1
|
Kinkade CW, Brinker A, Buckley B, Waysack O, Fernandez ID, Kautz A, Meng Y, Shi H, Brunner J, Ohman-Strickland P, Groth SW, O'Connor TG, Aleksunes LM, Barrett ES, Rivera-Núñez Z. Sociodemographic and dietary predictors of maternal and placental mycoestrogen concentrations in a US pregnancy cohort. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00722-6. [PMID: 39363096 DOI: 10.1038/s41370-024-00722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Zearalenone (ZEN) is a mycotoxin contaminating grains and processed foods. ZEN alters nuclear estrogen receptor α/β signaling earning its designation as a mycoestrogen. Experimental evidence demonstrates that mycoestrogen exposure during pregnancy is associated with altered maternal sex steroid hormones, changes in placental size, and decreases in fetal weight and length. While mycoestrogens have been detected in human biospecimens worldwide, exposure assessment of ZEN in US populations, particularly during pregnancy, is lacking. OBJECTIVE To characterize urinary and placental concentrations of ZEN and its metabolites in healthy US pregnant people and examine demographic, perinatal, and dietary predictors of exposure. METHODS Urine samples were collected in each trimester from pregnant participants in the UPSIDE study and placenta samples were collected at delivery (Rochester, NY, n = 317). We used high performance liquid chromatography and high-resolution tandem mass spectrometry to measure total urinary (ng/ml) and placental mycoestrogens (ng/g). Using linear regression and linear mixed effect models, we examined associations between mycoestrogen concentrations and demographic, perinatal, and dietary factors (Healthy Eating Index [HEI], ultra-processed food [UPF] consumption). RESULTS Mycoestrogens were detected in 97% of urines (median 0.323 ng/ml) and 84% of placentas (median 0.012 ng/g). Stability of urinary mycoestrogens across pregnancy was low (ICC: 0.16-0.22) and did not correlate with placental levels. In adjusted models, parity (multiparous) and pre-pregnancy BMI (higher) predicted higher urinary concentrations. Birth season (fall) corresponded with higher placental mycoestrogens. Dietary analyses indicated that higher HEI (healthier diets) predicted lower exposure (e.g., Σmycoestrogens %∆ -2.03; 95%CI -3.23, -0.81) and higher percent calories from UPF predicted higher exposure (e.g., Σmycoestrogens %∆ 1.26; 95%CI 0.29, 2.24). IMPACT The mycotoxin, zearalenone (ZEN), has been linked to adverse health and reproductive impacts in animal models and livestock. Despite evidence of widespread human exposure, relatively little is known about predictors of exposure. In a pregnant population, we observed that maternal ZEN concentrations varied by maternal pre-pregnancy BMI and parity. Consumption of ultra-processed foods, added sugars, and refined grains were linked to higher ZEN concentrations while healthier diets were associated with lower levels. Our research suggests disparities in exposure that are likely due to diet. Further research is needed to understand the impacts of ZEN on maternal and offspring health.
Collapse
Affiliation(s)
- Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA.
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Olivia Waysack
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - I Diana Fernandez
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Amber Kautz
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Ying Meng
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Huishan Shi
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Pamela Ohman-Strickland
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Susan W Groth
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Psychiatry, University of Rochester, Rochester, NY, USA
| | - Lauren M Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| |
Collapse
|
2
|
Xiao J, Tan J, Guo R, Dai J, Xiu Z, Sun Y, Liu H, Li Y, Tong Y, Quan C. Deoxynivalenol Detoxification by a Novel Strain of Pichia kudriavzevii via Enzymatic Degradation and Cell Wall Adsorption. Appl Biochem Biotechnol 2024; 196:3102-3114. [PMID: 37624506 DOI: 10.1007/s12010-023-04712-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin that significantly threatens the food and feed industry. Corn steep liquor (CSL) is an acidic byproduct of the corn starch industry, and DON is concentrated in CSL once the material is contaminated. In this work, a Pichia kudriavzevii strain that could remove DON from CSL was isolated and characterized. The strain P. kudriavzevii E4-205 showed detoxifying activity in a pH range of 4.0~7.0 and temperature of 25~42 °C, and 39.4% DON was reduced by incubating this strain in CSL supernatant diluted by 2-fold (5 μg/mL DON) for 48 h at pH 5.0 and 30 °C. Further mechanism studies showed that P. kudriavzevii E4-205 could adsorb DON by the cell wall and degrade DON by intracellular enzymes with NADH as a cofactor. The degradation product was identified as 3,7,8,15-tetrahydroxyscirpene by liquid chromatography-tandem mass spectrometry. DON adsorption by inactivated cells was characterized, and the adsorption followed pseudo first-order kinetics. This study revealed a novel mechanism by which microbes degrade DON and might serve as a guide for the development of DON biological detoxification methods.
Collapse
Affiliation(s)
- Jiaqi Xiao
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Jian Tan
- COFCO Nutrition & Health Research Institute, Beijing, 102209, People's Republic of China
| | - Ruyi Guo
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Jianying Dai
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, People's Republic of China.
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Yaqin Sun
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Haijun Liu
- Jilin COFCO Biochemistry Co., Ltd., National Engineering Research Center of Corn Deep Processing, Changchun, 130033, People's Republic of China
| | - Yi Li
- Jilin COFCO Biochemistry Co., Ltd., National Engineering Research Center of Corn Deep Processing, Changchun, 130033, People's Republic of China
| | - Yi Tong
- Jilin COFCO Biochemistry Co., Ltd., National Engineering Research Center of Corn Deep Processing, Changchun, 130033, People's Republic of China.
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian, 116650, People's Republic of China
| |
Collapse
|
3
|
Zheng Y, Gao B, Wu J, Wang X, Han B, Tao H, Liu J, Wang Z, Wang J. Degradation of deoxynivalenol by a microbial consortia C1 from duck intestine. Mycotoxin Res 2024; 40:147-158. [PMID: 38064000 DOI: 10.1007/s12550-023-00511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 02/02/2024]
Abstract
Deoxynivalenol (DON), one of the most widespread mycotoxins in food and feed, poses a persistent health threat to humans and farm animals, and is difficult to eliminate. The utilization of the biotransformation mechanism by microorganisms to detoxify DON is a promising strategy. Although individual strains are capable of DON degradation, their isolation and purification are challenging and time-consuming. Recently, the microbial consortia concept has been proposed, owing to their ability to perform more complex tasks and are more tolerant to environmental changes than individual strains or species. In this study, the novel microbial consortia C1 that could efficiently convert DON to de-epoxy DON (DOM-1) was screened from the cecum contents of ducks. After 24 h anaerobic incubation, 100 μg/ml DON was completely degraded by C1. In vitro, C1 can effectively degrade DON in corn steep liquor (CSL) with an efficiency of 49.44% within 14 days. Furthermore, C1 effectively alleviated the DON poisoning in mice. After C1 treatment, the serum DON level decreased by 40.39%, and the reduction in serum total protein and albumin levels were mitigated. Additionally, C1 is effective in protecting the mouse liver against 5 mg/kg DON. These findings suggest that C1 could be a promising DON biological detoxifier and provide novel microbial resources for preventing DON contamination.
Collapse
Affiliation(s)
- Yunduo Zheng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Boquan Gao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jianwen Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Bing Han
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Hui Tao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jie Liu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhenlong Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China.
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China.
| | - Jinquan Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China.
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
4
|
Mesterhazy A. Food Safety Aspects of Breeding Maize to Multi-Resistance against the Major (Fusarium graminearum, F. verticillioides, Aspergillus flavus) and Minor Toxigenic Fungi ( Fusarium spp.) as Well as to Toxin Accumulation, Trends, and Solutions-A Review. J Fungi (Basel) 2024; 10:40. [PMID: 38248949 PMCID: PMC10817526 DOI: 10.3390/jof10010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Maize is the crop which is most commonly exposed to toxigenic fungi that produce many toxins that are harmful to humans and animals alike. Preharvest grain yield loss, preharvest toxin contamination (at harvest), and storage loss are estimated to be between 220 and 265 million metric tons. In the past ten years, the preharvest mycotoxin damage was stable or increased mainly in aflatoxin and fumonisins. The presence of multiple toxins is characteristic. The few breeding programs concentrate on one of the three main toxigenic fungi. About 90% of the experiments except AFB1 rarely test toxin contamination. As disease resistance and resistance to toxin contamination often differ in regard to F. graminearum, F. verticillioides, and A. flavus and their toxins, it is not possible to make a food safety evaluation according to symptom severity alone. The inheritance of the resistance is polygenic, often mixed with epistatic and additive effects, but only a minor part of their phenotypic variation can be explained. All tests are made by a single inoculum (pure isolate or mixture). Genotype ranking differs between isolates and according to aggressiveness level; therefore, the reliability of such resistance data is often problematic. Silk channel inoculation often causes lower ear rot severity than we find in kernel resistance tests. These explain the slow progress and raise skepticism towards resistance breeding. On the other hand, during genetic research, several effective putative resistance genes were identified, and some overlapped with known QTLs. QTLs were identified as securing specific or general resistance to different toxicogenic species. Hybrids were identified with good disease and toxin resistance to the three toxigenic species. Resistance and toxin differences were often tenfold or higher, allowing for the introduction of the resistance and resistance to toxin accumulation tests in the variety testing and the evaluation of the food safety risks of the hybrids within 2-3 years. Beyond this, resistance breeding programs and genetic investigations (QTL-analyses, GWAM tests, etc.) can be improved. All other research may use it with success, where artificial inoculation is necessary. The multi-toxin data reveal more toxins than we can treat now. Their control is not solved. As limits for nonregulated toxins can be introduced, or the existing regulations can be made to be stricter, the research should start. We should mention that a higher resistance to F. verticillioides and A. flavus can be very useful to balance the detrimental effect of hotter and dryer seasons on aflatoxin and fumonisin contamination. This is a new aspect to secure food and feed safety under otherwise damaging climatic conditions. The more resistant hybrids are to the three main agents, the more likely we are to reduce the toxin losses mentioned by about 50% or higher.
Collapse
Affiliation(s)
- Akos Mesterhazy
- Cereal Research Non-Profit Ltd., Alsokikotosor 9, 6726 Szeged, Hungary
| |
Collapse
|
5
|
Almeida NA, Freire L, Carnielli-Queiroz L, Bragotto APA, Silva NCC, Rocha LO. Essential oils: An eco-friendly alternative for controlling toxigenic fungi in cereal grains. Compr Rev Food Sci Food Saf 2024; 23:e13251. [PMID: 38284600 DOI: 10.1111/1541-4337.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 01/30/2024]
Abstract
Fungi are widely disseminated in the environment and are major food contaminants, colonizing plant tissues throughout the production chain, from preharvest to postharvest, causing diseases. As a result, grain development and seed germination are affected, reducing grain quality and nutritional value. Some fungal species can also produce mycotoxins, toxic secondary metabolites for vertebrate animals. Natural compounds, such as essential oils, have been used to control fungal diseases in cereal grains due to their antimicrobial activity that may inhibit fungal growth. These compounds have been associated with reduced mycotoxin contamination, primarily related to reducing toxin production by toxigenic fungi. However, little is known about the mechanisms of action of these compounds against mycotoxigenic fungi. In this review, we address important information on the mechanisms of action of essential oils and their antifungal and antimycotoxigenic properties, recent technological strategies for food industry applications, and the potential toxicity of essential oils.
Collapse
Affiliation(s)
- Naara A Almeida
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Luísa Freire
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul. Cidade Universitária, Campo Grande, Mato Grosso do Sul, Brazil
| | - Lorena Carnielli-Queiroz
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória-Espírito Santo, Brazil
| | - Adriana P A Bragotto
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Nathália C C Silva
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Liliana O Rocha
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
6
|
Tanveer ZI, Ahmad K, Dong Z, Chen Y, Liu X, Wu Y, Xu T. Evaluation of reduced graphene oxide-based nanomaterial as dispersive solid phase extraction sorbent for isolation and purification of aflatoxins from poultry feed, combined with UHPLC-MS/MS analysis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1035-1048. [PMID: 37459595 DOI: 10.1080/19440049.2023.2232896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 08/12/2023]
Abstract
Poultry feed comprises cereals and their by-products and is vulnerable to aflatoxins contamination. This study utilised reduced graphene oxide-titanium dioxide (rGO-TiO2) nanomaterial as a dispersive solid phase extraction (d-SPE) adsorbent to extract, enrich and purify aflatoxins (aflatoxin B1, aflatoxin B2, aflatoxin G1 and aflatoxin G2). The synthesis of rGO-TiO2 nanomaterials through hydrothermal process and characterisation by transmission electron microscopy, scanning electron microscopy, Brunauer-Emmett-Teller (BET) and X-ray diffraction reveals that the nanomaterials have a single-layer structure embedded with TiO2 nanoparticles. The matrix-spiked technique was employed for the extraction process, optimisation of d-SPE, and analytical method validation. The most appropriate extraction solvent was acetonitrile/water/formic acid (79/20/1, v/v/v), with 30 min of extraction time assisted by ultra-sonication. The optimised d-SPE parameters were: 50 mg of rGO-TiO2 as sorbent amount, 2% methanol as the sample loading solvent, 30 min as adsorption time, and absolute ethanol as the washing reagent. The d-SPE method exhibited good desorption efficiency with 3 mL of acetonitrile/formic acid (99/1, v/v) and 20 min desorption time. After validation, the UHPLC-MS/MS analytical method has an acceptable range of specificity, linearity (R2 ≥ 0.999), sensitivity (LOQ 0.04-0.1 µg kg-1), recoveries (74-105% at three matrix-spiked levels) and precision (RSD 1.5-9.6%). Poultry feed samples (n = 12) were pretreated by this method to extract, enrich and analyse aflatoxins, which were detected in all poultry feed samples. The contamination levels were within the permissible limits.
Collapse
Affiliation(s)
- Zafar Iqbal Tanveer
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- National Veterinary Laboratories, Ministry of National Food Security and Research, Islamabad, Pakistan
| | - Khurshid Ahmad
- National Veterinary Laboratories, Ministry of National Food Security and Research, Islamabad, Pakistan
| | - Ziliang Dong
- Chongqing Taiji Industry (Group) Co., Ltd., Chongqing, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuesong Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tenfei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Chang J, Luo H, Li L, Zhang J, Harvey J, Zhao Y, Zhang G, Liu Y. Mycotoxin risk management in maize gluten meal. Crit Rev Food Sci Nutr 2023; 64:7687-7706. [PMID: 36995226 DOI: 10.1080/10408398.2023.2190412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Maize gluten meal (MGM) is a by-product of maize starch and ethanol, produced by the wet milling process. Its high protein content makes it a preferred ingredient in feed. Given the high prevalence of mycotoxins in maize globally, they pose a significant challenge to use of MGM for feed: wet milling could concentrate certain mycotoxins in gluten components, and mycotoxin consumption affects animal health and can contaminate animal-source foods. To help confront this issue, this paper summarizes mycotoxin occurrence in maize, distribution during MGM production and mycotoxin risk management strategies for MGM through a comprehensive literature review. Available data emphasize the importance of mycotoxin control in MGM and the necessity of a systematic control approach, which includes: good agriculture practices (GAP) in the context of climate change, degradation of mycotoxin during MGM processing with SO2 and lactic acid bacteria (LAB) and the prospect of removing or detoxifying mycotoxins using emerging technologies. In the absence of mycotoxin contamination, MGM represents a safe and economically critical component of global animal feed. With a holistic risk assessment-based, seed-to-MGM-feed systematic approach to reducing and decontaminating mycotoxins in maize, costs and negative health impacts associated with MGM use in feed can be effectively reduced.
Collapse
Affiliation(s)
- Jinghua Chang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Hao Luo
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Lin Li
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Junnan Zhang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Jagger Harvey
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Yueju Zhao
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Guangtao Zhang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
8
|
Guan X, Feng Y, Suo D, Xiao Z, Wang S, Liang Y, Fan X. Simultaneous Determination of 11 Mycotoxins in Maize via Multiple-Impurity Adsorption Combined with Liquid Chromatography-Tandem Mass Spectrometry. Foods 2022; 11:foods11223624. [PMID: 36429216 PMCID: PMC9689081 DOI: 10.3390/foods11223624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, multiple-impurity adsorption purification (MIA) technologies and liquid chromatography−tandem mass spectrometry (LC-MS/MS) were used to establish a method for detecting 11 mycotoxins in maize. The conditions for mass spectrometry and MIA were optimized. Maize was extracted with 70% acetonitrile solution, enriched, and purified using MIA technologies, and then, analyzed via LC-MS/MS. The results showed that the linear correlation coefficients of the 11 mycotoxins were >0.99, the sample recoveries ranged from 77.5% to 98.4%, and the relative standard deviations were <15%. The validated method was applied to investigate actual samples, and the results showed that the main contaminating toxins in maize were aflatoxins (AFs), deoxynivalenol (DON), fumonisins (FBs), ochratoxin A (OTA), and zearalenone (ZEN). Additionally, simultaneous contamination by multiple toxins was common. The maximum detection values of the mycotoxins were 77.65, 1280.18, 200,212.41, 9.67, and 526.37 μg/kg for AFs, DON, FBs, OTA, and ZEN, respectively. The method is simple in pre-treatment, convenient in operation, and suitable for the simultaneous determination of 11 types of mycotoxins in maize.
Collapse
Affiliation(s)
- Xin Guan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163000, China
- Institute of Agricultural Quality Standards and Testing Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuchao Feng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163000, China
- Institute of Agricultural Quality Standards and Testing Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Decheng Suo
- Institute of Agricultural Quality Standards and Testing Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiming Xiao
- Institute of Agricultural Quality Standards and Testing Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shi Wang
- Institute of Agricultural Quality Standards and Testing Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Liang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163000, China
- Correspondence: (Y.L.); (X.F.)
| | - Xia Fan
- Institute of Agricultural Quality Standards and Testing Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.L.); (X.F.)
| |
Collapse
|
9
|
Yang D, Ye Y, Sun J, Wang JS, Huang C, Sun X. Occurrence, transformation, and toxicity of fumonisins and their covert products during food processing. Crit Rev Food Sci Nutr 2022; 64:3660-3673. [PMID: 36239314 DOI: 10.1080/10408398.2022.2134290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fumonisins comprise structurally related metabolites mainly produced by Fusarium verticillioides and Fusarium proliferatum. Contamination with fumonisins causes incalculable damage to the economy and poses a great risk to animal and human health. Fumonisins and their covert products are found in cereals and cereal products. Food processing significantly affects the degradation of toxins and the formation of covert toxins. However, studies on fumonisins and their covert mycotoxins remain inadequate. This review aims to summarize changes in fumonisins and the generation of covert fumonisins during processing. It also investigates the toxicity and determination methods of fumonisins and covert fumonisins, and elucidates the factors affecting fumonisins and their covert forms during processing. In addition to the metabolic production by plants and fungi, covert fumonisins are mainly produced by covalent or noncovalent binding, complexation, or physical entrapment of fumonisins with other substances. The toxicity of covert fumonisins is similar to that of free fumonisins and is a non-negligible hazard. Covert fumonisins are commonly found in food matrices, and methods to analyze them have yet to be improved. Food processing significantly affects the conversion of fumonisins to their covert toxins.
Collapse
Affiliation(s)
- Diaodiao Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Caihong Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Li F, Duan X, Zhang L, Jiang D, Zhao X, Meng E, Yi R, Liu C, Li Y, Wang JS, Zhao X, Li W, Zhou J. Mycotoxin surveillance on wheats in Shandong province, China, reveals non-negligible probabilistic health risk of chronic gastrointestinal diseases posed by deoxynivalenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71826-71839. [PMID: 35604603 DOI: 10.1007/s11356-022-20812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Abnormal climate changes have resulted in over-precipitation in many regions. The occurrence and contamination levels of mycotoxins in crops and cereals have been elevated largely. From 2017 to 2019, we did investigation targeting 15 mycotoxins shown in the wheat samples collected from Shandong, a region suffering over-precipitation in China. We found that deoxynivalenol (DON) was the dominant mycotoxin contaminating wheats, with detection rates 304/340 in 2017 (89.41%), 303/330 in 2018 (91.82%), and 303/340 in 2019 (89.12%). The ranges of DON levels were < 4 to 580 μg/kg in 2017, < 4 to 3070 μg/kg in 2018, and < 4 to 1540 μg/kg in 2019. The exposure levels were highly correlated with local precipitation. Male exposure levels were generally higher than female's, with significant difference found in 2017 (1.89-fold, p = 0.023). Rural exposure levels were higher than that of cities but not statistically significant (1.41-fold, p = 0.13). Estimated daily intake (EDI) and margin of exposure (MoE) approaches revealed that 8 prefecture cities have probabilistically extra adverse health effects (vomiting or diarrhea) cases > 100 patients in 100,000 residents attributable to DON exposure. As a prominent wheat-growing area, Dezhou city reached ~ 300/100,000 extra cases while being considered as a major regional contributor to DON contamination. Our study suggests that more effort should be given to the prevention and control of DON contamination in major wheat-growing areas, particularly during heavy precipitation year. The mechanistic association between DON and chronic intestinal disorder/diseases should be further investigated.
Collapse
Affiliation(s)
- Fenghua Li
- Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
- Department of Chemistry and Physics, Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Xinglan Duan
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Liwen Zhang
- Department of Toxicology and Nutrition, School of Public Health, Shandong University, Jinan, 250012, China
| | - Dafeng Jiang
- Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
- Department of Chemistry and Physics, Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Xianqi Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - En Meng
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ran Yi
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yirui Li
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Shandong University, Jinan, 250012, China
| | - Wei Li
- Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
- Department of Chemistry and Physics, Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Jun Zhou
- Department of Toxicology and Nutrition, School of Public Health, Shandong University, Jinan, 250012, China.
| |
Collapse
|
11
|
Jing S, Liu C, Zheng J, Dong Z, Guo N. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct 2022; 13:10374-10400. [PMID: 36165278 DOI: 10.1039/d2fo01545e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite mainly produced by fungi of the genus Fusarium, and is often present in various food and feed ingredients such as corn and wheat. The structure of ZEN is similar to that of natural estrogen, and it can bind to estrogen receptors and has estrogenic activity. Therefore, it can cause endocrine-disrupting effects and promote the proliferation of estrogen receptor-positive cell lines. In addition, ZEN can cause oxidative damage, endoplasmic reticulum stress, apoptosis, and other hazards, resulting in systemic toxic effects, including reproductive toxicity, hepatotoxicity, and immunotoxicity. In the past few decades, researchers have tried many ways to remove ZEN from food and feed, but it is still a challenge to eliminate it. In recent years, natural compounds have become of interest for their excellent protective effects on human health from food contaminants. Researchers have discovered that natural compounds often used as dietary supplements can effectively alleviate ZEN-induced systemic toxic effects. Most of the compounds mitigate ZEN-induced toxicity through antioxidant effects. In this article, the contamination of food and feed by ZEN and the various toxic effects and mechanisms of ZEN are reviewed, as well as the mitigation effects of natural compounds on ZEN-induced toxicity.
Collapse
Affiliation(s)
- Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jian Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhijian Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
12
|
Mackay N, Marley E, Leeman D, Poplawski C, Donnelly C. Analysis of Aflatoxins, Fumonisins, Deoxynivalenol, Ochratoxin A, Zearalenone, HT-2, and T-2 Toxins in Animal Feed by LC-MS/MS Using Cleanup with a Multi-Antibody Immunoaffinity Column. J AOAC Int 2022; 105:1330-1340. [PMID: 35258598 PMCID: PMC9446684 DOI: 10.1093/jaoacint/qsac035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Regulations limiting aflatoxin levels in animal feed and guidance values for maximum levels for fumonisins (FB1 and FB2), deoxynivalenol (DON), ochratoxin A (OTA), zearalenone (ZON), HT-2, and T-2 toxins are in place both to protect animal health and to minimize potential transfer to animal products for human consumption. A multi-mycotoxin method which can handle complex feed matrices such as distillers dried grains with solubles (DDGS) is essential for analysis and accurate quantification without the need to revert to separately analyze individual mycotoxins. OBJECTIVE The objective of this study is to generate single laboratory validation data for a method employing a multi-antibody immunoaffinity column (IAC) capable of providing cleanup for eleven mycotoxins, followed by LC-MS/MS quantification without the need for isotopic labelled and matrix-matched standards. The applicability of method is to be demonstrated for corn feed, pig feed, and DDGS by fortification and naturally occurring mycotoxins covering the range of regulated limits. METHODS Feed sample (1 kg) ground by milling to approximately 1-2 mm particle size and sub-sample (5 g) extracted with acetonitrile-water-formic acid, passing through a multi-mycotoxin IAC, washing, and eluting prior to LC-MS/MS analysis monitoring selected ion transitions. RESULTS Recoveries were in the range 74 to 117% (excluding five outliers) for aflatoxins, FB1, FB2, DON, OTA, ZON, HT-2, and T2- toxins spiked into three commercial animal feed matrixes (n = 84) and within-day RSDs averaged 1.7 to 10.3% (n = 99). CONCLUSION Single laboratory validation of a multi-antibody IAC method coupled with LC-MS/MS has shown the method to be suitable for accurate quantification of eleven regulated mycotoxins in DDGS, pig feed, and poultry feed. HIGHLIGHTS IAC method capable of accurately quantifying eleven regulated mycotoxins in complex feed matrices.
Collapse
Affiliation(s)
- Naomi Mackay
- R-Biopharm Rhone Ltd, Block 10, Todd Campus, West of Scotland Science Park, Acre Rd, Glasgow G20 0XA, UK
| | - Elaine Marley
- R-Biopharm Rhone Ltd, Block 10, Todd Campus, West of Scotland Science Park, Acre Rd, Glasgow G20 0XA, UK
| | - Dave Leeman
- R-Biopharm Rhone Ltd, Block 10, Todd Campus, West of Scotland Science Park, Acre Rd, Glasgow G20 0XA, UK
| | - Cezary Poplawski
- R-Biopharm Rhone Ltd, Block 10, Todd Campus, West of Scotland Science Park, Acre Rd, Glasgow G20 0XA, UK
| | - Carol Donnelly
- R-Biopharm Rhone Ltd, Block 10, Todd Campus, West of Scotland Science Park, Acre Rd, Glasgow G20 0XA, UK
| |
Collapse
|
13
|
Hoffmans Y, Schaarschmidt S, Fauhl-Hassek C, van der Fels-Klerx H. Factors during Production of Cereal-Derived Feed That Influence Mycotoxin Contents. Toxins (Basel) 2022; 14:301. [PMID: 35622548 PMCID: PMC9143035 DOI: 10.3390/toxins14050301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Mycotoxins are naturally present in cereal-based feed materials; however, due to adverse effects on animal health, their presence in derived animal feed should be minimized. A systematic literature search was conducted to obtain an overview of all factors from harvest onwards influencing the presence and concentration of mycotoxins in cereal-based feeds. The feed production processes covered included the harvest time, post-harvest practices (drying, cleaning, storage), and processing (milling, mixing with mycotoxin binders, extrusion cooking, ensiling). Delayed harvest supports the production of multiple mycotoxins. The way feed materials are dried after harvest influences the concentration of mycotoxins therein. Applying fungicides on the feed materials after harvest as well as cleaning and sorting can lower the concentration of mycotoxins. During milling, mycotoxins might be redistributed in cereal feed materials and fractions thereof. It is important to know which parts of the cereals are used for feed production and whether or not mycotoxins predominantly accumulate in these fractions. For feed production, mostly the milling fractions with outer parts of cereals, such as bran and shorts, are used, in which mycotoxins concentrate during processing. Wet-milling of grains can lower the mycotoxin content in these parts of the grain. However, this is typically accompanied by translocation of mycotoxins to the liquid fractions, which might be added to by-products used as feed. Mycotoxin binders can be added during mixing of feed materials. Although binders do not remove mycotoxins from the feed, the mycotoxins become less bioavailable to the animal and, in the case of food-producing animals, to the consumer, lowering the adverse effects of mycotoxins. The effect of extruding cereal feed materials is dependent on several factors, but in principle, mycotoxin contents are decreased after extrusion cooking. The results on ensiling are not uniform; however, most of the data show that mycotoxin production is supported during ensiling when oxygen can enter this process. Overall, the results of the literature review suggest that factors preventing mycotoxin production have greater impact than factors lowering the mycotoxin contents already present in feed materials.
Collapse
Affiliation(s)
- Yvette Hoffmans
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands;
| | - Sara Schaarschmidt
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany; (S.S.); (C.F.-H.)
| | - Carsten Fauhl-Hassek
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany; (S.S.); (C.F.-H.)
| | | |
Collapse
|
14
|
Ramalho RR, Pereira I, da S. Lima G, dos Santos GF, Maciel LI, Simas RC, Vaz BG. Fumonisin B1 analysis in maize by Molecularly Imprinted Polymer Paper Spray Ionization Mass Spectrometry (MIP-PSI-MS). J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Narváez A, Castaldo L, Izzo L, Pallarés N, Rodríguez-Carrasco Y, Ritieni A. Deoxynivalenol contamination in cereal-based foodstuffs from Spain: Systematic review and meta-analysis approach for exposure assessment. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108521] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Zhang S, Liu S, Zeng W, Long W, Nie Y, Xu Y, Yang F, Wang L. The Risk Monitoring of Aflatoxins and Ochratoxin A in Critical Control Point of Soy Sauce Aroma-Type Baijiu Production. Toxins (Basel) 2021; 13:toxins13120876. [PMID: 34941714 PMCID: PMC8704840 DOI: 10.3390/toxins13120876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
Soy sauce aroma-type baijiu-producing regions are mostly in southwest China (Guizhou and Sichuan province) with a hot and humid subtropical monsoon climate, which is conducive to the propagation of toxigenic fungi. This suggests that there is a risk of potential contamination by mycotoxins in the soy sauce aroma-type baijiu production process, which poses significant food safety risks. Few studies on the safety of mycotoxins in soy sauce aroma-type baijiu production exist. Aiming to evaluate the safety of mycotoxins in soy sauce aroma-type baijiu during its production, this study screened and analyzed mycotoxic risk at critical points throughout the production process, investigated from raw materials, daqu, alcoholic fermentative grains, crude baijiu and microbial communities in different stages of the production process. The aflatoxins (AFs) and ochratoxin A (OTA) contents in wheat, daqu, alcoholic fermentative grains and crude baijiu samples were detected by ultra-performance liquid chromatography with tandem mass spectrometry. Mycotoxins were detected in wheat, daqu and alcoholic fermentative grains. The AFs and OTA detection rates, as well as their contents in the daqu samples, were relatively higher compared to those observed in the wheat and alcoholic fermentative grains. AFs were detected in 30% of the daqu samples, while OTA was detected in 20% of the daqu samples, though the contents of both AFs and OTA were under the maximum limit of the Chinese national standard. Furthermore, the fungi contained in daqu samples were isolated and identified, and the results showed that no fungi in the separated bacterial strains were producers of mycotoxins. According to the assessment results, the safety of soy sauce aroma-type baijiu production process in terms of AFs and OTA is confirmed.
Collapse
Affiliation(s)
- Siyu Zhang
- Kweichow Moutai Co., Ltd., Renhuai 564500, China; (S.Z.); (S.L.); (W.Z.); (W.L.); (Y.N.)
| | - Song Liu
- Kweichow Moutai Co., Ltd., Renhuai 564500, China; (S.Z.); (S.L.); (W.Z.); (W.L.); (Y.N.)
| | - Wenwen Zeng
- Kweichow Moutai Co., Ltd., Renhuai 564500, China; (S.Z.); (S.L.); (W.Z.); (W.L.); (Y.N.)
| | - Weiyun Long
- Kweichow Moutai Co., Ltd., Renhuai 564500, China; (S.Z.); (S.L.); (W.Z.); (W.L.); (Y.N.)
| | - Ye Nie
- Kweichow Moutai Co., Ltd., Renhuai 564500, China; (S.Z.); (S.L.); (W.Z.); (W.L.); (Y.N.)
| | - Yan Xu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
| | - Fan Yang
- Kweichow Moutai Co., Ltd., Renhuai 564500, China; (S.Z.); (S.L.); (W.Z.); (W.L.); (Y.N.)
- Correspondence: (F.Y.); (L.W.)
| | - Li Wang
- Kweichow Moutai Co., Ltd., Renhuai 564500, China; (S.Z.); (S.L.); (W.Z.); (W.L.); (Y.N.)
- Correspondence: (F.Y.); (L.W.)
| |
Collapse
|
17
|
Leite M, Freitas A, Silva AS, Barbosa J, Ramos F. Maize food chain and mycotoxins: A review on occurrence studies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Weaver AC, Weaver DM, Adams N, Yiannikouris A. Co-Occurrence of 35 Mycotoxins: A Seven-Year Survey of Corn Grain and Corn Silage in the United States. Toxins (Basel) 2021; 13:toxins13080516. [PMID: 34437387 PMCID: PMC8402310 DOI: 10.3390/toxins13080516] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/04/2022] Open
Abstract
Mycotoxins contaminate crops worldwide and play a role in animal health and performance. Multiple mycotoxins may co-occur which may increase the impact on the animal. To assess the multiple mycotoxin profile of corn (Zea mays), we conducted a 7-year survey of new crop corn grain and silage in the United States. A total of 711 grain and 1117 silage samples were collected between 2013 and 2019 and analyzed for the simultaneous presence of 35 mycotoxins using ultra-performance liquid chromatography–tandem mass spectrometry. The measured mean number of mycotoxins per sample were 4.8 (grain) and 5.2 (silage), ranging from 0 to 13. Fusaric acid (FA) was most frequently detected in 78.1 and 93.8% of grains and silages, respectively, followed by deoxynivalenol (DON) in 75.7 and 88.2% of samples. Fumonisin B1 (FB1), fumonisin B2 and 15-acetyl-deoxynivalenol (15ADON) followed. The greatest (p < 0.05) co-occurrence was between FA and DON in 59.1% of grains and 82.7% of silages, followed by FA with FB1, DON with 15ADON, and FA with 15ADON. Although many samples had lower mycotoxin concentrations, 1.6% (grain) and 7.9% (silage) of tested samples had DON ≥ 5000 µg/kg. Fumonisins were detected ≥ 10,000 µg/kg in 9.6 and 3.9% of grain and silage samples, respectively. Concentrations in grain varied by year for eight mycotoxin groups (p < 0.05), while all 10 groups showed yearly variations in silage. Our survey suggest that multiple mycotoxins frequently co-occur in corn grain and silage in the United States, and some of the more prevalent mycotoxins are those that may not be routinely analyzed (i.e., FA and 15ADON). Assessment of multiple mycotoxins should be considered when developing management programs.
Collapse
Affiliation(s)
- Alexandra C. Weaver
- Alltech Inc., 3031 Catnip Hill Road, Nicholasville, KY 40356, USA;
- Correspondence:
| | | | | | | |
Collapse
|
19
|
Mirón-Mérida VA, Gong YY, Goycoolea FM. Aptamer-based detection of fumonisin B1: A critical review. Anal Chim Acta 2021; 1160:338395. [PMID: 33894965 DOI: 10.1016/j.aca.2021.338395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 01/07/2023]
Abstract
Mycotoxin contamination is a current issue affecting several crops and processed products worldwide. Among the diverse mycotoxin group, fumonisin B1 (FB1) has become a relevant compound because of its adverse effects in the food chain. Conventional analytical methods previously proposed to quantify FB1 comprise LC-MS, HPLC-FLD and ELISA, while novel approaches integrate different sensing platforms and fluorescently labelled agents in combination with antibodies. Nevertheless, such methods could be expensive, time-consuming and require experience. Aptamers (ssDNA) are promising alternatives to overcome some of the drawbacks of conventional analytical methods, their high affinity through specific aptamer-target binding has been exploited in various designs attaining favorable limits of detection (LOD). So far, two aptamers specific to FB1 have been reported, and their modified and shortened sequences have been explored for a successful target quantification. In this critical review spanning the last eight years, we have conducted a systematic comparison based on principal component analysis of the aptamer-based techniques for FB1, compared with chromatographic, immunological and other analytical methods. We have also conducted an in-silico prediction of the folded structure of both aptamers under their reported conditions. The potential of aptasensors for the future development of highly sensitive FB1 testing methods is emphasized.
Collapse
Affiliation(s)
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
20
|
Optimization and Validation of an Analytical Method for the Determination of Free and Hidden Fumonisins in Corn and Corn Products by UHPLC-MS/MS. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
|
22
|
Delaunay N, Combès A, Pichon V. Immunoaffinity Extraction and Alternative Approaches for the Analysis of Toxins in Environmental, Food or Biological Matrices. Toxins (Basel) 2020; 12:toxins12120795. [PMID: 33322240 PMCID: PMC7764248 DOI: 10.3390/toxins12120795] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The evolution of instrumentation in terms of separation and detection allowed a real improvement of the sensitivity and analysis time. However, the analysis of ultra-traces of toxins in complex samples requires often a step of purification and even preconcentration before their chromatographic analysis. Therefore, immunoaffinity sorbents based on specific antibodies thus providing a molecular recognition mechanism appear as powerful tools for the selective extraction of a target molecule and its structural analogs to obtain more reliable and sensitive quantitative analysis in environmental, food or biological matrices. This review focuses on immunosorbents that have proven their efficiency in selectively extracting various types of toxins of various sizes (from small mycotoxins to large proteins) and physicochemical properties. Immunosorbents are now commercially available, and their use has been validated for numerous applications. The wide variety of samples to be analyzed, as well as extraction conditions and their impact on extraction yields, is discussed. In addition, their potential for purification and thus suppression of matrix effects, responsible for quantification problems especially in mass spectrometry, is presented. Due to their similar properties, molecularly imprinted polymers and aptamer-based sorbents that appear to be an interesting alternative to antibodies are also briefly addressed by comparing their potential with that of immunosorbents.
Collapse
Affiliation(s)
- Nathalie Delaunay
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
- Department of Chemistry, Sorbonne University, 75005 Paris, France
- Correspondence:
| |
Collapse
|
23
|
Ouakhssase A, Ait Addi E. Mycotoxins in food: a review on liquid chromatographic methods coupled to mass spectrometry and their experimental designs. Crit Rev Food Sci Nutr 2020; 62:2606-2626. [PMID: 33287555 DOI: 10.1080/10408398.2020.1856034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The development of a multi-mycotoxins method using LC-MS/MS is necessary and it is clear that the development of such method involves many compromises in the choice of the different parameters. This review summarizes applications using conventional experimental designs and some recent studies using response surface methodology (RSM) as a mathematical modeling tool for the optimization of extraction procedures. The authors also discuss pros and cons of the different procedures. To our knowledge, it is the first review on experimental design for the development of multi-mycotoxin methods. This review could be useful in the development and optimization of LC-MS/MS methods with the aim of describing experimental design and variables (factors) that are likely to affect sensitivity and specificity.
Collapse
Affiliation(s)
- Abdallah Ouakhssase
- Research group: Génie des procédés et Ingénierie Chimique, Ecole Supérieure de Technologie d'Agadir, Université Ibn Zohr, Agadir, Morocco
| | - Elhabib Ait Addi
- Research group: Génie des procédés et Ingénierie Chimique, Ecole Supérieure de Technologie d'Agadir, Université Ibn Zohr, Agadir, Morocco
| |
Collapse
|
24
|
Tarazona A, Gómez JV, Mateo F, Jiménez M, Romera D, Mateo EM. Study on mycotoxin contamination of maize kernels in Spain. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107370] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Sadeghi E, Oskoei LB, Nejatian M, Mehr SS. Effect of microwave, deep frying and oven cooking on destruction of zearalenone in spiked maize oil. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycotoxins are one of the most common types of chemical hazards related to edible oils. Although the refining process can remove such contaminations, they may still be present in the final oils due to defects during the refining steps. In addition, most oils produced in local manufactories are not refined and as such may be contaminated with mycotoxins. However, the effect of various cooking methods on the stability of mycotoxins in edible oils has rarely been studied. Hence, this study evaluated the impact of microwave, deep frying and oven cooking on the degradation of spiked zearalenone (50, 100 and 200 μg/l) in maize oil. Measurements were done by high performance liquid chromatography-fluorescence detection. The results showed that the majority of treatments, including time-temperature combinations of frying (130-190 °C for 2.5 and 5 min), oven cooking (110-230 °C for 2.5 and 5 min) and exposure time of microwave (2.5, 5 and 10 min) reduced zearalenone levels. Microwave cooking of samples containing 200 μg/l of zearalenone for 10 min showed the highest degradation of the toxin (~ 38%) following first order kinetics. The extent of destruction achieved by frying and oven cooking was also dependent on the initial concentration of zearalenone. These findings can be helpful to evaluate the chemical safety of edible oils or foods prepared by them.
Collapse
Affiliation(s)
- E. Sadeghi
- Department of Food Science and Technology, School of Nutrition Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - L. Bohlouli Oskoei
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - M. Nejatian
- Department of Food Science and Technology, School of Nutrition Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - S. Solaimani Mehr
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
26
|
Schaarschmidt S, Fauhl-Hassek C. The fate of mycotoxins during secondary food processing of maize for human consumption. Compr Rev Food Sci Food Saf 2020; 20:91-148. [PMID: 33443798 DOI: 10.1111/1541-4337.12657] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/26/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Mycotoxins are naturally occurring fungal metabolites that are associated with health hazards and are widespread in cereals including maize. The most common mycotoxins in maize that occur at relatively high levels are fumonisins (FBs), zearalenone, and aflatoxins; furthermore, other mycotoxins such as deoxynivalenol and ochratoxin A are frequently present in maize. For these toxins, maximum levels are laid down in the European Union (EU) for maize raw materials and maize-based foods. The current review article gives a comprehensive overview on the different mycotoxins (including mycotoxins not regulated by EU law) and their fate during secondary processing of maize, based on the data published in the scientific literature. Furthermore, potential compliance with the EU maximum levels is discussed where appropriate. In general, secondary processing can impact mycotoxins in various ways. Besides changes in mycotoxin levels due to fractionation, dilution, and/or concentration, mycotoxins can be affected in their chemical structure (causing degradation or modification) or be released from or bound to matrix components. In the current review, a special focus is set on the effect on mycotoxins caused by different heat treatments, namely, baking, roasting, frying, (pressure) cooking, and extrusion cooking. Production processes involving multiple heat treatments are exemplified with the cornflakes production. For that, potential compliance with FB maximum levels was assessed. Moreover, effects of fermentation of maize matrices and production of maize germ oil are covered by this review.
Collapse
Affiliation(s)
- Sara Schaarschmidt
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Carsten Fauhl-Hassek
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
27
|
Konca T, Tunc K. Investigation of total aflatoxin in corn and corn products in corn wet‐milling industry. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tugba Konca
- Arts and Science Faculty, Department of Biology Sakarya University Serdivan Turkey
| | - Kenan Tunc
- Arts and Science Faculty, Department of Biology Sakarya University Serdivan Turkey
| |
Collapse
|
28
|
Wen YQ, Xu LL, Xue CH, Jiang XM. Effect of Stored Humidity and Initial Moisture Content on the Qualities and Mycotoxin Levels of Maize Germ and Its Processing Products. Toxins (Basel) 2020; 12:E535. [PMID: 32825493 PMCID: PMC7551338 DOI: 10.3390/toxins12090535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022] Open
Abstract
With high fat and protein content, maize germ is easily infected with fungus and mycotoxins during its storage. The qualities and safety of germ and its processing products may be affected by the storage. However, studies on the effect of storage on quality and polluted mycotoxin level of maize germ are limited. In this study, maize germ was stored with different initial moisture contents (5.03, 9.07, 11.82 and 17.97%) or at different relative humidity (75, 85 and 95%) for 30 days. The quality indices of germ (moisture content and crude fat content) and their produced germ oils (color, acid value and peroxide value) as well as the zearalenone (ZEN) and deoxynivalenol (DON) levels of germ, oils and meals were analyzed. Results showed that maize germ with high initial moisture contents (11.82, 17.97%) or kept at high humidity (95%) became badly moldy at the end of storage. Meanwhile, the qualities of these germ and oils showed great changes. However, the ZEN and DON contents of this maize germ, oils and meals stayed at similar levels (p < 0.05). Therefore, the storage could produce influence on the qualities of germ and oils, but showed limited effect on the DON and ZEN levels of germ and their processing products. According to this study, the storage condition of germ with no more than 9% moisture content and no higher than 75% humidity was recommended. This study would be benefit for the control of germ qualities and safety during its storage.
Collapse
Affiliation(s)
| | | | | | - Xiao-ming Jiang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, China; (Y.-q.W.); (L.-l.X.); (C.-h.X.)
| |
Collapse
|
29
|
Adsorption of Deoxynivalenol (DON) from Corn Steep Liquor (CSL) by the Microsphere Adsorbent SA/CMC Loaded with Calcium. Toxins (Basel) 2020; 12:toxins12040208. [PMID: 32218143 PMCID: PMC7232427 DOI: 10.3390/toxins12040208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022] Open
Abstract
The occurrence of deoxynivalenol (DON) in animal feed is a serious issue for the livestock industry. Approaches using mycotoxin adsorbents are key to decreasing mycotoxin carryover from contaminated feed to animals. In this paper, a novel functional microsphere adsorbent comprising an alginate/carboxymethyl cellulose sodium composite loaded with calcium (SA/CMC-Ca) was prepared by an emulsification process to adsorb DON from polluted corn steep liquor (CSL) containing DON at a concentration of 3.60 μg/mL. Batch experiments were conducted under different experimental conditions: CSL volumes, reaction times, desorption times, and microsphere recyclability. Results showed that 5 g of microspheres reacted with 5 mL of DON-polluted CSL for 5 min, the microspheres can be recycled 155 times, and the maximum DON adsorption for the microspheres was 2.34 μg/mL. During recycling, microspheres were regenerated by deionized water every time; after the microspheres were cleaned, DON in the deionized water was degraded by sodium hydroxide (NaOH) at 70 °C for 1 h at pH 12. The mechanism for physical adsorption and hydrogen bonding was analyzed by scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FTIR). To the best of our knowledge, this is the first report showing that the microsphere adsorbent SA/CMC-Ca adsorbs DON. Therefore, we suggest that using microsphere absorbents would be a possible way to address DON-contaminated CSL issues in animal feed.
Collapse
|
30
|
Woo SY, Ryu SY, Tian F, Lee SY, Park SB, Chun HS. Simultaneous Determination of Twenty Mycotoxins in the Korean Soybean Paste Doenjang by LC-MS/MS with Immunoaffinity Cleanup. Toxins (Basel) 2019; 11:E594. [PMID: 31614794 PMCID: PMC6832528 DOI: 10.3390/toxins11100594] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
Doenjang, a Korean fermented soybean paste, is vulnerable to contamination by mycotoxins because it is directly exposed to environmental microbiota during fermentation. A method that simultaneously determines 20 mycotoxins in doenjang, including aflatoxins (AFs), ochratoxin A (OTA), zearalenone (ZEN), and fumonisins (FBs) with an immunoaffinity column cleanup was optimized and validated in doenjang using LC-MS/MS. The method showed good performance in the analysis of 20 mycotoxins in doenjang with good linearity (R2 > 0.999), intra- and inter-day precision (<16%), recovery (72-112%), matrix effect (87-104%), and measurement uncertainty (<42%). The validated method was applied to investigate mycotoxin contamination levels in commercial and homemade doenjang. The mycotoxins that frequently contaminated doenjang were AFs, OTA, ZEN, and FBs and the average contamination level and number of co-occurring mycotoxins in homemade doenjang were higher than those in commercially produced doenjang.
Collapse
Affiliation(s)
- So Young Woo
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - So Young Ryu
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Fei Tian
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Sang Yoo Lee
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Su Been Park
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Hyang Sook Chun
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| |
Collapse
|
31
|
Luo JJ, Zhang Y, Sun H, Wei JT, Khalil MM, Wang YW, Dai JF, Zhang NY, Qi DS, Sun LH. The response of glandular gastric transcriptome to T-2 toxin in chicks. Food Chem Toxicol 2019; 132:110658. [PMID: 31299295 DOI: 10.1016/j.fct.2019.110658] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
This study was conducted to determine the effect of T-2 toxin on the transcriptome of the glandular stomach in chicks using RNA-sequencing (RNA-Seq). Four groups of 1-day-old Cobb male broilers (n = 4 cages/group, 6 chicks/cage) were fed a corn-soybean-based diet (control) and control supplemented with T-2 toxin at 1.0, 3.0, and 6.0 mg/kg, respectively, for 2 weeks. The histological results showed that dietary supplementation of T-2 toxin at 3.0 and 6.0 mg/kg induced glandular gastric injury including serious inflammation, increased inflammatory cells, mucosal edema, and necrosis and desquamation of the epithelial cells in the glandular stomach of chicks. RNA-Seq analysis revealed that there were 671, 1393, and 1394 genes displayed ≥2 (P < 0.05) differential expression in the dietary supplemental T-2 toxin at 1.0, 3.0, and 6.0 mg/kg, respectively, compared with the control group. Notably, 204 differently expressed genes had shared similar changes among these three doses of T-2 toxin. GO and KEGG pathway analysis results showed that many genes involved in oxidation-reduction process, inflammation, wound healing/bleeding, and apoptosis/carcinogenesis were affected by T-2 toxin exposure. In conclusion, this study systematically elucidated toxic mechanisms of T-2 toxin on the glandular stomach, which might provide novel ideas to prevent adverse effects of T-2 toxin in chicks.
Collapse
Affiliation(s)
- Jing-Jing Luo
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yu Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hua Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jin-Tao Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, China
| | | | - You-Wei Wang
- Postgraduate School, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jie-Fan Dai
- Sichuan Green Food Development Center, Chengdu, 610041, China
| | - Ni-Ya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - De-Sheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lv-Hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
32
|
Jedziniak P, Panasiuk Ł, Pietruszka K, Posyniak A. Multiple mycotoxins analysis in animal feed with LC-MS/MS: Comparison of extract dilution and immunoaffinity clean-up. J Sep Sci 2019; 42:1240-1247. [PMID: 30638302 DOI: 10.1002/jssc.201801113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/17/2018] [Accepted: 01/03/2019] [Indexed: 01/11/2023]
Abstract
The aim of this study was a performance comparison of two clean-up procedures (dilutions versus immunoaffinity columns) in the simultaneous determination of eight mycotoxins (aflatoxin B1, deoxynivalenol, fumonisin B1 & B2, ochratoxin A, toxin T-2 & HT-2 and zearalenone) in the animal feed. After extraction the analytes were separated on a Kinetex Biphenyl column with a gradient elution using methanol/0.01 M ammonium acetate as a mobile phase and analyzed with the LC-MS/MS technique. Both of the procedures were validated by analysis of a series of spiked feed samples (n = 6) at three different concentration levels. Better signal to noise ratios were observed for immunoaffinity clean-up. The recoveries of analyses were in the range 88-110% for the dilution procedure and 78-120% for the immunoaffinity clean-up. The dilution procedure was more precise (coefficient of variation of the within-laboratory reproducibility for it was 7.8-22.4% in comparison to 12-35.5% for the immunoaffinity clean-up. The results show that both procedures fulfilled the requirements for mycotoxin analysis and can be used successfully in multi-analyte determination. Although the dilution procedure shows better precision and trueness, the immunoaffinity clean-up procedure can have advantages in more complex feed samples thanks to lower matrix effect and limits of detections.
Collapse
Affiliation(s)
- Piotr Jedziniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Puławy, Poland
| | - Łukasz Panasiuk
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Puławy, Poland
| | - Katarzyna Pietruszka
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Puławy, Poland
| | - Andrzej Posyniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Puławy, Poland
| |
Collapse
|