centres de Fertilité, Laval and Brossard, QC, Canada
| | - Rosalie Cabry
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, Amiens, France
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| | - Véronique Bach
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| | - Mounir Ajina
- Service of Reproductive Medicine, University Hospital Farhat Hached, Sousse, Tunisia
| | - Habib Ben Ali
- Laboratory Histology Embryology, Faculty of Medicine Sousse, University of Sousse, Sousse, Tunisia
| | - Moncef Benkhalifa
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, Amiens, France
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| | - Hafida Khorsi-Cauet
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, Amiens, France
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| |
Collapse
|
21
|
Ahkin Chin Tai JK, Horzmann KA, Jenkins TL, Akoro IN, Stradtman S, Aryal UK, Freeman JL. Adverse developmental impacts in progeny of zebrafish exposed to the agricultural herbicide atrazine during embryogenesis. ENVIRONMENT INTERNATIONAL 2023; 180:108213. [PMID: 37774458 PMCID: PMC10613503 DOI: 10.1016/j.envint.2023.108213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023]
Abstract
Atrazine (ATZ) is an herbicide commonly used on crops in the Midwestern US and other select global regions. The US Environmental Protection Agency ATZ regulatory limit is 3 parts per billion (ppb; µg/L), but this limit is often exceeded. ATZ has a long half-life, is a common contaminant of drinking water sources, and is indicated as an endocrine disrupting chemical in multiple species. The zebrafish was used to test the hypothesis that an embryonic parental ATZ exposure alters protein levels leading to modifications in morphology and behavior in developing progeny. Zebrafish embryos (F1) were collected from adults (F0) exposed to 0, 0.3, 3, or 30 ppb ATZ during embryogenesis. Differential proteomics, morphology, and behavior assays were completed with offspring aged 120 or 144 h with no additional chemical treatment. Proteomic analysis identified differential expression of proteins associated with neurological development and disease; and organ and organismal morphology, development, and injury, specifically the skeletomuscular system. Head length and ratio of head length to total length was significantly increased in the F1 of 0.3 and 30 ppb ATZ groups (p < 0.05). Based on molecular pathway alterations, further craniofacial morphology assessment found decreased distance for cartilaginous structures, decreased surface area and distance between saccular otoliths, and a more posteriorly positioned notochord (p < 0.05), indicating delayed ossification and skeletal growth. The visual motor response assay showed hyperactivity in progeny of the 30 ppb treatment group for distance moved and of the 0.3 and 30 ppb treatment groups for time spent moving (p < 0.05). Due to the changes in saccular otoliths, an acoustic startle assay was completed and showed decreased response in the 0.3 and 30 ppb treatments (p < 0.05). These findings suggest that a single embryonic parental exposure alters cellular pathways in their progeny that lead to perturbations in craniofacial development and behavior.
Collapse
Affiliation(s)
| | - Katharine A Horzmann
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Pathobiology, Auburn University, Auburn, AL, USA
| | - Thomas L Jenkins
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Isabelle N Akoro
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Sydney Stradtman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA; Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
22
|
Uwazie CC, Pirlot BM, Faircloth TU, Patel M, Parr RN, Zastre HM, Hematti P, Moll G, Rajan D, Chinnadurai R. Effects of Atrazine exposure on human bone marrow-derived mesenchymal stromal cells assessed by combinatorial assay matrix. Front Immunol 2023; 14:1214098. [PMID: 37588595 PMCID: PMC10426140 DOI: 10.3389/fimmu.2023.1214098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/18/2023] Open
Abstract
Introduction Mesenchymal Stromal/Stem cells (MSCs) are an essential component of the regenerative and immunoregulatory stem cell compartment of the human body and thus of major importance in human physiology. The MSCs elicit their beneficial properties through a multitude of complementary mechanisms, which makes it challenging to assess their phenotype and function in environmental toxicity screening. We here employed the novel combinatorial assays matrix approach/technology to profile the MSC response to the herbicide Atrazine, which is a common environmental xenobiotic, that is in widespread agricultural use in the US and other countries, but banned in the EU. Our here presented approach is representative for screening the impact of environmental xenobiotics and toxins on MSCs as an essential representative component of human physiology and well-being. Methods We here employed the combinatorial assay matrix approach, including a panel of well standardized assays, such as flow cytometry, multiplex secretome analysis, and metabolic assays, to define the phenotype and functionality of human-donor-derived primary MSCs exposed to the representative xenobiotic Atrazine. This assay matrix approach is now also endorsed for characterization of cell therapies by leading regulatory agencies, such as FDA and EMA. Results Our results show that the exposure to Atrazine modulates the metabolic activity, size, and granularity of MSCs in a dose and time dependent manner. Intriguingly, Atrazine exposure leads to a broad modulation of the MSCs secretome (both upregulation and downmodulation of certain factors) with the identification of Interleukin-8 as the topmost upregulated representative secretory molecule. Interestingly, Atrazine attenuates IFNγ-induced upregulation of MHC-class-II, but not MHC-class-I, and early phosphorylation signals on MSCs. Furthermore, Atrazine exposure attenuates IFNγ responsive secretome of MSCs. Mechanistic knockdown analysis identified that the Atrazine-induced effector molecule Interleukin-8 affects only certain but not all the related angiogenic secretome of MSCs. Discussion The here described Combinatorial Assay Matrix Technology identified that Atrazine affects both the innate/resting and cytokine-induced/stimulated assay matrix functionality of human MSCs, as identified through the modulation of selective, but not all effector molecules, thus vouching for the great usefulness of this approach to study the impact of xenobiotics on this important human cellular subset involved in the regenerative healing responses in humans.
Collapse
Affiliation(s)
- Crystal C. Uwazie
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Bonnie M. Pirlot
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Tyler U. Faircloth
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Mihir Patel
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Rhett N. Parr
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Halie M. Zastre
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin Madison, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Guido Moll
- BIH Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Devi Rajan
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| |
Collapse
|
23
|
Nie Y, Wang Z, Yu S, Zhang L, Liu R, Liu Y, Zhu W, Zhou Z, Diao J. The combined effects of atrazine and warming on environmental adaptability in lizards (Eremias argus) from the perspective of a life-history traits trade-off: Gender differences in trade-off strategies may reverse mortality risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163078. [PMID: 36972889 DOI: 10.1016/j.scitotenv.2023.163078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/15/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
Life-history theory suggests that organisms must distribute a limited share of their energetic resources among competing life-history trait demands. Therefore, the trade-off strategies individuals develop for particular life-history traits in a given environment may profoundly impact their environmental adaptability. In this study, lizards (Eremias. argus) were exposed to single and combined atrazine (4.0 mg·kg-1 and 20.0 mg·kg-1) and different temperatures (25 °C and 30 °C) for 8 weeks during the breeding season. The effects of atrazine and warming on the adaptability of lizards were explored by examining changes in trade-offs via several key life history traits (i.e., reproduction, self-maintenance, energy reserves, and locomotion). The results show that after atrazine exposure at 25 °C, both female and male lizards tended to allocate energy to self-maintenance by reducing energy allocation to reproductive process. The lower energy reserves of males are considered a "risky" life-history strategy and the observed higher mortality may be related to atrazine-induced oxidative damage. The retention of energy reserves by females not only ensured their current survival but also facilitated survival and reproduction in subsequent stages, which can be regarded as a "conservative" strategy. However, under high temperature and/or combined atrazine exposure, the "risky" strategy of males caused them to consume more energy reserves to invest in self-maintenance, which ensured their immediate survival, and profited from more rapid degradation of atrazine. In contrast, the "conservative" strategy of females could not meet their higher reproductive and self-maintenance demands under high temperatures, and the elevated reproductive oxidative and metabolic costs led to individual mortality. Gender differences in life-history trade-off strategies can directly lead to "winners" and "losers" from environmental stress within a species.
Collapse
Affiliation(s)
- Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Luyao Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| |
Collapse
|
24
|
De Caroli Vizioli B, Silva da Silva G, Ferreira de Medeiros J, Montagner CC. Atrazine and its degradation products in drinking water source and supply: Risk assessment for environmental and human health in Campinas, Brazil. CHEMOSPHERE 2023:139289. [PMID: 37348619 DOI: 10.1016/j.chemosphere.2023.139289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Atrazine is a broad-spectrum herbicide widely used worldwide to control grassy and broadleaf weeds. Atrazine's popularity is attributable to its cost-effectiveness and reliable performance. Relatedly, it is also an important micropollutant with a potential negative impact on biodiversity and human health. Atrazine has long been regularly detected in several environmental compartments, and its widespread use has resulted in ubiquitous and unpreventable contamination. Among pesticides sold in Brazil, atrazine has remained among the top-ranked active ingredients for the last several years. Thus, this study aimed to evaluate the occurrence of atrazine and three degradation products (hydroxyatrazine, desisopropylatrazine, and desethylatrazine) in surface water (Capivari and Atibaia rivers) and treated water, monthly sampling from two drinking water treatment plants in Campinas (São Paulo, Brazil). An analytical method using solid-phase extraction (SPE) and liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed to determine target compounds simultaneously. The method presented instrument quantification limits from 0.5 to 4.0 ng mL-1 and recovery values from 80 to 112%, with a maximum relative standard deviation of 6%. All analytes had a detection frequency of 100% from 2 to 2744 ng L-1. Statistical analysis showed no analyte removal after conventional water treatment. Also, the Capivari River showed greater analyte concentration than the Atibaia River. Performed risk assessments according to current Brazilian standards showed no human and environmental health risks. However, other risk assessment approaches may indicate potential risks, advocating for further research and ongoing surveillance.
Collapse
Affiliation(s)
- Beatriz De Caroli Vizioli
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Giulia Silva da Silva
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Jéssyca Ferreira de Medeiros
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Cassiana Carolina Montagner
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
25
|
Rajagopalan V, Venkataraman S, Rajendran DS, Vinoth Kumar V, Kumar VV, Rangasamy G. Acetylcholinesterase biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine neurotransmitter: A literature review. ENVIRONMENTAL RESEARCH 2023; 227:115724. [PMID: 36948285 DOI: 10.1016/j.envres.2023.115724] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Neurotoxic pesticides are a group of chemicals that pose a severe threat to both human health and the environment. These molecules are also known to accumulate in the food chain and persist in the environment, which can lead to long-term exposure and adverse effects on non-target organisms. The detrimental effects of these pesticides on neurotransmitter levels and function can lead to a range of neurological and behavioral symptoms, which are closely associated with neurodegenerative diseases. Hence, the accurate and reliable detection of these neurotoxic pesticides and associated neurotransmitters is essential for clinical applications, such as diagnosis and treatment. Over the past few decades, acetylcholinesterase (AchE) biosensors have emerged as a sensitive and reliable tool for the electrochemical detection of neurotoxic pesticides and acetylcholine. These biosensors can be tailored to utilize the high specificity and sensitivity of AchE, enabling the detection of these chemicals. Additionally, enzyme immobilization and the incorporation of nanoparticles have further improved the detection capabilities of these biosensors. AchE biosensors have shown tremendous potential in various fields, including environmental monitoring, clinical diagnosis, and pesticide residue analysis. This review summarizes the advancements in AchE biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine over the past two decades.
Collapse
Affiliation(s)
- Vahulabaranan Rajagopalan
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Swethaa Venkataraman
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India.
| | - Vaithyanathan Vasanth Kumar
- Department of Electronics and Communication Engineering, Hindustan Institute of Technology and Science, Chennai, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
26
|
Roh T, Knappett PSK, Han D, Ludewig G, Kelly KM, Wang K, Weyer PJ. Characterization of Arsenic and Atrazine Contaminations in Drinking Water in Iowa: A Public Health Concern. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5397. [PMID: 37048011 PMCID: PMC10094102 DOI: 10.3390/ijerph20075397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Arsenic and atrazine are two water contaminants of high public health concern in Iowa. The occurrence of arsenic and atrazine in drinking water from Iowa's private wells and public water systems was investigated over several decades. In this study, the percentages of detection and violation of regulations were compared over region, season, and water source, and factors affecting the detection and concentration of arsenic and atrazine were analyzed using a mixed-effects model. Atrazine contamination in drinking water was found to vary by region, depending on agricultural usage patterns and hydrogeological features. The annual median atrazine levels of all public water systems were below the drinking water standard of 3 ppb in 2001-2014. Around 40% of public water systems contained arsenic at levels > 1 ppb in 2014, with 13.8% containing arsenic at levels of 5-10 ppb and 2.6% exceeding 10 ppb. This unexpected result highlights the ongoing public health threat posed by arsenic in drinking water in Iowa, emphasizing the need for continued monitoring and mitigation efforts to reduce exposure and associated health risks. Additionally, an atrazine metabolite, desethylatrazine, should be monitored to obtain a complete account of atrazine exposure and possible health effects.
Collapse
Affiliation(s)
- Taehyun Roh
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Peter S. K. Knappett
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
| | - Daikwon Han
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Gabriele Ludewig
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA
| | - Kevin M. Kelly
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Peter J. Weyer
- Center for Health Effects of Environmental Contamination, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
27
|
Ding Y, Hao B, Zhang N, Lv H, Zhao B, Tian Y. Rapid determination of thiram and atrazine pesticide residues in fruit and aqueous system based on surface-enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121873. [PMID: 36126624 DOI: 10.1016/j.saa.2022.121873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
In this work, a rapid and sensitive strategy was developed to determine thiram (THI) and atrazine (ATZ) by surface-enhanced Raman scattering (SERS) technology. β-cyclodextrin modified silver nanoparticles (β-CD-AgNPs) were synthesized using β-CD as a reducing agent and encapsulating agent under alkaline conditions and employed as SERS substrate. The existence of β-CD can capture the molecules to form host-guest complex and fix molecular orientation in its cavity, thus ensuring the enhanced SERS signal intensity of THI and ATZ. The linear response extends from 2.56 × 10-8 to 2.56 × 10-3 mol/L for THI and 3.08 × 10-8 to 3.08 × 10-3 mol/L for ATZ, with the limits of detection (LOD) of 2.42 × 10-9 mol/L for THI and 7.26 × 10-9 mol/L for ATZ, respectively. The application of the proposed method in real samples including apple and water were investigated, and the results would help promote the application of SERS technology as a powerful analytical tool for detecting other pesticide residues. It is expected that this SERS strategy will provide great value for rapid detecting pesticide residues in food products and environmental systems.
Collapse
Affiliation(s)
- Yanru Ding
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, PR China
| | - Baoqin Hao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, PR China
| | - Nan Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, PR China
| | - Haiyang Lv
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, PR China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China
| | - Yuan Tian
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
28
|
Vaid K, Dhiman J, Kumar S, Kumar V. Citrate and glutathione capped gold nanoparticles for electrochemical immunosensing of atrazine: Effect of conjugation chemistry. ENVIRONMENTAL RESEARCH 2023; 217:114855. [PMID: 36427637 DOI: 10.1016/j.envres.2022.114855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Recently, the exposure of pesticides/herbicides to the living organisms is increased especially due to agricultural malpractices and industrial processes. In particular, the exposure of pesticides/herbicides (e.g., atrazine) can impart several harsh effects on the human health. The development of efficient detection systems can be crucial in monitoring the atrazine in water and food/plant products, which can be decisive in controlling the deadly exposures of atrazine. Herein, we have developed electrochemical immunosensors for atrazine by employing monoclonal anti-atrazine antibody conjugated gold nanoparticles. Two types of gold nanoparticles (i.e., citrate and glutathione (GSH)-capped AuNPs) were used to modify gold working electrode and utilized for the development of atrazine immunosensors. The conjugation of immunoprobe on working electrode was especially designed to obtain stable and efficient sensing signals. The nanosensing immunoprobes fabricated using citrate-AuNPs and GSH-AuNPs exhibited comparable responses for a wide linear working range of 50 ng/L- 30 μg/L with limit of detection (LOD) values of 0.08 and 0.06 ng/L for atrazine, respectively.
Collapse
Affiliation(s)
- Kalyan Vaid
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India; Centre for Nanoscience and Nanotechnology, Panjab University, Chandigarh, 160014, India; CSIR-Central Scientific Instruments Organisation, Sector 30-C, Chandigarh, 160030, India
| | - Jasmeen Dhiman
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Suresh Kumar
- Department of Applied Sciences, UIET, Panjab University, Chandigarh, 160014, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India; Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
29
|
Carriquiriborde P, Fernandino JI, López CG, Benito EDS, Gutierrez-Villagomez JM, Cristos D, Trudeau VL, Somoza GM. Atrazine alters early sexual development of the South American silverside, Odontesthes bonariensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106366. [PMID: 36459853 DOI: 10.1016/j.aquatox.2022.106366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATZ) is a frequent contaminant in freshwater ecosystems within agricultural regions. The capacity of this herbicide to interfere with the vertebrate endocrine system is broadly recognized, but the mechanisms and responses usually differ among species. In this study, ATZ effects on hypothalamus-pituitary-gonadal (HPG) axis key genes expression and early gonadal development were evaluated in Odontesthes bonariensis larvae waterborne exposed during the gonadal differentiation period. Fish were treated to 0, 0.7, 7.0, and 70 µg ATZ/L at 25 °C from the 2nd to 6th week after hatching (wah), and a group was kept in clean water until the 12th wah. Parallelly, a group was submitted to 0.05 µg/L of ethinylestradiol (EE2) as a positive estrogenic control. From each treatment, eight larvae were sampled at 6 wah for gene expression analysis and twelve larvae at 12 wah for phenotypic sex histological determination. The expression of gnrh1, lhb, fshb, and cyp19a1b was assessed in the head, and the ones of amha, 11βhsd2, and cyp19a1a in the trunk. Fish growth was significantly higher in fish exposed to 7 and 70 µg ATZ/L in the 6 wah, but the effect vanished at the 12 wah. The expression of lhb was upregulated in both sex larvae exposed from 7 µg ATZ/L. However, a dimorphic effect was induced on cyp19a1a expression at 70 µg ATZ/L, up or downregulating mRNA transcription in males and females, respectively. Delayed ovarian development and increased number of testicular germ cells were histologically observed from 7 to 70 µg ATZ/L, respectively, and a sex inversion (genotypic male to phenotypic female) was found in one larva at 70 µg ATZ/L. The lhb expression was also upregulated by EE2, but the cyp19a1a expression was not affected, and a complete male-to-female reversal was induced. Further, EE2 upregulated gnrh1 in females and cyp19a1b in both sexes, but it did not alter any assessed gene in the trunk. In conclusion, ATZ disrupted HPG axis physiology and normal gonadal development in O. bonariensis larvae at environmentally relevant concentrations. The responses to ATZ only partially overlapped and were less active when compared to the model estrogenic compound EE2.
Collapse
Affiliation(s)
- Pedro Carriquiriborde
- Centro de Investigaciones del Medioambiente (CIM, UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - Juan Ignacio Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina
| | - Carina G López
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina
| | - Eduardo de San Benito
- Centro de Investigaciones del Medioambiente (CIM, UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | | | - Diego Cristos
- Instituto Nacional de Tecnología Agropecuaria, Centro de Investigación de Agroindustria (CIA-INTA), Castelar, Buenos Aires Argentina
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, K1S 6N5, Canada
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina.
| |
Collapse
|
30
|
Braun G, Escher BI. Prioritization of mixtures of neurotoxic chemicals for biomonitoring using high-throughput toxicokinetics and mixture toxicity modeling. ENVIRONMENT INTERNATIONAL 2023; 171:107680. [PMID: 36502700 DOI: 10.1016/j.envint.2022.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Modern society continues to pollute the environment with larger quantities of chemicals that have also become more structurally and functionally diverse. Risk assessment of chemicals can hardly keep up with the sheer numbers that lead to complex mixtures of increasing chemical diversity including new chemicals, substitution products on top of still abundant legacy compounds. Fortunately, over the last years computational tools have helped us to identify and prioritize chemicals of concern. These include toxicokinetic models to predict exposure to chemicals as well as new approach methodologies such as in-vitro bioassays to address toxicodynamic effects. Combined, they allow for a prediction of mixtures and their respective effects and help overcome the lack of data we face for many chemicals. In this study we propose a high-throughput approach using experimental and predicted exposure, toxicokinetic and toxicodynamic data to simulate mixtures, to which a virtual population is exposed to and predict their mixture effects. The general workflow is adaptable for any type of toxicity, but we demonstrated its applicability with a case study on neurotoxicity. If no experimental data for neurotoxicity were available, we used baseline toxicity predictions as a surrogate. Baseline toxicity is the minimal toxicity any chemical has and might underestimate the true contribution to the mixture effect but many neurotoxicants are not by orders of magnitude more potent than baseline toxicity. Therefore, including baseline-toxic effects in mixture simulations yields a more realistic picture than excluding them in mixture simulations. This workflow did not only correctly identify and prioritize known chemicals of concern like benzothiazoles, organochlorine pesticides and plasticizers but we were also able to identify new potential neurotoxicants that we recommend to include in future biomonitoring studies and if found in humans, to also include in neurotoxicity screening.
Collapse
Affiliation(s)
- Georg Braun
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Souza VVD, Souza TDS, Campos JMSD, Oliveira LAD, Ribeiro YM, Hoyos DCDM, Xavier RMP, Charlie-Silva I, Lacerda SMDSN. Ecogenotoxicity of environmentally relevant atrazine concentrations: A threat to aquatic bioindicators. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105297. [PMID: 36549823 DOI: 10.1016/j.pestbp.2022.105297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATZ) is a herbicide that is frequently present in surface waters and may result in damage to the health of various organisms, including humans. However, most scientific literature reports injuries caused by ATZ at high concentrations, which are not found in the environment. Therefore, the scope of this study was to investigate the impacts of realistic concentrations of ATZ found in surface waters (1, 2, 5, 10, 15 and 20 μg/L) using the bioindicators Allium cepa, Daphnia magna and zebrafish (Danio rerio). ATZ elicited a genotoxic effect in A. cepa, manifested by the induction of chromosomal aberrations, and a mutagenic effect with increased incidence of micronuclei formation, promotion of cell death and reduction in nuclear size revealed by flow cytometry analysis. D. magna exposed to 10, 15 and 20 μg/L of ATZ showed significant reduction in body size after 21 days, delayed first-brood release, decreased egg production and total offspring, as well as swimming behavioral changes. ATZ exposure promoted physiological and developmental alterations in zebrafish embryos, including an increased spontaneous movement rate, which led to premature hatching at all concentrations investigated. Increase in total body length, decrease of the yolk sac area, pericardial edema and higher heart rate were also detected in ATZ-treated zebrafish. In summary, environmentally relevant concentrations of ATZ can induce substantial alterations in the three bioindicators investigated. This study evidences the deleterious effects of ATZ on three aquatic bioindicators employing established and current techniques, and may contribute to elucidate the risks caused by this widely used herbicide even at low concentrations and short-to-medium-term exposure.
Collapse
Affiliation(s)
- Victor Ventura de Souza
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tatiana da Silva Souza
- Laboratory of Ecotoxicology, Department of Biology, Federal University of Espírito Santo, Alegre, Brazil
| | | | - Luiza Araújo de Oliveira
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves Moreira Ribeiro
- Laboratory of Ichthyohistology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
32
|
Lian D, Chen T, Yan L, Hou H, Gao S, Hu Q, Zhang G, Li H, Song L, Gao Y, Pu Y, Chen Y, Peng B. Protective effect of compatible herbs in Jin-Gu-Lian formula against Alangium chinense-induced neurotoxicity via oxidative stress, neurotransmitter metabolisms, and pharmacokinetics. Front Pharmacol 2023; 14:1133982. [PMID: 36874008 PMCID: PMC9977795 DOI: 10.3389/fphar.2023.1133982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Background: A. chinense frequently used in Miao medicine to treat rheumatic diseases. However, as a famous toxic herb, Alangium chinense and its representative components exhibit ineluctable neurotoxicity, thus creating significant challenges for clinical application. The combined application with compatible herbs in Jin-Gu-Lian formula attenuates such neurotoxicity according to the compatible principle of traditional Chinese medicines. Purpose: We aimed to investigate the detoxification of the compatible herbs in Jin-Gu-Lian formula on A. chinense-induced neurotoxicity and investigate its mechanism. Methods: Neurobehavioral and pathohistological analysis were used to determine the neurotoxicity in rats administered with A. chinense extract (AC), extract of compatible herbs in Jin-Gu-Lian formula (CH) and combination of AC with CH for 14 days. The mechanism underlying the reduction of toxicity by combination with CH was assessed by enzyme-linked immunosorbent assays, spectrophotometric assays, liquid chromatography tandem-mass spectrometry and real-time reverse transcription-quantitative polymerase chain reaction. Results: Compatible herbs attenuated the AC-induced neurotoxicity as evidenced by increased locomotor activity, enhanced grip strength, the decreased frequency of AC-induced morphological damage in neurons, as well as a reduction of neuron-specific enolase (NSE) and neurofilament light chain (NEFL) levels. The combination of AC and CH ameliorated AC-induced oxidative damage by modulating the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC). AC treatment significantly reduced the levels of monoamine and acetylcholine neurotransmitters in the brains of rats, including acetylcholine (Ach), dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), norepinephrine (NE), and serotonin (5-HT). Combined AC and CH treatment regulated the abnormal concentrations and metabolisms of neurotransmitters. Pharmacokinetic studies showed that the co-administration of AC and CH significantly decreased plasma exposure levels of two main components of AC, as evidenced by the reduction of maximum plasma concentration (Cmax), area under the plasma concentration-time curve (AUC) compared to AC. In addition, the AC-induced downregulation in mRNA expression of cytochrome P450 enzymes was significantly reduced in response to combined AC and CH treatment. Conclusion: Compatible herbs in Jin-Gu-Lian formula alleviated the neurotoxicity induced by A. chinense by ameliorating oxidative damage, preventing abnormality of neurotransmitters and modulating pharmacokinetics.
Collapse
Affiliation(s)
- Dongyin Lian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tengfei Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lihua Yan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongping Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuangrong Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qin Hu
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, China
| | - Guangping Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunhang Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunxi Pu
- College of Letters and Science, University of California, Santa Barbara, CA, United States
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Horzmann KA, Lin LF, Taslakjian B, Yuan C, Freeman JL. Anxiety-related behavior and associated brain transcriptome and epigenome alterations in adult female zebrafish exposed to atrazine during embryogenesis. CHEMOSPHERE 2022; 308:136431. [PMID: 36126741 DOI: 10.1016/j.chemosphere.2022.136431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 09/09/2022] [Indexed: 06/08/2023]
Abstract
Atrazine often contaminates drinking water sources, exceeding the maximum contaminant level established by the US Environmental Protection Agency at 3 parts per billion (ppb; μg/L). Atrazine is linked to endocrine disruption, neurotoxicity, and cancer, with delayed health effects observed after developmental exposure in line with the developmental origins of health and disease (DOHaD) hypothesis. To test the hypothesis that embryonic atrazine exposure induces delayed neurotoxicity in adult female zebrafish (Danio rerio), embryos were exposed to 0, 0.3, 3, or 30 ppb atrazine during embryogenesis (1-72 h post fertilization (hpf)) and raised to adults with no additional atrazine exposure. Behavioral outcomes were tested through a novel tank test, light-dark box, and open field test and indicated female zebrafish had more anxious phenotypes at 9 months post fertilization (mpf). Female brain transcriptomic analysis at 9 mpf found altered gene expression pathways related to organismal injury and cancer with beta-estradiol and estrogen receptor as top upstream regulators. These results were compared to 9 mpf male and 6 mpf female groups with the same atrazine embryonic exposures and showed differences in specific genes that were altered, but similarities in top molecular pathways. Molecular pathways associated with behavior were observed only in the 6 mpf transcriptomic profiles, suggesting prediction of observed behavioral outcomes at 9 mpf. The expression of genes associated with serotonin neurotransmission was also evaluated at 14 mpf to determine persistence; however, no significant changes were observed. Brain global methylation in 12 mpf zebrafish observed an increased percent 5 mC in females with embryonic 0.3 ppb atrazine exposure. Finally, the body length, body weight, and brain weight were determined at 14 mpf and were altered in all treatment groups. These results indicate that embryonic atrazine exposure does cause delayed neurotoxicity within the DOHaD framework, which is significant given atrazine's presence and persistence in the environment.
Collapse
Affiliation(s)
- Katharine A Horzmann
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn AL, 36849, USA.
| | - Li F Lin
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Boghos Taslakjian
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Chongli Yuan
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
34
|
Graziosi A, Sita G, Corrieri C, Angelini S, d’Emmanuele di Villa Bianca R, Mitidieri E, Sorrentino R, Hrelia P, Morroni F. Effects of Subtoxic Concentrations of Atrazine, Cypermethrin, and Vinclozolin on microRNA-Mediated PI3K/Akt/mTOR Signaling in SH-SY5Y Cells. Int J Mol Sci 2022; 23:ijms232314538. [PMID: 36498866 PMCID: PMC9737829 DOI: 10.3390/ijms232314538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are different natural and synthetic chemicals that may interfere with several mechanisms of the endocrine system producing adverse developmental, metabolic, reproductive, and neurological effects in both human beings and wildlife. Among pesticides, numerous chemicals have been identified as EDCs. MicroRNAs (miRNAs) can regulate gene expression, making fine adjustments in mRNA abundance and regulating proteostasis. We hypothesized that exposure to low doses of atrazine, cypermethrin, and vinclozolin may lead to effects on miRNA expression in SH-SY5Y cells. In particular, the exposure of SH-SY5Y cells to subtoxic concentrations of vinclozolin is able to downregulate miR-29b-3p expression leading to the increase in the related gene expression of ADAM12 and CDK6, which may promote a pro-oncogenic response through the activation of the PI3K/Akt/mTOR pathway and counteracting p53 activity. A better understanding of the molecular mechanisms of EDCs could provide important insight into their role in human disease.
Collapse
Affiliation(s)
- Agnese Graziosi
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Sita
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Camilla Corrieri
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | | | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Study of Naples—Federico II, via Montesano 49, 80131 Naples, Italy
| | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Study of Naples—Federico II, via Pansini 5, 80131 Naples, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
- Correspondence: ; Tel.: +39-051-209-1798
| | - Fabiana Morroni
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
35
|
McPheeters D, Bruns MA, Karsten HD, Dell CJ. Integrated weed management with strategic tillage can maintain soil quality in continuous living cover systems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.907590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Maximizing living cover and minimizing soil disturbance with no-till are key strategies in regenerative row-crop production. Although living cover and no-till can increase beneficial soil carbon and water stable aggregates (WSA), annual crops in rotation with perennials often rely on herbicides to control weeds and terminate perennials. Integrated weed management (IWM) reduces reliance on herbicides by employing multiple weed control strategies including tillage and/or cultivation. However, many no-till growers are reluctant to implement some soil disturbance due to concerns about negative impacts on soil health. For that reason, we hypothesized that compared to continuous no-till and standard herbicides (NT-SH), a strategic inversion tillage in IWM (ST-IWM) would result in lower soil carbon and WSA in the year following the tillage event. We also hypothesized that soil carbon and WSA would not differ between the two systems when sampled after cover cropping and 2 years of perennials. We tested these hypotheses within a 6-year, diverse, dairy crop rotation initiated in 2010 in central Pennsylvania in a channery silt loam soil. The systems were compared in split-plots in a full crop entry experiment, where the six phases of the crop rotation were planted every year in a randomized complete block design, replicated four times. We compared the soil health indicators in spring 2010 prior to the start of the experiment and in 2013 and 2019 following inversion tillage (ST-IWM) or herbicide termination (NT-SH) of the perennial forage in the first year of the rotation. We also compared these indicators in the sixth year of the rotation after 3 years of annual and cover crops and 2 years of perennial forage. We sampled at two depths: 0–5 and 5–15 cm for total carbon and bulk density, 0–5 cm for labile carbon and 0–15 cm for WSA. Results indicate that despite initial smaller soil health values in the ST-IWM system following inversion tillage, all properties except labile carbon were similar to the NT-SH system in the sixth year of the rotation.
Collapse
|
36
|
Occurrence of Banned and Currently Used Herbicides, in Groundwater of Northern Greece: A Human Health Risk Assessment Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148877. [PMID: 35886730 PMCID: PMC9323306 DOI: 10.3390/ijerph19148877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
The presence of pesticide residues in groundwater, many years after their phase out in European Union verifies that the persistence in aquifer is much higher than in other environmental compartments. Currently used and banned pesticides were monitored in Northern Greece aquifers and a human health risk assessment was conducted. The target compounds were the herbicides metolachlor (MET), terbuthylazine (TER), atrazine (ATR) and its metabolites deisopropylatrazine (DIA), deethylatrazine (DEA) and hydroxyatrazine (HA). Eleven sampling sites were selected to have representatives of different types of wells. Pesticides were extracted by solid-phase extraction and analyzed by liquid chromatography. MET was detected in 100% of water samples followed by ATR (96.4%), DEA and HA (88.6%), DIA (78.2%) and TER (67.5%). ATR, DIA, DEA, HA, MET and TER mean concentrations detected were 0.18, 0.29, 0.14, 0.09, 0.16 and 0.15 μg/L, respectively. Obtained results were compared with historical data from previous monitoring studies and temporal trends were assessed. Preferential flow was the major factor facilitating pesticide leaching within the month of herbicide application. Moreover, apparent age of groundwater and the reduced pesticide dissipation rates on aquifers resulted of long-term detection of legacy pesticides. Although atrazine had been banned more than 18 years ago, it was detected frequently and their concentrations in some cases were over the maximum permissible limit. Furthermore, human health risk assessment of pesticides was calculated for two different age groups though drinking water consumption. In all examined wells, the sum of the HQ values were lower than the unity. As a result, the analyzed drinking water wells are considered safe according to the acute risk assessment process. However, the presence of atrazine residues causes concerns related with chronic toxicity, since ATR R values were greater than the parametric one of 1 × 10−6 advised by USEPA, for both age groups.
Collapse
|
37
|
Mechanism and Kinetic Analysis of the Degradation of Atrazine by O3/H2O2. WATER 2022. [DOI: 10.3390/w14091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In phosphate buffer, the degradation of ATZ by ozone/(O3/H2O2) under various circumstance was explored and the degradation mechanism and dynamics were probed. The findings revealed that when maintaining the reaction temperature at 25 °C, the H2O2 concentration and the O3 concentration were 20 mol/L and 20 mol/L, respectively. Moreover, the degradation rate of 5 mol/L ATZ under the influence of O3/H2O2 was 92.59% in phosphate buffer at pH7. The mechanism analysis showed that HO• and O3 underwent co-oxidized degradation and that the HO• and O3 oxidation degradation ratios were close to 1:1 under acidic conditions. Furthermore, HO• oxidative degradation dominated the ATZ degradation process. The kinetics analysis showed that the ATZ kinetics of O3/H2O2 degradation were more compatible with quasi-second-order reaction kinetics under different temperatures, pH values, and H2O2 concentrations.
Collapse
|
38
|
Sonzogni L, Ferlazzo ML, Granzotto A, Fervers B, Charlet L, Foray N. DNA Double-Strand Breaks Induced in Human Cells by 6 Current Pesticides: Intercomparisons and Influence of the ATM Protein. Biomolecules 2022; 12:biom12020250. [PMID: 35204751 PMCID: PMC8961571 DOI: 10.3390/biom12020250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/19/2022] Open
Abstract
A mechanistic model from radiobiology has emerged by pointing out that the radiation-induced nucleo-shuttling of the ATM protein (RIANS) initiates the recognition, the repair of DNA double-strand breaks (DSB), and the final response to genotoxic stress. More recently, we provided evidence in this journal that the RIANS model is also relevant for exposure to metal ions. To document the role of the ATM-dependent DSB repair and signaling after pesticide exposure, we applied six current pesticides of domestic and environmental interest (lindane, atrazine, glyphosate, permethrin, pentachlorophenol and thiabendazole) to human skin fibroblast and brain cells. Our findings suggest that each pesticide tested may induce DSB at a rate that depends on the pesticide concentration and the RIANS status of cells. At specific concentration ranges, the nucleo-shuttling of ATM can be delayed, which impairs DSB recognition and repair, and contributes to toxicity. Interestingly, the combination of copper sulfate and thiabendazole or glyphosate was found to have additive or supra-additive effects on DSB recognition and/or repair. A general mechanistic model of the biological response to metal and/or pesticide is proposed to define quantitative endpoints for toxicity.
Collapse
Affiliation(s)
- Laurène Sonzogni
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, Centre Léon-Bérard, 69008 Lyon, France; (L.S.); (M.L.F.); (A.G.); (B.F.)
| | - Mélanie L. Ferlazzo
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, Centre Léon-Bérard, 69008 Lyon, France; (L.S.); (M.L.F.); (A.G.); (B.F.)
| | - Adeline Granzotto
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, Centre Léon-Bérard, 69008 Lyon, France; (L.S.); (M.L.F.); (A.G.); (B.F.)
| | - Béatrice Fervers
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, Centre Léon-Bérard, 69008 Lyon, France; (L.S.); (M.L.F.); (A.G.); (B.F.)
- Cancer & Environment Department, Centre Léon-Bérard, 69008 Lyon, France
| | - Laurent Charlet
- ISTerre Team, University Grenoble Alpes, 38000 Grenoble, France;
| | - Nicolas Foray
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, Centre Léon-Bérard, 69008 Lyon, France; (L.S.); (M.L.F.); (A.G.); (B.F.)
- Correspondence: ; Tel.: +33-4-78-78-28-28
| |
Collapse
|
39
|
Outcome of the first survey of atrazine in drinking water from Ijebu-North, South-West, Nigeria: Human health risk and neurotoxicological implications. Toxicol Rep 2022; 9:1347-1356. [DOI: 10.1016/j.toxrep.2022.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 01/24/2023] Open
|