1
|
Yao N, Feng L, Jiang W, Wu P, Ren H, Shi H, Tang L, Li S, Wu C, Li H, Liu Y, Zhou X. An emerging role of arecoline on growth performance, intestinal digestion and absorption capacities and intestinal structural integrity of adult grass carp ( Ctenopharyngodon idella). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:173-186. [PMID: 38023377 PMCID: PMC10679820 DOI: 10.1016/j.aninu.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 12/01/2023]
Abstract
Arecoline is an alkaloid with important pharmacological effects in the plant areca nut, which has been demonstrated to be an agonist of muscarinic receptors (M receptor). This study explored the influences of dietary arecoline on growth performance, intestinal digestion and absorption abilities, antioxidant capacity, and the apical junction complex (AJC) of adult grass carp (Ctenopharyngodon idella). Adult grass carp (608 to 1512 g) were fed at 6 graded levels of dietary arecoline (0, 0.5, 1.0, 1.5, 2.0, and 2.5 mg/kg diet) for 9 weeks. The results suggested that appropriate dietary supplementation of arecoline (1.0 mg/kg) increased growth parameters and intestinal growth in adult grass carp (P < 0.05), enhanced digestion and absorption capacities (P < 0.05), up-regulated muscarinic receptor 3 (M3) mRNA level (P < 0.05), increased the content of neuropeptide fish substance P (P < 0.05), improved antioxidant capacity by activating the Keap1a/Nrf2 signaling pathway (P < 0.05), reduced intestinal mucosal permeability (P < 0.05), and increased mRNA levels of tight junction (TJ) and adherent junction AJ-related proteins in fish by inhibiting the RhoA/ROCK signaling pathway (RhoA/ROCK/MLCK/NMII) (P < 0.05). In addition, the appropriate arecoline supplementation for adult grass carp was determined to be 1.20, 1.21, 1.07, and 1.19 mg/kg based on percentage weight gain, lipase activity, serum diamine oxidase, and protein carbonyl, respectively. Overall, to the best of our knowledge, we investigated for the first time the effects and possible mechanisms of dietary arecoline on intestinal digestive and absorptive capacities and structural integrity in fish and evaluated the appropriate level of supplementation.
Collapse
Affiliation(s)
- Na Yao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hequn Shi
- Guangzhou Cohoo Biotech Co., Ltd., Guangzhou, 510663, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Shuwei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Caimei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| |
Collapse
|
2
|
Santos-Cruz LF, Ponciano-Gómez A, Torres-Gregorio JT, Ramírez-Cruz BG, Vázquez-Gómez G, Hernández-Portilla LB, Flores-Ortiz CM, Dueñas-García IE, Heres-Pulido ME, Castañeda-Partida L, Durán-Díaz Á, Campos-Aguilar M, Sigrist-Flores SC, Piedra-Ibarra E. Zearalenone Does Not Show Genotoxic Effects in the Drosophila melanogaster Wing Spot Test, but It Induces Oxidative Imbalance, Development, and Fecundity Alterations. Toxins (Basel) 2023; 15:358. [PMID: 37368659 DOI: 10.3390/toxins15060358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Zearalenone (ZEN) is a non-steroidal mycoestrogen produced by the Fusarium genus. ZEN and its metabolites compete with 17-beta estradiol for cytosolic estrogen receptors, causing reproductive alterations in vertebrates. ZEN has also been associated with toxic and genotoxic effects, as well as an increased risk for endometrial adenocarcinomas or hyperplasia, breast cancer, and oxidative damage, although the underlying mechanisms remain unclear. Previous studies have monitored cellular processes through levels of transcripts associated with Phase I Xenobiotic Metabolism (Cyp6g1 and Cyp6a2), oxidative stress (hsp60 and hsp70), apoptosis (hid, grim, and reaper), and DNA damage genes (Dmp53). In this study, we evaluated the survival and genotoxicity of ZEN, as well as its effects on emergence rate and fecundity in Drosophila melanogaster. Additionally, we determined levels of reactive oxygen species (ROS) using the D. melanogaster flare and Oregon R(R)-flare strains, which differ in levels of Cyp450 gene expression. Our results showed that ZEN toxicity did not increase mortality by more than 30%. We tested three ZEN concentrations (100, 200, and 400 μM) and found that none of the concentrations were genotoxic but were cytotoxic. Taking into account that it has previously been demonstrated that ZEN administration increased hsp60 expression levels and apoptosis gene transcripts in both strains, the data agree with an increase in ROS and development and fecundity alterations. Since Drosophila lacks homologous genes for mammalian estrogen receptors alpha and beta, the effects of this mycotoxin can be explained by a mechanism different from estrogenic activity.
Collapse
Affiliation(s)
- Luis Felipe Santos-Cruz
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Alberto Ponciano-Gómez
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Juan Tomás Torres-Gregorio
- Fisiología Vegetal (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Bertha Guadalupe Ramírez-Cruz
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Gerardo Vázquez-Gómez
- Fisiología Vegetal (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Luis Barbo Hernández-Portilla
- Fisiología Vegetal (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Cesar Mateo Flores-Ortiz
- Fisiología Vegetal (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Irma Elena Dueñas-García
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - María Eugenia Heres-Pulido
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Laura Castañeda-Partida
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Ángel Durán-Díaz
- Mathematics, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Myriam Campos-Aguilar
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Santiago Cristobal Sigrist-Flores
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Elías Piedra-Ibarra
- Fisiología Vegetal (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| |
Collapse
|
3
|
Rong X, Wang Y, Ouyang F, Song W, Li S, Li F, Zhao S, Li D. Combined effects of zearalenone and deoxynivalenol on oxidative stress, hepatotoxicity, apoptosis, and inflammation in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160233. [PMID: 36403834 DOI: 10.1016/j.scitotenv.2022.160233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/22/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Co-existence of mycotoxins may pose a greater risk. It remains less known about the toxic effect of co-exposure of zearalenone (ZEA) and deoxynivalenol (DON) on aquatic life. In the present study, the toxic effects of the combine treatment of ZEA and DON on zebrafish (Danio rerio) embryos were investigated. The results showed that the combined treatment of ZEA (200, 400, 800 μg/L) and DON (4000 μg/L) did not cause apparent deaths, but induced a developmental toxicity as indicated by decreased movement times and heartbeat. At 96 h post-fertilization (hpf), co-exposure of ZEA and DON (Z400 + D4000 and Z800 + D4000 group) led to significant oxidative stress as evidenced by the increased ROS level and MDA content, as well as the changes of antioxidant enzymes (SOD, CAT and GPX) and their genes. Besides, the combined treatment of ZEA and DON triggered hepatotoxicity as shown by the changes of Fabp10a, Gclc, Gsr, Nqo1 genes, apoptosis through upregulating apoptosis-related genes (p53, Caspase-9, Caspase-3) and downregulating Bcl-2 gene, as well as inflammation by promoting the expression of IL-1β, IL-6, TNF-α, TLR4, MyD88, NF-κBp65 genes. These results indicated the co-exposure of ZEA and DON caused oxidative stress, leading to stronger potential toxic effects to zebrafish embryos than their respective single treatment. Therefore, more attention should be paid to risk management of the co-contamination of mycotoxins.
Collapse
Affiliation(s)
- Xue Rong
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yuli Wang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Fangxin Ouyang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Weixuan Song
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Songhua Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Shancang Zhao
- Central Laboratory of Shandong Academy of Agricultural Sciences, Key Laboratory of Test Technology on Food Quality and Safety of Shandong Province, Jinan 250100, Shandong, China
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
4
|
Chen Z, Wang F, Zhang W, Zhou S, Wen D, Mu R. Chronic exposure to zearalenone induces intestinal inflammation and oxidative injury in adult Drosophila melanogaster midgut. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114555. [PMID: 36680988 DOI: 10.1016/j.ecoenv.2023.114555] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
In the past decade, mycotoxin zearalenone (ZEN)-induced gastrointestinal adverse effects have been increasingly attracting worldwide attention. This study aimed to determine the gastrointestinal adverse effects of ZEN in Drosophila melanogaster (D. melanogaster) and reveal possible mechanisms of action of ZEN in insects. Here, chronic exposure of D. melanogaster to ZEN killed flies in a dose-dependent manner (2-20 µM). ZEN (20 µM) decreased the survival rates and climbing ability of flies, and activated immune deficiency-mediated intestinal immunity in midgut, leading to the production of antimicrobial peptides. Meanwhile, ZEN exposure induced morphological alteration of adult midgut. Further study suggested that high levels of oxidative stress was observed in ZEN-treated midgut due to the imbalance between the production of reactive oxygen species and the expression and activities of cellular antioxidant enzyme, including superoxide dismutase and catalase. ZEN-induced oxidative stress then caused cell death, impaired gut barrier function and increased gut permeability, leading to oxidative injury in midgut. Subsequently, ZEN-induce midgut injury further disrupted intestinal stem cell (ISC) homeostasis, stimulating ISC proliferation and tissue regeneration, but did not alter cell fate specification of ISC. Additionally, activation of Jun N-terminal kinase pathway was involved in ZEN-induced oxidative injury and tissue regeneration in midgut. Antioxidant vitamin E alleviated ZEN-induced oxidative injury to midgut epithelium. Collectively, this study provided additional evidences for ZEN-induced gastrointestinal adverse effects from an invertebrate model, extended our understanding of the mechanisms mediating mycotoxin toxicity in organisms.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Fen Wang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Wen Zhang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Shuangshuang Zhou
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Ren Mu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| |
Collapse
|
5
|
Liu S, Li J, Kang W, Li Y, Ge L, Liu D, Liu Y, Huang K. Aflatoxin B1 Induces Intestinal Barrier Dysfunction by Regulating the FXR-Mediated MLCK Signaling Pathway in Mice and in IPEC-J2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:867-876. [PMID: 36579420 DOI: 10.1021/acs.jafc.2c06931] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aflatoxin B1 (AFB1) is a widespread mycotoxin in food and feed. Although the liver is the main target organ of AFB1, the intestine is the first exposure organ to AFB1. However, the mechanism by which AFB1 induced intestinal barrier dysfunction via regulating the farnesoid X receptor (FXR)-mediated myosin light chain kinase (MLCK) signaling pathway has rarely been studied. In vivo, AFB1 exposure significantly decreased the small intestine length and increased the intestinal permeability. Meanwhile, AFB1 exposure markedly suppressed the protein expressions of FXR, ZO-1, occludin, and claudin-1 and enhanced the protein expression of MLCK. In vitro, AFB1 exposure induced intestinal barrier dysfunction by the elevation in the FITC-Dextran 4 kDa flux and inhibition in the transepithelial electrical resistance in a dose-dependent manner. In addition, AFB1 exposure downregulated the mRNA and protein expressions of FXR, ZO-1, occludin, and claudin-1, redistributed the ZO-1 protein, and enhanced the protein expressions of MLCK and p-MLC. However, fexaramine (Fex, FXR agonist) pretreatment markedly reversed the AFB1-induced FXR activity reduction, MLCK protein activation, and intestinal barrier impairment in vitro and in vivo. Moreover, pretreatment with the inhibition of MLCK with ML-7 significantly alleviated the AFB1-induced intestinal barrier dysfunction and tight junction disruption in vitro. In conclusion, AFB1 induced intestinal barrier impairment via regulating the FXR-mediated MLCK signaling pathway in vitro and in vivo and provided novel insights to prevent mycotoxin poisoning in the intestine.
Collapse
Affiliation(s)
- Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Weili Kang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
6
|
Chen S, Lin Y, Shi H, Miao L, Liu B, Ge X. Dietary ferulic acid supplementation improved cottonseed meal-based diet utilization by enhancing intestinal physical barrier function and liver antioxidant capacity in grass carp (Ctenopharyngodon Idellus). Front Physiol 2022; 13:922037. [PMID: 36072855 PMCID: PMC9441557 DOI: 10.3389/fphys.2022.922037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The present study explored the effects of ferulic acid (FA) supplementation in cottonseed meal (CSM)-based diets on grass carp growth performance, feed utilization, liver antioxidation status, and intestinal physical barrier function. Here, four experimental diets supplemented with FA at graded levels (0, 50, 100 and 200 mg/kg) and CSM as the main protein source (384.6 g/kg feed) for an 8-week feeding trial. Our results indicated that 200 mg/kg FA supplementation in a CSM-based diet significantly improved growth performance [including final body weight (FBW), weight gain rate, and specific growth rate] and feed utilization [including feed conversion ratio and protein efficiency ratio] in grass carp (p < 0.05). The results of polynomial regression analysis based on FBW recommended that the optimal dose for FA supplementation was 204 mg/kg. Compared with that no FA supplementation, 200 mg/kg FA supplementation significantly reduced liver malondialdehyde levels and increased glutathione reductase activities (p < 0.05) and 100 mg/kg FA supplementation significantly increased liver total superoxide dismutase activities and reduced blood alanine transaminase levels (p < 0.05). Compared with the control group, 100 mg/kg FA supplementation also led to significantly increased mRNA expression of zo-1, zo-2, occludin, claudin-b, claudin-3, claudin-7a, and claudin-12, encoding intestinal tight junction proteins (p < 0.05). Notably, FA supplementation could reduce lipid deposition by regulating bile acid (BA) secretion. In this study, 100 and 200 mg/kg FA supplementation significantly increased blood and liver total BA levels, respectively (p < 0.05); 100 mg/kg FA also significantly activated mRNA expressions of fxr and cyp7a1 (p < 0.05). Furthermore, the whole-body composition results presented that FA treatment relieved lipid deposition, particularly 50 and 200 mg/kg FA supplementation (p < 0.05). Moreover, triglyceride and total cholesterol levels were significantly lower and high-density lipoprotein levels were significantly higher with 200 mg/kg FA supplementation than with no FA supplementation (p < 0.05). Taken together, the results indicated that FA may be a beneficial feed additive to boost fish growth performance and increase CSM utilization.
Collapse
Affiliation(s)
- Shiyou Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yan Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Hequn Shi
- Guangzhou Cohoo Bio-tech Research & Development Centre, Guangzhou, China
| | - Linghong Miao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- *Correspondence: Linghong Miao, ; Xianping Ge,
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- *Correspondence: Linghong Miao, ; Xianping Ge,
| |
Collapse
|
7
|
Zhao P, Liu X, Jiang WD, Wu P, Liu Y, Jiang J, Zhang L, Mi HF, Kuang SY, Tang L, Zhou XQ, Feng L. The multiple biotoxicity integrated study in grass carp (Ctenopharyngodon idella) caused by Ochratoxin A: Oxidative damage, apoptosis and immunosuppression. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129268. [PMID: 35739783 DOI: 10.1016/j.jhazmat.2022.129268] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Ochratoxin A (OTA) is a common hazardous food contaminant that seriously endangers human and animal health. However, limited study is focused on aquatic animal. This research investigated the multiple biotoxicity of OTA on spleen (SP) and head kidney (HK) in grass carp and its related mechanism. Our data showed that, dietary supplemented with OTA above 1209 μg/kg caused histopathological damages by decreasing the number of lymphocytes and necrotizing renal parenchymal cells. Meanwhile, OTA caused oxidative damage and reduced the isoforms mRNAs transcripts of antioxidant enzymes (e.g., GPX1, GPX4, GSTO) partly due to suppressing NF-E2-related factor 2 (Nrf2). OTA triggered apoptosis through mitochondria and death receptor pathway potentially by p38 mitogen-activated protein kinase (p38MAPK) activation. Besides, OTA exacerbated inflammation by down-regulation of anti-inflammatory factor (e.g., IL-10, IL-4) and up-regulations of pro-inflammatory factors (e.g., TNF-α, IL-6), which could be ascribed to signaling meditation of Janus kinase / signal transducer and activator of transcription (JAK/STAT). Additionally, the safe upper limits of OTA were estimated to be 677.6 and 695.08 μg/kg based on the immune-related indexes (C3 contents in the SP and LZ activities in the HK, respectively). Our study has provided a wide insight for toxicological assessment of feed pollutant in aquatic animals.
Collapse
Affiliation(s)
- Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xin Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lu Zhang
- Tongwei Co., Ltd., Chengdu, China, Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan 610041, China
| | - Hai-Feng Mi
- Tongwei Co., Ltd., Chengdu, China, Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan 610041, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| |
Collapse
|
8
|
Feng YQ, Zhao AH, Wang JJ, Tian Y, Yan ZH, Dri M, Shen W, De Felici M, Li L. Oxidative stress as a plausible mechanism for zearalenone to induce genome toxicity. Gene 2022; 829:146511. [PMID: 35447234 DOI: 10.1016/j.gene.2022.146511] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/27/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023]
Abstract
Zearalenone (ZEN), a common non-steroidal estrogenic mycotoxin of the Fusarium genus, is one of the most frequent and powerful contaminant of grains and cereal products representing a serious threat for people and livestock health. In fact, ZEN causes cytotoxicity and genotoxicity in a variety of cell types at least in part through binding to estrogen receptors (ERs). The main pathways through which ZEN induces such effects remain, however, elusive. In particular, how the mycotoxin causes DNA damage, dysregulates DNA repair mechanisms, changes epigenome of targeted cells and, not least, affects chromatin conformation and non-coding RNA (ncRNA), is unclear. In the present paper, following extensive review of the literature about such ZEN effects and our own experience in studying the effects of this compound on reproductive processes, we propose that increased production of reactive oxygen species (ROS) and consequently oxidative stress (OS) are central in ZEN genotoxicity. Besides to shed light on the action mechanisms of the mycotoxin, this notion might help to develop effective strategies to counteract its deleterious biological effects.
Collapse
Affiliation(s)
- Yan-Qin Feng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ai-Hong Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Jun-Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Tian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Maria Dri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy.
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
9
|
Lin X, Zhu L, Gao X, Kong L, Huang Y, Zhao H, Chen Y, Wen L, Li R, Wu J, Yuan Z, Yi J. Ameliorative effect of betulinic acid against zearalenone exposure triggers testicular dysfunction and oxidative stress in mice via p38/ERK MAPK inhibition and Nrf2-mediated antioxidant defense activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113561. [PMID: 35489292 DOI: 10.1016/j.ecoenv.2022.113561] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Zearalenone (ZEA) is a nonsteroidal estrogenic mycotoxin, which mainly contaminates grains and has estrogen-like effects on the reproductive system. Betulinic acid (BA), a natural lupane-type pentacyclic triterpene, has anti-oxidative and anti-inflammatory properties. This study aimed to investigate whether BA alleviates ZEA-induced testicular damage and explore the possible mechanism. Here, BA ameliorated testicular damage by mitigating the disordered arrangement of seminiferous tubules, the exfoliation of lumen cells, and the increase of cell apoptosis caused by ZEA. Meanwhile, BA alleviated ZEA-triggered testicular damage by restoring hormone levels and sperm motility, and reconstructing the blood-testis-barrier. Moreover, BA alleviated ZEA-exposed testicular oxidative stress by activating Nrf2 pathway. Furthermore, BA moderated ZEA-evoked testicular inflammation by inhibiting p38/ERK MAPK pathway. Overall, our results revealed that BA has a therapeutic protective effect on ZEA-induced testicular injury and oxidative stress via p38/ERK MAPK inhibition and Nrf2-mediated antioxidant defense activation, which provides a viable alternative to alleviate ZEA-induced male reproductive toxicology.
Collapse
Affiliation(s)
- Xing Lin
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xinyu Gao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Haoqiang Zhao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yazhi Chen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
10
|
Wojnarowski K, Cholewińska P, Palić D, Bednarska M, Jarosz M, Wiśniewska I. Estrogen Receptors Mediated Negative Effects of Estrogens and Xenoestrogens in Teleost Fishes-Review. Int J Mol Sci 2022; 23:2605. [PMID: 35269746 PMCID: PMC8910684 DOI: 10.3390/ijms23052605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/11/2022] Open
Abstract
Estrogen receptors (ERs) play a key role in many biochemical and physiological processes, that are involved in maintaining organism homeostasis. At the most basic level, they can be divided into nuclear estrogen receptors and membrane estrogen receptors that imply their effect in two ways: slower genomic, and faster non-genomic. In these ways, estrogens and xenoestrogens can negatively affect animal health and welfare. Most of the available literature focuses on human and mammalian physiology, and clearly, we can observe a need for further research focusing on complex mutual interactions between different estrogens and xenoestrogens in aquatic animals, primarily fishes. Understanding the mechanisms of action of estrogenic compounds on the ERs in fishes and their negative consequences, may improve efforts in environmental protection of these animals and their environment and benefit society in return. In this review, we have summarized the ER-mediated effects of xenoestrogens and estrogens on teleost fishes metabolism, their carcinogenic potential, immune, circulatory, and reproductive systems.
Collapse
Affiliation(s)
- Konrad Wojnarowski
- Chair for Fish Diseases and Fisheries Biology, Ludwig-Maximilians-University of Munich, 80539 Munich, Germany;
| | - Paulina Cholewińska
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Ludwig-Maximilians-University of Munich, 80539 Munich, Germany;
| | - Małgorzata Bednarska
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (M.B.); (I.W.)
| | - Magdalena Jarosz
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Iga Wiśniewska
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (M.B.); (I.W.)
| |
Collapse
|
11
|
Zhang HY, Wang YL, Zhou XQ, Jiang WD, Wu P, Liu Y, Zhang L, Mi HF, Jiang J, Kuang SY, Tang L, Feng L. Zearalenone induces immuno-compromised status via TOR/NF/κB pathway and aggravates the spread of Aeromonas hydrophila to grass carp gut (Ctenopharyngodon idella). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112786. [PMID: 34555717 DOI: 10.1016/j.ecoenv.2021.112786] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of immuno-compromised status in animals with zearalenone (ZEA) exposure may be a critical contributor to associated mucosal (gastrointestinal tract) diseases. However, it is difficult to assess the associated risks with limited reference data. This study comprehensively discussed the effects of ZEA on intestinal immune components, cytokines and molecular mechanism of juvenile grass carp infected with Aeromonas hydrophila. Specifically, the fish were fed six graded levels of dietary ZEA (0-2507 μg kg-1 diet) for 70 d. The results pointed out that the average residual amount of ZEA in the intestines increased with dose level after ZEA feeding. We further performed an infection assay using A. hydrophila. After 14 d, ZEA groups increased enteritis morbidity rate compared with controls. The acid phosphatase (ACP), lysozyme (LZ) activities and immunoglobulin M (IgM) content were significantly decreased in three intestinal segments. Furthermore, ZEA could reduce the transcription of β-defensin-1, Hepcidin, liver expressed antimicrobial peptide 2A/2B (LEAP-2A/2B) and Mucin-2. We next confirmed the loss of these immune components accompanied by the invasion of the intestinal barrier by bacteria, as indicated by activation of the nuclear factor κB (NF-κB) and the expression of downstream cytokines. Notably, the phosphorylated target of rapamycin (TOR) plays an important role in regulating these genes, thus indicating a possible target caused by ZEA. In summary, the extensive inhibition of immune components by ZEA promotes the spread of pathogens, which may increase the possibility of intestinal mucosa exposure and the risk of transforming disease.
Collapse
Affiliation(s)
- Hong-Yun Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya-Li Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Chengdu 611130, China; Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Lu Zhang
- Tongwei Research Institute, Chengdu 600438, China
| | - Hai-Feng Mi
- Tongwei Research Institute, Chengdu 600438, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China.
| |
Collapse
|
12
|
Zhao L, Liang J, Chen F, Tang X, Liao L, Liu Q, Luo J, Du Z, Li Z, Luo W, Yang S, Rahimnejad S. High carbohydrate diet induced endoplasmic reticulum stress and oxidative stress, promoted inflammation and apoptosis, impaired intestinal barrier of juvenile largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2021; 119:308-317. [PMID: 34662728 DOI: 10.1016/j.fsi.2021.10.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 05/12/2023]
Abstract
This study assessed the effects of feed carbohydrate content on intestinal physical barrier and immunity in juvenile largemouth bass (Micropterus salmoides). Triplicate groups of juvenile fish (4.1 ± 0.2 g) were fed low (LCD, 7%), medium (MCD, 12%) and high (HCD, 17%) carbohydrate diets for eight weeks. Gut histology revealed the slight infiltration of inflammatory cells and moderate loss of mucous membrane layer in HCD group. Expression of ZO1, occluding, and claudin7 genes and epidermal growth factor receptor (EGFR) gene were significantly decreased in HCD group indicating the impairment of tight junction and epithelial cell regeneration. The results showed the significant (P < 0.05) reduction of antioxidant capacity in HCD group compared to LCD. Furthermore, expression of intestinal ERS-related genes such as IRE1, Eif2α, GRP78, CHOPα and CHOPβ in HCD group was significantly higher than the LCD group. In addition, HCD induced the up-regulated expression of inflammatory (IL-8, IL-1β, TNFα and COX2) and apoptosis (TRAF2, bax, casepase3, caspase8 and casepase9) related genes in fish intestine. The data generated in this study clearly demonstrated that HCD induced ERS and oxidative stress, which promoted intestinal inflammation and apoptosis in juvenile largemouth bass.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ji Liang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Fukai Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiaohong Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lei Liao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Samad Rahimnejad
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic.
| |
Collapse
|
13
|
Kozieł MJ, Ziaja M, Piastowska-Ciesielska AW. Intestinal Barrier, Claudins and Mycotoxins. Toxins (Basel) 2021; 13:758. [PMID: 34822542 PMCID: PMC8622050 DOI: 10.3390/toxins13110758] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023] Open
Abstract
The intestinal barrier is the main barrier against all of the substances that enter the body. Proper functioning of this barrier guarantees maintained balance in the organism. Mycotoxins are toxic, secondary fungi metabolites, that have a negative impact both on human and animal health. It was postulated that various mycotoxins may affect homeostasis by disturbing the intestinal barrier. Claudins are proteins that are involved in creating tight junctions between epithelial cells. A growing body of evidence underlines their role in molecular response to mycotoxin-induced cytotoxicity. This review summarizes the information connected with claudins, their association with an intestinal barrier, physiological conditions in general, and with gastrointestinal cancers. Moreover, this review also includes information about the changes in claudin expression upon exposition to various mycotoxins.
Collapse
|
14
|
Huang CW, Liao WR, How CM, Yen PL, Wei CC. Chronic exposure of zearalenone inhibits antioxidant defense and results in aging-related defects associated with DAF-16/FOXO in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117233. [PMID: 33940230 DOI: 10.1016/j.envpol.2021.117233] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Zearalenone (ZEN), a mycotoxin with endocrine disruptive activity and oxidative stress generating ability, has been a worldwide environmental concern for its prevalence and persistency. However, the long-term effect of ZEN on aging process is not fully elucidated. Thus, the present study applied the Caenorhabditis elegans model to investigate the aging-related toxic effect and possible underlying mechanisms under prolonged and chronic ZEN exposure. Our results showed that locomotive behaviors significantly decreased in ZEN (0.3, 1.25, 5, 10, 50 μM) treated C. elegans. In addition, lifespan and aging markers including pharyngeal pumping and lipofuscin were also adversely affected by ZEN (50 μM). Furthermore, ZEN (50 μM) increased ROS level and downregulated antioxidant genes resulted from inhibition of nuclear DAF-16 translocation in aged C. elegans, which was further confirmed by more significant aging-related defects observed in ZEN treated daf-16 mutant. In conclusion, our findings suggest that the aging process and aging-related decline were induced by long-term exposure of ZEN in C. elegans, which is associated with oxidative stress, inhibition of antioxidant defense, and transcription factor DAF-16/FOXO.
Collapse
Affiliation(s)
- Chi-Wei Huang
- Institute of Food Safety and Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Wan-Ru Liao
- Institute of Food Safety and Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Chun Ming How
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan; Department of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan.
| |
Collapse
|
15
|
Thapa A, Horgan KA, White B, Walls D. Deoxynivalenol and Zearalenone-Synergistic or Antagonistic Agri-Food Chain Co-Contaminants? Toxins (Basel) 2021; 13:toxins13080561. [PMID: 34437432 PMCID: PMC8402399 DOI: 10.3390/toxins13080561] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023] Open
Abstract
Deoxynivalenol (DON) and Zearalenone (ZEN) are two commonly co-occurring mycotoxins produced by members of the genus Fusarium. As important food chain contaminants, these can adversely affect both human and animal health. Critically, as they are formed prior to harvesting, their occurrence cannot be eliminated during food production, leading to ongoing contamination challenges. DON is one of the most commonly occurring mycotoxins and is found as a contaminant of cereal grains that are consumed by humans and animals. Consumption of DON-contaminated feed can result in vomiting, diarrhoea, refusal of feed, and reduced weight gain in animals. ZEN is an oestrogenic mycotoxin that has been shown to have a negative effect on the reproductive function of animals. Individually, their mode of action and impacts have been well-studied; however, their co-occurrence is less well understood. This common co-occurrence of DON and ZEN makes it a critical issue for the Agri-Food industry, with a fundamental understanding required to develop mitigation strategies. To address this issue, in this targeted review, we appraise what is known of the mechanisms of action of DON and ZEN with particular attention to studies that have assessed their toxic effects when present together. We demonstrate that parameters that impact toxicity include species and cell type, relative concentration, exposure time and administration methods, and we highlight additional research required to further elucidate mechanisms of action and mitigation strategies.
Collapse
Affiliation(s)
- Asmita Thapa
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland;
| | | | - Blánaid White
- School of Chemical Sciences, National Centre for Sensor Research, DCU Water Institute, Dublin City University, Dublin 9, Ireland
- Correspondence: (B.W.); (D.W.); Tel.: +353-01-7006731 (B.W.); +353-01-7005600 (D.W.)
| | - Dermot Walls
- School of Biotechnology, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
- Correspondence: (B.W.); (D.W.); Tel.: +353-01-7006731 (B.W.); +353-01-7005600 (D.W.)
| |
Collapse
|
16
|
Yi Y, Wan S, Wang S, Khan A, Guo J, Zheng X, Li H, Sun N. Scutellarin protects mouse ovarian granulosa cells from injury induced by the toxin zearalenone. Food Funct 2021; 12:1252-1261. [PMID: 33433546 DOI: 10.1039/d0fo02711a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEA), present in animal grain feed is produced by Fusarium fungi and this toxin targets ovarian granulosa cells (GCs) to cause reproductive disorders in female animals. Current research on drugs that can rescue ZEA-induced ovarian GC damage is limited. The purpose of this study was to explore the effect of scutellarin (Scu) on ZEA-induced apoptosis of mouse ovarian GCs and its mechanism. In one set of experiments, the primary cultured mouse ovarian GCs were co-treated with ZEA and Scu for 24 h. The results showed that Scu significantly alleviated ZEA-induced cell damage, restored cell cycle arrest, and inhibited apoptosis by reducing the ratio of cleaved-caspase-3, cleaved-PARP, and Bax/Bcl-2. In another set of experiments, six-week-old mice were intragastrically administered with 40 mg kg-1 ZEA for 2 h, followed by 100 mg kg-1 Scu for 3 days. It was observed that Scu inhibited ZEA-induced apoptosis and positive signal expression of cleaved-caspase-3 in the ovarian granulosa layer, with the involvement of the mitochondrial apoptotic pathway. These data provide strong evidence that Scu can be further developed as a potential new therapeutic drug for preventing or treating reproductive toxicity caused by the exposure of animals to ZEA found in the grains of animal feeds.
Collapse
Affiliation(s)
- Yanyan Yi
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, People's Republic of China.
| | - Shuangxiu Wan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, People's Republic of China. and School of Pharmacy, Heze University, Heze 274000, Shangdong, People's Republic of China
| | - Shaoyu Wang
- School of Community Health, Faculty of Science, Charles Sturt University, NSW 2800, Australia
| | - Ajab Khan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, People's Republic of China.
| | - Jianhua Guo
- Department of Veterinary Pathobiology, Schubot Exotic Bird Health Center, Texas A&M University, College Station, TX 77843, USA
| | - Xiaozhong Zheng
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Hongquan Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, People's Republic of China.
| | - Na Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, People's Republic of China.
| |
Collapse
|
17
|
Abdel-Tawwab M, Khalil RH, Diab AM, Khallaf MA, Abdel-Razek N, Abdel-Latif HMR, Khalifa E. Dietary garlic and chitosan enhanced the antioxidant capacity, immunity, and modulated the transcription of HSP70 and Cytokine genes in Zearalenone-intoxicated European seabass. FISH & SHELLFISH IMMUNOLOGY 2021; 113:35-41. [PMID: 33785470 DOI: 10.1016/j.fsi.2021.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
The present study was performed to evaluate the toxic effects of feed-born zearalenone (ZEN) on antioxidative status, immunity, transcriptomic responses of European seabass, and the modulating roles of dietary garlic and/or chitosan powders. Fish (30.7 ± 0.6 g) were randomly arranged in five experimental groups (in triplicates), whereas the first group was fed on the control diet only without any supplements (control), and the second group was fed on the basal diet contaminated with ZEN (0.725 mg/kg diet). Three other groups were fed on ZEN-contaminated diets and simultaneously supplemented with garlic powder (GP) (30 g/kg diet) (ZEN + GP), chitosan powder (CH) (10 g/kg diet) (ZEN + CH), and a mixture of GP and CH (ZEN + GP + CH). Fish were fed on the experimental diets thrice a day for 4 weeks. Two-way ANOVA revealed a gradual decline in serum superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities in the ZEN group reaching their lowest levels at the 4th week. Contrariwise, malondialdehyde levels were markedly higher in the ZEN group reaching their highest values at the end of the experiment. A significant decline of total immunoglobulins (P < 0.05) was observed in the serum of the ZEN group, especially after the 4th week. Moreover, significant down-regulation of interleukin-4 (IL-4) and interleukin 1 beta (IL-1β) genes (P < 0.05) alongside significant up-regulation of tumor necrosis factor-alpha (TNF-α) and heat shock protein 70 (HSP70) genes (P < 0.05) in the liver and anterior kidney of ZEN-intoxicated group. Interestingly, dietary supplementation with GP and CH significantly attenuated ZEN-induced oxidative stress, immunosuppression, and modulated transcriptomic responses of ZEN-exposed fish. Moreover, combined dietary supplementation of both feed additives resulted in better effects than each one alone.
Collapse
Affiliation(s)
- Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia 44662, Egypt.
| | - Riad H Khalil
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Amany M Diab
- Aquatic Microbiology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed A Khallaf
- Department of Aquatic Animals Medicine and Management, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Nashwa Abdel-Razek
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia 44662, Egypt
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| |
Collapse
|
18
|
Protective effect of glutamine and alanyl-glutamine against zearalenone-induced intestinal epithelial barrier dysfunction in IPEC-J2 cells. Res Vet Sci 2021; 137:48-55. [PMID: 33932823 DOI: 10.1016/j.rvsc.2021.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, has a negative effect on porcine intestine. Glutamine (Gln) and alanyl-glutamine (Ala-Gln) are nutrients with potential preservation functions similar to those of the intestinal epithelial barrier. The protective role of Gln and Ala-Gln on ZEN-induced intestinal barrier dysfunction was evaluated in this study. Additionally, the ability of Gln and Ala-Gln to protect the intestinal barrier was investigated. Our results showed that lactate dehydrogenase (LDH) activity, paracellular permeability and reactive oxygen species (ROS) level were increased by ZEN, while the glutathione (GSH) level was decreased by ZEN. Gln and Ala-Gln promoted the proliferation of cells and attenuated the ZEN-induced increase in cytotoxicity, cell apoptosis and paracellular permeability. Gln and Ala-Gln alleviated barrier function damage, which was additionally induced by ZEN by increasing the antioxidant capacity of cells. In addition, Gln and Ala-Gln upregulated intestinal barrier associated gene expressions including pBD-1, pBD-2, MUC-2, ZO-1, occludin and claudin-3. This study revealed that Gln and Ala-Gln had similar effects in protecting intestinal epithelial barrier function against ZEN exposure in IPEC-J2 cells. A new treatment for alleviating ZEN-induced injury to the intestine through nutritional intervention is provided.
Collapse
|
19
|
Zearalenone and the Immune Response. Toxins (Basel) 2021; 13:toxins13040248. [PMID: 33807171 PMCID: PMC8066068 DOI: 10.3390/toxins13040248] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
Zearalenone (ZEA) is an estrogenic fusariotoxin, being classified as a phytoestrogen, or as a mycoestrogen. ZEA and its metabolites are able to bind to estrogen receptors, 17β-estradiol specific receptors, leading to reproductive disorders which include low fertility, abnormal fetal development, reduced litter size and modification at the level of reproductive hormones especially in female pigs. ZEA has also significant effects on immune response with immunostimulatory or immunosuppressive results. This review presents the effects of ZEA and its derivatives on all levels of the immune response such as innate immunity with its principal component inflammatory response as well as the acquired immunity with two components, humoral and cellular immune response. The mechanisms involved by ZEA in triggering its effects are addressed. The review cited more than 150 publications and discuss the results obtained from in vitro and in vivo experiments exploring the immunotoxicity produced by ZEA on different type of immune cells (phagocytes related to innate immunity and lymphocytes related to acquired immunity) as well as on immune organs. The review indicates that despite the increasing number of studies analyzing the mechanisms used by ZEA to modulate the immune response the available data are unsubstantial and needs further works.
Collapse
|
20
|
Kozieł MJ, Kowalska K, Piastowska-Ciesielska AW. Nrf2: a main responsive element in cells to mycotoxin-induced toxicity. Arch Toxicol 2021; 95:1521-1533. [PMID: 33554281 PMCID: PMC8113212 DOI: 10.1007/s00204-021-02995-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor participating in response to cellular oxidative stress to maintain the redox balance. Generation of reactive oxygen species (ROS) and, in consequence, oxidative stress, are physiological as well as pathological processes which take place in almost all types of cells. Nrf2, in response to oxidative stress, activates expression and production of antioxidant enzymes to remove free radicals. However, the role of Nrf2 seems to be more sophisticated and its increased expression observed in cancer cells allows to draw a conclusion that its role is tissue—and condition—dependent. Interestingly, Nrf2 might also play a crucial role in response to environmental factors like mycotoxins. Thus, the aim of the study is to review the role of Nrf2 in cells exposed to most common mycotoxins to check if the Nrf2 signaling pathway serves as the main response element to mycotoxin-induced oxidative stress in human and animal cells and if it can be a target of detoxifying agents.
Collapse
Affiliation(s)
- Marta Justyna Kozieł
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Karolina Kowalska
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | | |
Collapse
|
21
|
Liu X, Wu P, Jiang WD, Liu Y, Jiang J, Kuang SY, Tang L, Zhou XQ, Feng L. Effects of Dietary Ochratoxin A on Growth Performance and Intestinal Apical Junctional Complex of Juvenile Grass Carp ( Ctenopharyngodon idella). Toxins (Basel) 2020; 13:11. [PMID: 33374276 PMCID: PMC7823973 DOI: 10.3390/toxins13010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/11/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022] Open
Abstract
Ochratoxin A (OTA) contamination widely occurs in various feed ingredients and food crops, potentially posing a serious health threat to animals. In this research, 1260 juvenile grass carp were separately fed with seven distinct experimental diets (0, 406, 795, 1209, 1612, 2003 and 2406 µg of OTA/kg of diet) for 60 consecutive days to evaluate OTA's toxic effect on the intestinal apical junctional complex (including the tight junction (TJ) and the adherents junction (AJ)) and the underlying action mechanisms. Our experiment firstly confirmed that OTA caused fish growth retardation and disrupted the intestinal structural integrity. The detailed results show that OTA (1) depressed the feed efficiency, percentage weight gain and specific growth rate; (2) accumulated in the intestine; (3) caused oxidative damage and increased intestinal permeability; and (4) induced the RhoA/ROCK signaling pathway, destroying intestinal apical junctional complexes. Notably, OTA intervention did not result in changes in the gene expression of claudin-3c (in the proximal intestine (PI)), claudin-b and ZO-2b (in the mid intestine (MI) and distal intestine (DI)) in the fish intestine.
Collapse
Affiliation(s)
- Xin Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (P.W.); (W.-D.J.); (Y.L.); (J.J.)
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (P.W.); (W.-D.J.); (Y.L.); (J.J.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (P.W.); (W.-D.J.); (Y.L.); (J.J.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (P.W.); (W.-D.J.); (Y.L.); (J.J.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (P.W.); (W.-D.J.); (Y.L.); (J.J.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed. Co., Ltd., Chengdu 610066, China; (S.-Y.K.); (L.T.)
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed. Co., Ltd., Chengdu 610066, China; (S.-Y.K.); (L.T.)
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (P.W.); (W.-D.J.); (Y.L.); (J.J.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-resistance Nutrition, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (P.W.); (W.-D.J.); (Y.L.); (J.J.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-resistance Nutrition, Chengdu 611130, China
| |
Collapse
|
22
|
Effects of Dietary Zearalenone Exposure on the Growth Performance, Small Intestine Disaccharidase, and Antioxidant Activities of Weaned Gilts. Animals (Basel) 2020; 10:ani10112157. [PMID: 33228146 PMCID: PMC7699518 DOI: 10.3390/ani10112157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary This study was conducted to assess the effects of Zearalenone (ZEA) exposure on the growth performance, small intestine disaccharidase, and antioxidant activities of weaned gilts. Twenty weaned gilts were randomly divided into control and ZEA treatment (1.04 mg/kg) groups. The data showed that 1.04 mg/kg ZEA in gilt’s diet could reduce the activity of disaccharidase enzymes and induce oxidative stress in the small intestine. Therefore, ZEA may induce intestinal injury by oxidative stress, or induce oxidative stress through intestinal injury, thus reducing the effect of animals on nutrient absorption. Abstract Zearalenone (ZEA) is a secondary metabolite with estrogenic effects produced by Fusarium fungi and mainly occurs as a contaminant of grains such as corn and wheat. ZEA, to which weaned gilts are extremely sensitive, is the main Fusarium toxin detected in corn–soybean meal diets. Our aim was to examine the effects of ZEA on the growth performance, intestinal disaccharidase activity, and anti-stress capacity of weaned gilts. Twenty 42-day-old healthy Duroc × Landrace × Large White weaned gilts (12.84 ± 0.26 kg) were randomly divided into control and treatment (diet containing 1.04 mg/kg ZEA) groups. The experiment included a 7-day pre-trial period followed by a 35-day test period, all gilts were euthanized and small intestinal samples were collected and subjected to immunohistochemical and western blot analyses. The results revealed that inclusion of 1.04 mg/kg ZEA in the diet significantly reduced the activities of lactase, sucrase, and maltase in the duodenum, jejunum, and ileum of gilts. Similarly, the activities of superoxide dismutase and glutathione peroxidase in the duodenum, jejunum, and ileum, and activities of catalase in the jejunum and ileum were reduced (p < 0.05). Conversely, the content of malondialdehyde in the duodenum, jejunum, and ileum, and the integrated optical density (IOD), IOD in single villi, and the mRNA and protein expression of heat shock protein 70 (Hsp70) were significantly increased (p < 0.05). The results of immunohistochemical analyses revealed that the positive reaction of Hsp70 in the duodenum, jejunum, and ileum of weaned gilts was enhanced in the ZEA treatment, compared with the control. The findings of this study indicate the inclusion of ZEA (1.04 mg/kg) in the diet of gilts reduced the activity of disaccharidase enzymes and induced oxidative stress in the small intestine, thereby indicating that ZEA would have the effect of reducing nutrient absorption in these animals.
Collapse
|
23
|
Kowalska K, Habrowska-Górczyńska DE, Domińska K, Urbanek KA, Piastowska-Ciesielska AW. ERβ and NFκB-Modulators of Zearalenone-Induced Oxidative Stress in Human Prostate Cancer Cells. Toxins (Basel) 2020; 12:toxins12030199. [PMID: 32235729 PMCID: PMC7150752 DOI: 10.3390/toxins12030199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) is commonly expressed in prostate cancer (PCa) cells and is associated with increased proliferation, metastases and androgen independence. Zearalenone (ZEA) is one of the most common mycotoxins contaminating food, which might mimic estrogens and bind to estrogen receptors (ERs). The ratio of androgens to estrogens in men decreases physiologically with age, and is believed to participate in prostate carcinogenesis. In this study, we evaluated the role of NFκB and ERβ in the induction of oxidative stress in human PCa cells by ZEA. As observed, ZEA at a dose of 30 µM induces oxidative stress in PCa cells associated with DNA damage and G2/M cell cycle arrest. We also observed that the inhibition of ERβ and NFΚB via specific inhibitors (PHTPP and BAY 117082) significantly increased ZEA-induced oxidative stress, although the mechanism seems to be different for androgen-dependent and androgen-independent cells. Based on our findings, it is possible that the activation of ERβ and NFΚB in PCa might protect cancer cells from ZEA-induced oxidative stress. We therefore shed new light on the mechanism of ZEA toxicity in human cells.
Collapse
Affiliation(s)
- Karolina Kowalska
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752 Lodz, Poland; (D.E.H.-G.); (K.A.U.); (A.W.P.-C.)
- Correspondence: ; +48-426393180
| | - Dominika Ewa Habrowska-Górczyńska
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752 Lodz, Poland; (D.E.H.-G.); (K.A.U.); (A.W.P.-C.)
| | - Kamila Domińska
- Medical University of Lodz, Department of Comparative Endocrinology, Zeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Kinga Anna Urbanek
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752 Lodz, Poland; (D.E.H.-G.); (K.A.U.); (A.W.P.-C.)
| | - Agnieszka Wanda Piastowska-Ciesielska
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752 Lodz, Poland; (D.E.H.-G.); (K.A.U.); (A.W.P.-C.)
| |
Collapse
|
24
|
Zhou L, Lin KT, Gan L, Sun JJ, Guo CJ, Liu L, Huang XD. Intestinal Microbiota of Grass Carp Fed Faba Beans: A Comparative Study. Microorganisms 2019; 7:microorganisms7100465. [PMID: 31627338 PMCID: PMC6843481 DOI: 10.3390/microorganisms7100465] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/01/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023] Open
Abstract
Many reports of the intestinal microbiota of grass carp have addressed the microbial response to diet or starvation or the effect of microbes on metabolism; however, the intestinal microbiota of crisp grass carp has yet to be elucidated. Moreover, the specific bacteria that play a role in the crispiness of grass carp fed faba beans have not been elucidated. In the present study, 16S sequencing was carried out to compare the intestinal microbiota in the fore-, mid- and hind-intestine segments of grass carp following feeding with either faba beans or formula feed. Our results showed that (1) the hind-intestine presented significant differences in diversity relative to the fore- or midintestine and (2) faba beans significantly increased the diversity of intestinal microbiota, changed the intestinal microbiota structure (Fusobacteria was reduced from 64.26% to 18.24%, while Proteobacteria was significantly increased from 17.75% to 51.99%), and decreased the metabolism of energy, cofactors and vitamins in grass carp. Furthermore, at the genus and species levels, Acinetobacter accounted for 15.09% of the microbiota, and Acinetobacter johnsonii and Acinetobacter radioresistens constituted 3.41% and 2.99%, respectively, which indicated that Acinetobacter of the family Moraxellaceae contributed to changes in the intestinal microbiota structure and could be used as a potential biomarker. These results may provide clues at the intestinal microbiota level to understanding the mechanism underlying the crispiness of grass carp fed faba beans.
Collapse
Affiliation(s)
- Lei Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Ke-Tao Lin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Lian Gan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Ji-Jia Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Chang-Jun Guo
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Li Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Xian-de Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|