1
|
Arena S, De Pascale S, Ciaravolo V, Monroy MM, Gouw JW, Stahl B, Bäuerl C, Collado MC, De Filippo C, Scaloni A, Troise AD. Protein-bound and free glycation compounds in human milk: A comparative study with minimally processed infant formula and pasteurized bovine milk. Food Chem 2025; 463:141265. [PMID: 39293376 DOI: 10.1016/j.foodchem.2024.141265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
The role of the Maillard reaction and the accumulation of non-enzymatic glycation compounds in human milk have been scarcely considered. In this study, we investigated the proteins most susceptible to glycation, the identity of the corresponding modified residues and the quantitative relationship between protein-bound and free glycation compounds in raw human milk and, for comparison, in minimally processed infant formula and pasteurized bovine milk. In human milk, total protein-bound lysine modifications were up to 10% of the counterparts in infant formula, while Nε-carboxymethyllysine reached up to 27% of the concentration in the other two products. We demonstrated that the concentration of free pyrraline and methylglyoxal-hydroimidazolone were of the same order of magnitude in the three milk types. Our results delineate how the occurrence of some glycation compounds in human milk can be an unavoidable part of the breastfeeding and not an exclusive attribute of infant formulas and pasteurized bovine milk.
Collapse
Affiliation(s)
- Simona Arena
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Portici, Italy
| | - Sabrina De Pascale
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Portici, Italy
| | - Valentina Ciaravolo
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Portici, Italy
| | - Mariela Mejia Monroy
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Pisa, Italy; NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Joost W Gouw
- Danone Research & Innovation, 3584, CT, Utrecht, the Netherlands
| | - Bernd Stahl
- Danone Research & Innovation, 3584, CT, Utrecht, the Netherlands
| | - Christine Bäuerl
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Pisa, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Portici, Italy
| | - Antonio Dario Troise
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Portici, Italy.
| |
Collapse
|
2
|
Cai C, Song Z, Xu X, Yang X, Wei S, Chen F, Dong X, Zhang X, Zhu Y. The neurotoxicity of acrylamide in ultra-processed foods: interventions of polysaccharides through the microbiota-gut-brain axis. Food Funct 2024. [PMID: 39611232 DOI: 10.1039/d4fo03002h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Ultra-processed foods (UPFs) have become popular in recent years, however, the detrimental effects of their excessive consumption have also become evident. Acrylamide (AA), a processing hazard present in UPFs, can further aggravate the harmful effects of UPFs. AA can cause significant damage to both the intestinal barrier and gut microbiota, thereby affecting the nervous system through the microbiota-gut-brain (MGB) axis. Natural polysaccharides have demonstrated the capacity to significantly alleviate the oxidative stress and inflammatory response associated with AA exposure. In addition, they exhibit neuroprotective properties that may be mediated through the MGB axis. This paper reviews literature on the presence of AA in certain UPFs and its potential to inflict serious harm on the human gut microbiota and brain. Moreover, the possibility of utilizing polysaccharides as a preventative measure against AA-induced neurotoxicity was also proposed. These findings provide new insights into the safety risks associated with the overconsumption of UPFs and highlight the potential of polysaccharides to counteract the neurodegeneration induced by AA.
Collapse
Affiliation(s)
- Chen Cai
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Zheyi Song
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| | - Xinrui Xu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Xin Yang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Siyu Wei
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Xu Dong
- Department of Gynaecology, Beilun People's Hospital, Ningbo 315800, P.R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| |
Collapse
|
3
|
Holmes ZC, Koivusaari K, O'Brien CE, Richeson KV, Strickland LI. Untargeted metabolomic analysis of human milk from healthy mothers reveals drivers of metabolite variability. Sci Rep 2024; 14:20827. [PMID: 39242646 PMCID: PMC11379717 DOI: 10.1038/s41598-024-71677-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Understanding the human milk metabolome can help inform infant nutrition and health. Untargeted metabolomics was used to study breast milk from 31 healthy participants to assess the shared metabolites in milk from participants with various backgrounds and understand how different demographic, health, and environmental factors impact the milk metabolome. Breast milk samples were analyzed by four separate UPLC-MS/MS methods. Metabolite Set Enrichment Analysis was used to study the most and least variable metabolites. The associations between participant factors and the metabolome were assessed with redundancy analyses. Among all 31 participants and between each untargeted UPLC-MS/MS method, 731 metabolites were detected, of which 389 were shared among all participants. Of the shared metabolites, lactose was the least and lactobionate the most variable metabolite. In the biological super pathway analysis, xenobiotics were the most variable metabolites. Infant age, maternal age, number of live births, and pre-pregnancy BMI were associated with the milk metabolome. In conclusion, the most variable metabolites originate from environmental exposures while the well-conserved core metabolites are linked to cell metabolism or are crucial for infant nutrition and osmoregulation. Understanding the variability of the breast milk metabolome can help identify components that are crucial for infant nutrition, growth, and development.
Collapse
|
4
|
Adimas MA, Abera BD, Adimas ZT, Woldemariam HW, Delele MA. Traditional food processing and Acrylamide formation: A review. Heliyon 2024; 10:e30258. [PMID: 38720707 PMCID: PMC11076960 DOI: 10.1016/j.heliyon.2024.e30258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Tradition methods that are applied for the processing of food commonly use relatively high temperature and long cooking time for the preparation of foods. This relatively high temperature and long processing time of foods especially in the presence of carbohydrate is highly associated with the formation of acrylamide. Acrylamide is a process contaminant that is highly toxic to humans and remains as a global issue. The occurrence of acrylamide in traditional foods is a major public health problem. Studies that are conducted in different countries indicated that traditionally processed foods are highly linked to the formation of acrylamide. Therefore, understanding the factors influencing acrylamide formation during traditional food processing techniques is crucial for ensuring food safety and minimizing exposure to this harmful chemical compound. Several research reports indicate that proper food processing is the most effective solution to address food safety concerns by identifying foods susceptible to acrylamide formation. This review aims to provide an overview of traditional food processing techniques and their potential contribution to the formation acrylamide and highlight the importance of mitigating its formation in food products. The information obtained in this review may be of great value to future researchers, policymakers, society, and manufacturers.
Collapse
Affiliation(s)
- Mekuannt Alefe Adimas
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P. O. Box 26, Bahir Dar, Ethiopia
| | - Biresaw Demelash Abera
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P. O. Box 26, Bahir Dar, Ethiopia
| | - Zemenu Tadesse Adimas
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P. O. Box 26, Bahir Dar, Ethiopia
| | - Henock Woldemichael Woldemariam
- Department of Chemical Engineering, College of Engineering, Addis Ababa Science and Technology University, P. O. Box-16417, Addis Ababa, Ethiopia
- Center of Excellence for Biotechnology and Bioprocess, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Mulugeta Admasu Delele
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P. O. Box 26, Bahir Dar, Ethiopia
| |
Collapse
|
5
|
Homayoonfal M, Molavizadeh D, Sadeghi S, Chaleshtori RS. The role of microRNAs in acrylamide toxicity. Front Nutr 2024; 11:1344159. [PMID: 38456012 PMCID: PMC10917983 DOI: 10.3389/fnut.2024.1344159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
The chemical compound known as Acrylamide (AA) is employed in different industries worldwide and is also found in thermal-processed food. AA has been acting as a reproductive toxicant, carcinogen, and neurotoxic in various animals, which may promote several toxic impacts in animal and human species. Up to now, various studies have focused on the harmful mechanisms and intervention actions of AA. However, the underlying mechanisms that AA and its toxic effects can exert have remained uncertain. MicroRNAs (miRNAs) are a class of short, non-coding RNAs that are able to act as epigenetic regulators. These molecules can regulate a wide range of cellular and molecular processes. In this regard, it has been shown that different chemical agents can dysregulate miRNAs. To determine the possible AA targets along with mechanisms of its toxicity, it is helpful to study the alteration in the profiles of miRNA regulation following AA intake. The current research aimed to evaluate the miRNAs' mediatory roles upon the AA's toxic potentials. This review study discussed the AA, which is made within the food matrix, the way it is consumed, and the potential impacts of AA on miRNAs and its association with different cancer types and degenerative diseases. The findings of this review paper indicated that AA might be capable of altering miRNA signatures in different tissues and exerting its carcinogen effects.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Sharafati Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Aschemacher NA, Gegenschatz SA, Teglia CM, Siano ÁS, Gutierrez FA, Goicoechea HC. Highly sensitive and selective electrochemical sensor for simultaneous determination of gallic acid, theophylline and caffeine using poly(l-proline) decorated carbon nanotubes in biological and food samples. Talanta 2024; 267:125246. [PMID: 37774452 DOI: 10.1016/j.talanta.2023.125246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
In this work, a novel, simple and reproducible poly(l-proline)/functionalized multi-walled carbon nanotube composite on glassy carbon electrode (poly(PRO)-MWCNTs/GCE) was developed as an electrochemical sensor for the simultaneous determination of gallic acid (GA), theophylline (TP) and caffeine (CAF) by differential pulse voltammetry (DPV). The sensing platform was optimized by experimental design and response surface methodology, using various factors affecting polymerization and detection, such as electropolymerization time and potential, and pH, respectively. As a result, the dispersion conditions were the mixing of 1.78 mg MWCNTs with 1.00 mL l-proline solution to 4.14 mg mL-1 (in SDBS 0.5%), followed by 21 min of sonication with electropolymerization by 16 cyclic scans. In addition, the final analysis was performed at a pH of 3.00 and prior accumulation at 0.350 V for 40 s. The electrochemical behavior of GA, TP and CAF on the optimized sensor was investigated. As a result, the electrode preserves and synergistically combines the properties of each modifier. This new electrochemical sensor showed superior electrocatalytic properties for the oxidation of GA, TP and CAF, which significantly improved the sensitivity of the three compounds. Under the optimized experimental conditions, the detection limits achieved by S/N were 0.03, 0.04 and 0.11 μmol L-1 for GA, TP and CAF, respectively. The analysis of real samples was successfully performed in human breast milk, tea, infusion of yerba mate, coffee, Coca-Cola zero and energy drink, showing good recoveries, ranged between 87 and 108%. The proposed sensor also showed good selectivity, repeatability and reproducibility, indicating feasibility and reliability. This is the first time that the l-proline monomer is used as a dispersant for MWCNTs and as a precursor for the in-situ polymerization of the proline polymer. Previously, the electropolymerizations were carried out with the monomer in solution rather than as an exfoliant of MWCNTs, where the polymer is electrosynthesized between MWCNTs rather than on them. In this way, the large specific surface area and strong adsorption ability of the nanomaterial are enhanced, and the ability to promote electron transfer reaction is increased, which provides enough effective reaction sites.
Collapse
Affiliation(s)
- Nicolás A Aschemacher
- Laboratorio de Péptidos Bioactivos (LPB), Departamento de Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Sofía A Gegenschatz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Carla M Teglia
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina
| | - Álvaro S Siano
- Laboratorio de Péptidos Bioactivos (LPB), Departamento de Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina
| | - Fabiana A Gutierrez
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina.
| | - Héctor C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina
| |
Collapse
|
7
|
Buyukdere Y, Akyol A. From a toxin to an obesogen: a review of potential obesogenic roles of acrylamide with a mechanistic approach. Nutr Rev 2023; 82:128-142. [PMID: 37155834 PMCID: PMC10711450 DOI: 10.1093/nutrit/nuad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Obesity and obesity-related disorders such as cancer, type 2 diabetes, and fatty liver have become a global health problem. It is well known that the primary cause of obesity is positive energy balance. In addition, obesity is the consequence of complex gene and environment interactions that result in excess calorie intake being stored as fat. However, it has been revealed that there are other factors contributing to the worsening of obesity. The presence of nontraditional risk factors, such as environmental endocrine-disrupting chemicals, has recently been associated with obesity and comorbidities caused by obesity. The aim of this review was to examine the evidence and potential mechanisms for acrylamide having endocrine-disrupting properties contributing to obesity and obesity-related comorbidities. Recent studies have suggested that exposure to environmental endocrine-disrupting obesogens may be a risk factor contributing to the current obesity epidemic, and that one of these obesogens is acrylamide, an environmental and industrial compound produced by food processing, particularly the processing of foods such as potato chips, and coffee. In addition to the known harmful effects of acrylamide in humans and experimental animals, such as neurotoxicity, genotoxicity, and carcinogenicity, acrylamide also has an obesogenic effect. It has been shown in the literature to a limited extent that acrylamide may disrupt energy metabolism, lipid metabolism, adipogenesis, adipocyte differentiation, and various signaling pathways, and may exacerbate the disturbances in metabolic and biochemical parameters observed as a result of obesity. Acrylamide exerts its main potential obesogenic effects through body weight increase, worsening of the levels of obesity-related blood biomarkers, and induction of adipocyte differentiation and adipogenesis. Additional mechanisms may be discovered. Further experimental studies and prospective cohorts are needed, both to supplement existing knowledge about acrylamide and its effects, and to clarify its established relationship with obesity and its comorbidities.
Collapse
Affiliation(s)
- Yucel Buyukdere
- are with the Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| | - Asli Akyol
- are with the Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
8
|
F Fernández S, Poteser M, Govarts E, Pardo O, Coscollà C, Schettgen T, Vogel N, Weber T, Murawski A, Kolossa-Gehring M, Rüther M, Schmidt P, Namorado S, Van Nieuwenhuyse A, Appenzeller B, Ólafsdóttir K, Halldorsson TI, Haug LS, Thomsen C, Barbone F, Mariuz M, Rosolen V, Rambaud L, Riou M, Göen T, Nübler S, Schäfer M, Zarrabi KHA, Sepai O, Martin LR, Schoeters G, Gilles L, Leander K, Moshammer H, Akesson A, Laguzzi F. Determinants of exposure to acrylamide in European children and adults based on urinary biomarkers: results from the "European Human Biomonitoring Initiative" HBM4EU participating studies. Sci Rep 2023; 13:21291. [PMID: 38042944 PMCID: PMC10693547 DOI: 10.1038/s41598-023-48738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023] Open
Abstract
Little is known about exposure determinants of acrylamide (AA), a genotoxic food-processing contaminant, in Europe. We assessed determinants of AA exposure, measured by urinary mercapturic acids of AA (AAMA) and glycidamide (GAMA), its main metabolite, in 3157 children/adolescents and 1297 adults in the European Human Biomonitoring Initiative. Harmonized individual-level questionnaires data and quality assured measurements of AAMA and GAMA (urine collection: 2014-2021), the short-term validated biomarkers of AA exposure, were obtained from four studies (Italy, France, Germany, and Norway) in children/adolescents (age range: 3-18 years) and six studies (Portugal, Spain, France, Germany, Luxembourg, and Iceland) in adults (age range: 20-45 years). Multivariable-adjusted pooled quantile regressions were employed to assess median differences (β coefficients) with 95% confidence intervals (95% CI) in AAMA and GAMA (µg/g creatinine) in relation to exposure determinants. Southern European studies had higher AAMA than Northern studies. In children/adolescents, we observed significant lower AA associated with high socioeconomic status (AAMA:β = - 9.1 µg/g creatinine, 95% CI - 15.8, - 2.4; GAMA: β = - 3.4 µg/g creatinine, 95% CI - 4.7, - 2.2), living in rural areas (AAMA:β = - 4.7 µg/g creatinine, 95% CI - 8.6, - 0.8; GAMA:β = - 1.1 µg/g creatinine, 95% CI - 1.9, - 0.4) and increasing age (AAMA:β = - 1.9 µg/g creatinine, 95% CI - 2.4, - 1.4; GAMA:β = - 0.7 µg/g creatinine, 95% CI - 0.8, - 0.6). In adults, higher AAMA was also associated with high consumption of fried potatoes whereas lower AAMA was associated with higher body-mass-index. Based on this large-scale study, several potential determinants of AA exposure were identified in children/adolescents and adults in European countries.
Collapse
Affiliation(s)
- Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Michael Poteser
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Olga Pardo
- Public Health Directorate of Valencia, Av. Catalunya, 21, 46020, Valencia, Spain
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Nina Vogel
- German Environment Agency (UBA), Dessau-Roßlau, Berlin, Germany
| | - Till Weber
- German Environment Agency (UBA), Dessau-Roßlau, Berlin, Germany
| | - Aline Murawski
- German Environment Agency (UBA), Dessau-Roßlau, Berlin, Germany
| | | | - Maria Rüther
- German Environment Agency (UBA), Dessau-Roßlau, Berlin, Germany
| | | | - Sónia Namorado
- Department of Epidemiology, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Comprehensive Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
- Public Health Research Centre, NOVA National School of Public Health, Universidade NOVA de Lisboa, Lisbon, Portugal
| | | | - Brice Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health (LIH), 1 A-B, Rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Kristín Ólafsdóttir
- Department of Pharmacology and Toxicology, University of Iceland, Reykjavík, Iceland
| | - Thorhallur I Halldorsson
- Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Line S Haug
- Norwegian Institute of Public Health, Lovisenberggata 8, 0456, Oslo, Norway
| | - Cathrine Thomsen
- Norwegian Institute of Public Health, Lovisenberggata 8, 0456, Oslo, Norway
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Ospedale di Cattinara, Strada di Fiume 447, 34149, Trieste, Italy
| | - Marika Mariuz
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Riva Nazario Sauro, 8, 34124, Trieste, Italy
| | - Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Riva Nazario Sauro, 8, 34124, Trieste, Italy
| | - Loïc Rambaud
- Santé Publique France, SpFrance, 12, Rue du Val d'Osne, 94415, Saint-Maurice, France
| | - Margaux Riou
- Santé Publique France, SpFrance, 12, Rue du Val d'Osne, 94415, Saint-Maurice, France
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Stefanie Nübler
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Moritz Schäfer
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Karin H A Zarrabi
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | | | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Karin Leander
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels Väg 13, Box 210, 17177, Stockholm, Sweden
| | - Hanns Moshammer
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Agneta Akesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels Väg 13, Box 210, 17177, Stockholm, Sweden
| | - Federica Laguzzi
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels Väg 13, Box 210, 17177, Stockholm, Sweden.
| |
Collapse
|
9
|
Tüfekci KK, Tatar M. Oleuropein Mitigates Acrylamide-Induced Nephrotoxicity by Affecting Placental Growth Factor Immunoactivity in the Rat Kidney. Eurasian J Med 2023; 55:228-233. [PMID: 37909193 PMCID: PMC10724718 DOI: 10.5152/eurasianjmed.2023.23043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/12/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE Oleuropein is one of the main components of the antioxidant properties of olive leaves. Placental growth factor is an important regulator in angiogenesis and inflammation, its levels being variable in pathological conditions. In this study, we aimed to examine changes in placental growth factor expression and the effect of oleuropein, found in olive leaves, in rats exposed to acrylamide nephrotoxicity. MATERIAL AND METHODS Twenty-four male Wistar albino rats were allocated into 4 groups. The control group received saline solution only. The oleuropein group received oleuropein (4.2 mg/kg), the acrylamide group received acrylamide (5 mg/kg), and the acrylamide and oleuropein group received acrylamide (5 mg/kg) and oleuropein (4.2 mg/kg). All substances were administered via gastric gavage for 21 days. Kidney tissues were removed at the end of the study and subjected to histopathological, stereological, and immunohistochemical procedures. RESULTS Histopathological examination revealed dilatation, vacuolization, and degeneration in the proximal and distal tubules and increased placental growth factor immunoreactivity in the acrylamide group. Cavalieri volume analysis revealed increased cortex, distal, and proximal tubule volumes (P < .01). CONCLUSION Oleuropein significantly attenuated acrylamide-induced kidney injury by altering placental growth factor immunoreactivity. Placental growth factor immunoreactivity can be used as a marker of acrylamide nephrotoxicity, and oleuropein may counteract acrylamide-induced kidney injury.
Collapse
Affiliation(s)
- Kıymet Kübra Tüfekci
- Department of Histology and Embryology, Kastamonu University Faculty of Medicine, Kastamonu Türkiye
| | - Musa Tatar
- Department of Histology and Embryology, Kastamonu University Faculty of Veterinary Medicine, Kastamonu Türkiye
| |
Collapse
|
10
|
Lin YS, Morozov V, Kadry AR, Caffrey J, Chou WC. Reconstructing population exposures to acrylamide from human monitoring data using a pharmacokinetic framework. CHEMOSPHERE 2023; 331:138798. [PMID: 37137393 DOI: 10.1016/j.chemosphere.2023.138798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Acrylamide toxicity involves several metabolic pathways. Thus, a panel of blood and urinary biomarkers for the evaluation of acrylamide exposure was deemed appropriate. OBJECTIVE The study was designed to evaluate daily acrylamide exposure in US adults via hemoglobin adducts and urinary metabolites using a pharmacokinetic framework. METHODS A cohort of 2798 subjects aged 20-79 was selected from the National Health and Nutrition Examination Survey (NHANES, 2013-2016) for analysis. Three acrylamide biomarkers including hemoglobin adducts of acrylamide in blood and two urine metabolites, N-Acetyl-S-(2-carbamoylethyl)cysteine (AAMA) and N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-l-cysteine (GAMA) were used to estimate daily acrylamide exposure using validated pharmacokinetic prediction models. Multivariate regression models were also used to examine key factors in determining estimated acrylamide intake. RESULTS The estimated daily acrylamide exposure varied across the sampled population. Estimated acrylamide daily exposure was comparable among the three different biomarkers (median: 0.4-0.7 μg/kg/d). Cigarette smoking emerged as the leading contributor to the acquired acrylamide dose. Smokers had the highest estimated acrylamide intake (1.20-1.49 μg/kg/d) followed by passive smokers (0.47-0.61) and non-smokers (0.45-0.59). Several covariates, particularly, body mass index and race/ethnicity, played roles in determining estimated exposures. DISCUSSION Estimated daily acrylamide exposures among US adults using multiple acrylamide biomarkers were similar to populations reported elsewhere providing additional support for using the current approach in assessing acrylamide exposure. This analysis assumes that the biomarkers used indicate intake of acrylamide into the body, which is consistent with the substantial known exposures due to diet and smoking. Although this study did not explicitly evaluate background exposure arising from analytical or internal biochemical factors, these findings suggest that the use of multiple biomarkers may reduce uncertainties regarding the ability of any single biomarker to accurately represent actual systemic exposures to the agent. This study also highlights the value of integrating a pharmacokinetic approach into exposure assessments.
Collapse
Affiliation(s)
- Yu-Sheng Lin
- Office of Research and Development, U.S. EPA, Washington, DC, 20460, USA.
| | - Viktor Morozov
- Office of Research and Development, U.S. EPA, Washington, DC, 20460, USA
| | - Abdel-Razak Kadry
- University of Maryland, School of Public Health, College Park, MD, 20742, USA
| | - James Caffrey
- University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Wei-Chun Chou
- University of Florida, Center for Environmental and Human Toxicology, Gainesville, FL, 32610, USA
| |
Collapse
|