1
|
Zhang BT, Nishino H, Kawabe R, Kamio M, Watanabe R, Uchida H, Satake M, Nagai H. N-Desmethylmajusculamide B, a lipopeptide isolated from the Okinawan cyanobacterium Okeania hirsuta. Biosci Biotechnol Biochem 2024; 88:517-521. [PMID: 38337185 DOI: 10.1093/bbb/zbae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
A new lipopeptide, N-desmethylmajusculamide B (1), was isolated from the Okinawan cyanobacterium Okeania hirsuta along with 2 known compounds majusculamide A (2) and majusculamide B (3). The planar structure of (1) was elucidated by a detailed analysis of mass spectrometry and nuclear magnetic resonance spectra. The absolute configurations of the amino acid residues were determined using Marfey's analysis. The configuration of C-16 in the α-methyl-β-keto-decanoyl moiety was determined unambiguously to be S by conducting a semisynthesis of N-desmethylmajusculamide B from 3. The cytotoxicity against mouse L1210 leukemia cells was evaluated for majusculamides (1-3).
Collapse
Affiliation(s)
- Bo-Tao Zhang
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Haruka Nishino
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ryoya Kawabe
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Michiya Kamio
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ryuichi Watanabe
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Yokohama, Japan
| | - Hajime Uchida
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Yokohama, Japan
| | - Masayuki Satake
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Nagai
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
2
|
Said AH, Msuya FE, Kyewalyanga MS, Mmochi AJ, Evensen Ø, Hurem S, Sandvik M, Lyche JL. Spatial and seasonal distribution of cyanobacteria Moorea species in coastal waters of Tanzania. MARINE POLLUTION BULLETIN 2024; 200:116134. [PMID: 38350254 DOI: 10.1016/j.marpolbul.2024.116134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
This study aimed at identifying the presence of harmful cyanobacteria, detecting potential harmful algae toxins and their distribution in three seasons: December to February (hot dry season), March to May (rainy season), and June to November (cool dry season) of 2016. The samples were collected in five study sites in Tanzania: Tumbe, Chwaka, Paje, Bweleo in Zanzibar islands and Songosongo Island, mainland Tanzania, where skin irritation problems were observed in seaweed workers in an earlier study. The cyanobacteria from the Moorea genus were microscopically detected in the seawater, with highest concentrations in the months with the highest seawater temperature or hot dry season, than in the other two seasons. The concentration of Moorea species was significantly higher in Songosongo, Tanzania mainland than in Zanzibar Islands in all three seasons, corresponding to the higher level of nutrients of nutrients (PO43-, NO3- and NH4+) in the prior season. However, the concentrations were considered relatively low and thus not collected during an ongoing algal bloom. This is one of the first studies that detect Moorea sp. in Tanzanian seawater, and complementary studies including genome sequencing to characterize the species are warranted.
Collapse
Affiliation(s)
- Aziza H Said
- Department of Biology, College of Natural and Mathematical Sciences, The University of Dodoma, P.O. Box 259, Dodoma, Tanzania; Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway; Institute of Marine Science (IMS), University of Dar es Salaam, P.O. Box 668, Zanzibar, Tanzania.
| | - Flower E Msuya
- Institute of Marine Science (IMS), University of Dar es Salaam, P.O. Box 668, Zanzibar, Tanzania
| | - Margareth S Kyewalyanga
- Institute of Marine Science (IMS), University of Dar es Salaam, P.O. Box 668, Zanzibar, Tanzania
| | - Aviti J Mmochi
- Institute of Marine Science (IMS), University of Dar es Salaam, P.O. Box 668, Zanzibar, Tanzania
| | - Øystein Evensen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Selma Hurem
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Morten Sandvik
- Section for Chemistry and Toxicology, Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Jan Ludvig Lyche
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway.
| |
Collapse
|
3
|
Nishino H, Kanda N, Zhang BT, Kamio M, Uchida H, Sugahara K, Nagai H, Satake M. Okeanic acid-A, a trihydroxy fatty acid from the Okinawan cyanobacterium Okeania hirsuta. Nat Prod Res 2024:1-8. [PMID: 38300791 DOI: 10.1080/14786419.2024.2308724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Trihydroxy fatty acids are oxidative metabolites of polyunsaturated fatty acids isolated from plants, bacteria, fungi, and microalgae and have a variety of biological activities. In this study, a new trihydroxy fatty acid, okeanic acid-A (1), was isolated together with malyngic acid (2) and 15,16-dihydromalyngic acid (3) from the cyanobacterium Okeania hirsuta collected in Okinawa, Japan. The planar structure of 1 was elucidated by detailed analyses using high-resolution ESI-MS and 1D and 2D NMR spectroscopy. The absolute configurations of the hydroxy groups in 1 were determined unambiguously by chemical derivatisation and a modified Mosher's method. These cyanobacterial trihydroxy fatty acids (1-3) have identical configurations at their respective trihydroxy parts. Okeanic acid-A (1) showed mild growth-inhibitory activity against the marine diatom Nitzschia amabilis.
Collapse
Affiliation(s)
- Haruka Nishino
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Nao Kanda
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Bo-Tao Zhang
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Michiya Kamio
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hajime Uchida
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Yokohama, Japan
| | - Kohtaro Sugahara
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto, Japan
| | - Hiroshi Nagai
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Masayuki Satake
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
El-Seedi HR, El-Mallah MF, Yosri N, Alajlani M, Zhao C, Mehmood MA, Du M, Ullah H, Daglia M, Guo Z, Khalifa SAM, Shou Q. Review of Marine Cyanobacteria and the Aspects Related to Their Roles: Chemical, Biological Properties, Nitrogen Fixation and Climate Change. Mar Drugs 2023; 21:439. [PMID: 37623720 PMCID: PMC10456358 DOI: 10.3390/md21080439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Marine cyanobacteria are an ancient group of photosynthetic microbes dating back to 3.5 million years ago. They are prolific producers of bioactive secondary metabolites. Over millions of years, natural selection has optimized their metabolites to possess activities impacting various biological targets. This paper discusses the historical and existential records of cyanobacteria, and their role in understanding the evolution of marine cyanobacteria through the ages. Recent advancements have focused on isolating and screening bioactive compounds and their respective medicinal properties, and we also discuss chemical property space and clinical trials, where compounds with potential pharmacological effects, such as cytotoxicity, anticancer, and antiparasitic properties, are highlighted. The data have shown that about 43% of the compounds investigated have cytotoxic effects, and around 8% have anti-trypanosome activity. We discussed the role of different marine cyanobacteria groups in fixing nitrogen percentages on Earth and their outcomes in fish productivity by entering food webs and enhancing productivity in different agricultural and ecological fields. The role of marine cyanobacteria in the carbon cycle and their outcomes in improving the efficiency of photosynthetic CO2 fixation in the chloroplasts of crop plants, thus enhancing the crop plant's yield, was highlighted. Ultimately, climate changes have a significant impact on marine cyanobacteria where the temperature rises, and CO2 improves the cyanobacterial nitrogen fixation.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Jiangsu Education Department, Nanjing 210024, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
| | - Mohamed F. El-Mallah
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
| | - Nermeen Yosri
- Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt;
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Muaaz Alajlani
- Faculty of Pharmacy, Al-Sham Private University, Damascus 0100, Syria;
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Muhammad A. Mehmood
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China;
| | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Maria Daglia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Shaden A. M. Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Psychiatry and Psychology Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| | - Qiyang Shou
- Second Clinical Medical College, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
5
|
Morishita M, Hada K, Kita M, Nishikawa T. The Asymmetric Total Synthesis and Configuration Confirmation of Aplysiaenal and Nhatrangin A, Truncated Derivatives of Aplysiatoxin and Oscillatoxin. JOURNAL OF NATURAL PRODUCTS 2023; 86:1033-1041. [PMID: 36999535 DOI: 10.1021/acs.jnatprod.3c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Asymmetric total syntheses of aplysiaenal (1) and nhatrangin A (2), truncated derivatives of the aplysiatoxin/oscillatoxin family of marine natural products, from configurationally defined intermediates are described. NMR spectra of our synthesized nhatrangin A did not match with either those obtained from authentic samples of the natural product or material obtained via two other total syntheses, but were similar to that obtained from a sample obtained in a third total synthesis. By independently synthesizing the fragments used in its total syntheses, we were able to confirm the configuration of nhatrangin A and clarified that the discrepancy in the spectroscopic data is due to salt formation of the carboxylic acid moiety.
Collapse
Affiliation(s)
- Mana Morishita
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Kohei Hada
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Masaki Kita
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
6
|
Feng L, Lu CK, Wu J, Chan LL, Yue J. Identification of Anhydrodebromoaplysiatoxin as a Dichotomic Autophagy Inhibitor. Mar Drugs 2023; 21:46. [PMID: 36662219 PMCID: PMC9862050 DOI: 10.3390/md21010046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Dysfunctional autophagy is associated with various human diseases, e.g., cancer. The discovery of small molecules modulating autophagy with therapeutic potential could be significant. To this end, we screened the ability of a series of metabolites isolated from marine microorganisms to modulate autophagy. Anhydrodebromoaplysiatoxin (ADAT), a metabolite yielded by the marine red algae Gracilaria coronopifolia, inhibited autophagosome-lysosome fusion in mammalian cells, thereby inducing the accumulation of autophagosomes. Treatment of cells with ADAT alkalinized lysosomal pH. Interestingly, ADAT also activated the mTOR/p70S6K/FoxO3a signaling pathway, likely leading to the inhibition of autophagy induction. ADAT had little effect on apoptosis. Our results suggest that ADAT is a dichotomic autophagy inhibitor that inhibits both late-stage (autophagosome-lysosome fusion) and early-stage (autophagy induction) autophagy.
Collapse
Affiliation(s)
- Limin Feng
- Shenzhen Key Laboratory in Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
- Department of Bioscience and Institute of Genomics, National Yang Ming University, Taipei 11221, Taiwan
| | - Jiajun Wu
- Shenzhen Key Laboratory in Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Leo Lai Chan
- Shenzhen Key Laboratory in Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR 999077, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Jianbo Yue
- Division of Natural and Applied Sciences, Synear Molecular Biology Lab, Duke Kunshan University, Kunshan 215316, China
| |
Collapse
|
7
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
8
|
Hada K, Araki Y, Nokura Y, Urabe D, Nishikawa T. Collective Synthesis of Aplysiatoxin/Oscillatoxin Analogues by a Bioinspired Strategy. J Org Chem 2022; 87:15618-15633. [PMID: 36331394 DOI: 10.1021/acs.joc.2c02204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Interest in the marine cyanobacteria natural products aplysiatoxin (ATX) and oscillatoxin (OTX) has been renewed recently due to the discovery of many new analogues, some exhibiting intriguing biological activities. We sought to develop a collective synthesis of these natural products, hypothesizing that ATX could serve as a common biosynthetic precursor. Herein, we reveal that the core structure of ATX has unique multiple reactivities giving access to the distinct ring structures of five of the analogues, depending upon the specific conditions used. Based on these findings, syntheses of the O-Me derivative of five analogues neo-deBr-ATX-B, OTX-H, OTX-D, neo-deBr-ATX-H, and OTX-I were achieved from the main fragment of ATX as a common intermediate in a few steps. These synthetic studies also led us to revise the relative configuration in the elucidated structures of neo-deBr-ATX-B and OTX-H, and obtain unnatural 8- and 12-membered lactones from the same intermediate.
Collapse
Affiliation(s)
- Kohei Hada
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yusuke Araki
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoshihiko Nokura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Daisuke Urabe
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
9
|
Curren E, Leaw CP, Lim PT, Leong SCY. The toxic cosmopolitan cyanobacteria Moorena producens: insights into distribution, ecophysiology and toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78178-78206. [PMID: 36190622 DOI: 10.1007/s11356-022-23096-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Moorena producens is a benthic filamentous cyanobacteria that has been widely documented for its toxicity. This cyanobacterium colonizes both temperate (37%) and tropical (63%) regions, making it a cosmopolitan cyanobacterium with a global distribution. M. producens grows across coral reefs in multiple locations but recurringly blooms in Queensland, Australia. Today, nuisance blooms of M. producens have resulted in major disruptions to recreational activities along coastal areas and are known to cause adverse effects on organism and human health upon contact or ingestion. Specifically, marine organisms such as the green turtle Chelonia mydas and hawksbill turtle Eretmochelys imbricata were fatally poisoned by M. producens after consumption of this cyanobacterium. Reports record a range of effects on human health, from pain and blistering or even death upon ingestion of contaminated seafood. Blooms of M. producens are triggered by influxes of nitrogen, phosphate and iron, from surrounding coastal runoffs or sewage effluents. Additions of these nutrients can result in an increase in growth rate by 4-16 times. Iron bioavailability also plays a crucial role in bloom formation. A total of 231 natural products from 66 groups were identified from M. producens, with the three dominant groups: malyngamides, microcolins and dolastatins. These bioactive secondary metabolites have displayed toxicities against a range of carcinoma cell lines and organisms such as brine shrimp Artemia salina and goldfish Carassius auratus. This review provides a thorough insight to the distribution, ecophysiology and toxicity of M. producens, with reports on bloom events and implications on organism and human health.
Collapse
Affiliation(s)
- Emily Curren
- St. John's Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119227, Singapore.
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Malaysia
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Malaysia
| | - Sandric Chee Yew Leong
- St. John's Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119227, Singapore
| |
Collapse
|
10
|
Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules 2022; 27:molecules27154814. [PMID: 35956762 PMCID: PMC9369884 DOI: 10.3390/molecules27154814] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023] Open
Abstract
The marine environment is highly diverse, each living creature fighting to establish and proliferate. Among marine organisms, cyanobacteria are astounding secondary metabolite producers representing a wonderful source of biologically active molecules aimed to communicate, defend from predators, or compete. Studies on these molecules’ origins and activities have been systematic, although much is still to be discovered. Their broad chemical diversity results from integrating peptide and polyketide synthetases and synthases, along with cascades of biosynthetic transformations resulting in new chemical structures. Cyanobacteria are glycolipid, macrolide, peptide, and polyketide producers, and to date, hundreds of these molecules have been isolated and tested. Many of these compounds have demonstrated important bioactivities such as cytotoxicity, antineoplastic, and antiproliferative activity with potential pharmacological uses. Some are currently under clinical investigation. Additionally, conventional chemotherapeutic treatments include drugs with a well-known range of side effects, making anticancer drug research from new sources, such as marine cyanobacteria, necessary. This review is focused on the anticancer bioactivities of metabolites produced by marine cyanobacteria, emphasizing the identification of each variant of the metabolite family, their chemical structures, and the mechanisms of action underlying their biological and pharmacological activities.
Collapse
|
11
|
Wang J, Pang X, Chen C, Gao C, Zhou X, Liu Y, Luo X. Chemistry, Biosynthesis, and Biological Activity of Halogenated Compounds Produced by Marine Microorganisms. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiamin Wang
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
| | - Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Chenghai Gao
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning 530200 China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning 530200 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Xiaowei Luo
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning 530200 China
| |
Collapse
|
12
|
Kapoor S, Singh M, Srivastava A, Chavali M, Chandrasekhar K, Verma P. Extraction and characterization of microalgae-derived phenolics for pharmaceutical applications: A systematic review. J Basic Microbiol 2021; 62:1044-1063. [PMID: 34766645 DOI: 10.1002/jobm.202100458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/18/2021] [Accepted: 10/31/2021] [Indexed: 12/11/2022]
Abstract
Microalgae are regarded as a rich trove of diverse secondary metabolites that exert remarkable biological activities. In particular, microalgae-derived bioactive phenolic compounds (MBPCs) are a boon to biopharmaceutical and nutraceutical industries due to their diverse bioactivities, including antimicrobial, anticancer, antiviral, and immunomodulatory activities. The state-of-the-art green technologies for extraction and purification of MBPCs, along with the modern progress in the identification and characterization of MBPCs, have accelerated the discovery of novel active pharmaceutical compounds. However, several factors regulate the production of these bioactive phenolic compounds in microalgae. Furthermore, some microalgae species produce toxic phenolic compounds that negatively impact the aquatic ecosystem, animal, and human life. Therefore, the focus of this review paper is to bring into light the current innovations in bioprospection, extraction, purification, and characterization of MBPCs. This review is also aimed at a better understanding of the physicochemical factors regulating the production of MBPCs at an industrial scale. Finally, the present review covers the recent advances in toxicological evaluation, diverse applications, and future prospects of MBPCs in biopharmaceutical industries.
Collapse
Affiliation(s)
- Sahil Kapoor
- Department of Botany, MS University of Baroda, Vadodara, Gujarat, India.,Department of Botany, Goswami Ganesh Dutta S.D. College, Chandigarh, India
| | - Meenakshi Singh
- Department of Botany, MS University of Baroda, Vadodara, Gujarat, India.,Department of Ecology & Biodiversity, Terracon Ecotech Pvt. Ltd., Mumbai, Maharashtra, India
| | - Atul Srivastava
- Department of Botany, MS University of Baroda, Vadodara, Gujarat, India
| | - Murthy Chavali
- Office of the Dean (Research) & Department of Chemistry, Faculty of Science & Technology, Alliance University (Central Campus), Bengaluru, Karnataka, India.,NTRC-MCETRC and Aarshanano Composite Technologies Pvt. Ltd., Guntur, Andhra Pradesh, India
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
13
|
Shen S, Wang W, Chen Z, Zhang H, Yang Y, Wang X, Fu P, Han B. Absolute Structure Determination and Kv1.5 Ion Channel Inhibition Activities of New Debromoaplysiatoxin Analogues. Mar Drugs 2021; 19:630. [PMID: 34822501 PMCID: PMC8622842 DOI: 10.3390/md19110630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/04/2022] Open
Abstract
Potassium channel Kv1.5 has been considered a key target for new treatments of atrial tachyarrhythmias, with few side effects. Four new debromoaplysiatoxin analogues with a 6/6/12 fused ring system were isolated from marine cyanobacterium Lyngbya sp. Their planar structures were elucidated by HRESIMS, 1D and 2D NMR. The absolute configuration of oscillatoxin J (1) was determined by single-crystal X-ray diffraction, and the absolute configurations of oscillatoxin K (2), oscillatoxin L (3) and oscillatoxin M (4) were confirmed on the basis of GIAO NMR shift calculation followed by DP4 analysis. The current study confirmed the absolute configuration of the pivotal chiral positions (7S, 9S, 10S, 11R, 12S, 15S, 29R and 30R) at traditional ATXs with 6/12/6 tricyclic ring system. Compound 1, 2 and 4 exhibited blocking activities against Kv1.5 with IC50 values of 2.61 ± 0.91 µM, 3.86 ± 1.03 µM and 3.79 ± 1.01 µM, respectively. However, compound 3 exhibited a minimum effect on Kv1.5 at 10 µM. Furthermore, all of these new debromoaplysiatoxin analogs displayed no apparent activity in a brine shrimp toxicity assay.
Collapse
Affiliation(s)
- Sicheng Shen
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.S.); (Z.C.); (H.Z.); (Y.Y.)
| | - Weiping Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (W.W.); (X.W.)
| | - Zijun Chen
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.S.); (Z.C.); (H.Z.); (Y.Y.)
| | - Huihui Zhang
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.S.); (Z.C.); (H.Z.); (Y.Y.)
| | - Yuchun Yang
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.S.); (Z.C.); (H.Z.); (Y.Y.)
| | - Xiaoliang Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (W.W.); (X.W.)
| | - Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Bingnan Han
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.S.); (Z.C.); (H.Z.); (Y.Y.)
| |
Collapse
|
14
|
Araki Y, Hanaki Y, Kita M, Hayakawa K, Irie K, Nokura Y, Nakazaki A, Nishikawa T. Total synthesis and biological evaluation of oscillatoxins D, E, and F. Biosci Biotechnol Biochem 2021; 85:1371-1382. [PMID: 33851985 DOI: 10.1093/bbb/zbab042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/07/2021] [Indexed: 11/14/2022]
Abstract
Oscillatoxins (OTXs) and aplysiatoxins are biosynthetically related polyketides produced by marine cyanobacteria. We previously developed a synthetic route to phenolic O-methyl analogs of OTX-D and 30-methyl-OTX-D during collective synthesis of these natural products. According to our synthetic strategy, we achieved total synthesis of OTX-D, 30-methyl-OTX-D, OTX-E, and OTX-F by deprotecting the O-methyl group in an earlier intermediate, and determined their biological activities. Although OTX-D and 30-methyl-OTX-D have been reported to show antileukemic activity against L1210 cell line, we found that their cytotoxicity in vitro against this cell line is relatively weak (IC50: 29-52 µm). In contrast, OTX-F demonstrated cell line-selective antiproliferative activity against DMS-114 lung cancer cells, which implies that OTXs target as yet unknown target molecules as part of this unique activity.
Collapse
Affiliation(s)
- Yusuke Araki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yusuke Hanaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Masaki Kita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Kazuhiro Irie
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiko Nokura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Atsuo Nakazaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
15
|
Abstract
Harmful algal blooms can have deleterious effects on animal and human health as well as the environment and are anticipated to become more frequent and intensified in the future because of climate change. Veterinarians are well positioned to diagnose and treat animals affected by HABs and to educate livestock owners and the public about health risks and environmental issues associated with those toxic events. Pets, livestock, wildlife, and marine life can all be affected by HABs. Information about HABs is becoming increasingly assessable as a result of ongoing research into the structure, properties, toxic mechanisms, and geographic distribution of toxins found in HABs. The AVMA's multi-entity working group on HABs is comprised of members from the Aquatic Veterinary Medicine Committee, Committee on Environmental Issues, and Council on Public Health and is working to make more information and resources regarding HABs available to practicing veterinarians. The present article is the first of those resources and provides a review of HABs, with a focus on livestock. It includes background material about bloom formation, appearance, and persistence as well as descriptions of clinical observations from early field cases and more recent information about the causative organisms and toxins to provide livestock veterinarians a foundation for understanding HABs. Reporting of HABs and prevention and mitigation strategies for livestock owners are also discussed.
Collapse
|
16
|
Isolation and Structure Elucidation of a Novel Symmetrical Macrocyclic Phthalate Hexaester. Symmetry (Basel) 2021. [DOI: 10.3390/sym13020361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A novel symmetrical macrocyclic phthalate hexaester (1) and a known macrocyclic phthalate tetraester (2) were isolated during a natural product-exploring program on the cyanobacterium Moorea producens. Their structures were elucidated based on spectroscopic data, including nuclear magnetic resonance and high-resolution mass spectra. In the antibacterial activity test, compounds 1 and 2 showed no bioactivity at the concentrations tested.
Collapse
|
17
|
Nagai H, Iguchi K, Satake M, Nishio Y, Zhang BT, Kawashima K, Uchida H. Debromooscillatoxins G and I from the Cyanobacterium Moorea producens. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
19
|
Satake M, Iguchi K, Watanabe R, Uchida H, Nagai H. Aplysiadione and aplysiaenal: Truncated biosynthetic intermediates of aplysiatoxins from a cyanobacterium. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Zhang HH, Zhang XK, Si RR, Shen SC, Liang TT, Fan TT, Chen W, Xu LH, Han BN. Chemical and Biological Study of Novel Aplysiatoxin Derivatives from the Marine Cyanobacterium Lyngbya sp. Toxins (Basel) 2020; 12:E733. [PMID: 33238397 PMCID: PMC7700248 DOI: 10.3390/toxins12110733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 12/03/2022] Open
Abstract
Since 1970s, aplysiatoxins (ATXs), a class of biologically active dermatoxins, were identified from the marine mollusk Stylocheilus longicauda, whilst further research indicated that ATXs were originally metabolized by cyanobacteria. So far, there have been 45 aplysiatoxin derivatives discovered from marine cyanobacteria with various geographies. Recently, we isolated two neo-debromoaplysiatoxins, neo-debromoaplysiatoxin G (1) and neo-debromoaplysiatoxin H (2) from the cyanobacterium Lyngbya sp. collected from the South China Sea. The freeze-dried cyanobacterium was extracted with liquid-liquid extraction of organic solvents, and then was subjected to multiple chromatographies to yield neo-debromoaplysiatoxin G (1) (3.6 mg) and neo-debromoaplysiatoxin H (2) (4.3 mg). They were elucidated with spectroscopic methods. Moreover, the brine shrimp toxicity of the aplysiatoxin derivatives representing differential structural classifications indicated that the debromoaplysiatoxin was the most toxic compound (half inhibitory concentration (IC50) value = 0.34 ± 0.036 µM). While neo-aplysiatoxins (neo-ATXs) did not exhibit apparent brine shrimp toxicity, but showed potent blocking action against potassium channel Kv1.5, likewise, compounds 1 and 2 with IC50 values of 1.79 ± 0.22 µM and 1.46 ± 0.14 µM, respectively. Therefore, much of the current knowledge suggests the ATXs with different structure modifications may modulate multiple cellular signaling processes in animal systems leading to the harmful effects on public health.
Collapse
Affiliation(s)
- Hui-Hui Zhang
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.-H.Z.); (X.-K.Z.); (S.-C.S.); (T.-T.F.); (W.C.)
| | - Xin-Kai Zhang
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.-H.Z.); (X.-K.Z.); (S.-C.S.); (T.-T.F.); (W.C.)
| | - Ran-Ran Si
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Si-Cheng Shen
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.-H.Z.); (X.-K.Z.); (S.-C.S.); (T.-T.F.); (W.C.)
| | - Ting-Ting Liang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Ting-Ting Fan
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.-H.Z.); (X.-K.Z.); (S.-C.S.); (T.-T.F.); (W.C.)
| | - Wei Chen
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.-H.Z.); (X.-K.Z.); (S.-C.S.); (T.-T.F.); (W.C.)
| | - Lian-Hua Xu
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.-H.Z.); (X.-K.Z.); (S.-C.S.); (T.-T.F.); (W.C.)
| | - Bing-Nan Han
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.-H.Z.); (X.-K.Z.); (S.-C.S.); (T.-T.F.); (W.C.)
| |
Collapse
|
21
|
Xu J, Zhang T, Yao J, Lu J, Liu Z, Ding L. Recent advances in chemistry and bioactivity of marine cyanobacteria Moorea species. Eur J Med Chem 2020; 201:112473. [PMID: 32652435 DOI: 10.1016/j.ejmech.2020.112473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022]
Abstract
Cyanobacteria are one of the oldest creatures on earth, originated 3.5-3.3 billion years ago, and are distributed all over the world, including freshwater ponds and lakes, hot springs, and polar ice, especially in tropical and subtropical marine locations. Due to their large multimodular non-ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) biosynthetic machinery, cyanobacteria have represented a significant new source of structurally bioactive secondary metabolites. Moorea as a prolific producer have yielded lots of natural products with a variety of bioactivities such as highly cytotoxicity, anticancer activity, ion channel blocking activity, brine shrimp toxicity and other activities. Some of secondary metabolites have been identified as potential lead compounds for the development of anticancer agents. In this review, a total of 111 bioactive marine cyanobacterial secondary metabolites from the genus Moorea, published in the 54 literatures updated to the middle of 2019 and some synthetic analogues, are discussed with emphasis on their structures and biological activities.
Collapse
Affiliation(s)
- Jianzhou Xu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Ting Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Jiaxiao Yao
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Jian Lu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Zhiwen Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
22
|
Kawaguchi M, Satake M, Zhang BT, Xiao YY, Fukuoka M, Uchida H, Nagai H. Neo-Aplysiatoxin A Isolated from Okinawan Cyanobacterium Moorea Producens. Molecules 2020; 25:molecules25030457. [PMID: 31978978 PMCID: PMC7037229 DOI: 10.3390/molecules25030457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 11/20/2022] Open
Abstract
A new aplysiatoxin derivative, neo-aplysiatoxin A (1), along with seven known compounds, neo-debromoaplysiatoxin A (2), dolastatin 3 (3), lyngbic acid (4), malyngamide M (5), hermitamide A (6), (−)-loliolide (7), and (+)-epiloliolide (8), was isolated from the Okinawan cyanobacterium Moorea producens. Their structures were elucidated on the basis of spectroscopic data, including high-resolution mass spectrometry and nuclear magnetic resonance. The compounds were evaluated for cytotoxic and diatom growth inhibition activities.
Collapse
Affiliation(s)
- Mioko Kawaguchi
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan; (M.K.); (B.-T.Z.); (Y.-Y.X.); (M.F.)
| | - Masayuki Satake
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Bo-Tao Zhang
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan; (M.K.); (B.-T.Z.); (Y.-Y.X.); (M.F.)
| | - Yue-Yun Xiao
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan; (M.K.); (B.-T.Z.); (Y.-Y.X.); (M.F.)
| | - Masayuki Fukuoka
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan; (M.K.); (B.-T.Z.); (Y.-Y.X.); (M.F.)
| | - Hajime Uchida
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama 236-8648, Japan;
| | - Hiroshi Nagai
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan; (M.K.); (B.-T.Z.); (Y.-Y.X.); (M.F.)
- Correspondence: ; Tel.: +81-3-5463-0454
| |
Collapse
|
23
|
Fan TT, Zhang HH, Tang YH, Zhang FZ, Han BN. Two New Neo-debromoaplysiatoxins-A Pair of Stereoisomers Exhibiting Potent Kv1.5 Ion Channel Inhibition Activities. Mar Drugs 2019; 17:E652. [PMID: 31766406 PMCID: PMC6950415 DOI: 10.3390/md17120652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 11/17/2022] Open
Abstract
A pair of stereoisomers possessing novel structures with 6/6/5 fused-ring systems, neo-debromoaplysiatoxin E (1) and neo-debromoaplysiatoxin F (2), were isolated from the marine cyanobacterium Lyngbya sp. Their structures were elucidated using various spectroscopic techniques including high resolution electrospray ionization mass spectroscopy (HRESIMS) and nuclear magnetic resonance (NMR). The absolute stereochemistry was determined by calculated electronic circular dichroism (ECD) and gauge-independent atomic orbital (GIAO) NMR shift calculation followed by DP4+ analysis. Significantly, this is the first report on aplysiatoxin derivatives with different absolute configurations at C9-C12 (1: 9S, 10R, 11S, 12S; 2: 9R, 10S, 11R, 12R). Compounds 1 and 2 exhibited potent blocking activities against Kv1.5 with IC50 values of 1.22 ± 0.22 μM and 2.85 ± 0.29 μM, respectively.
Collapse
Affiliation(s)
- Ting-Ting Fan
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (T.-T.F.); (H.-H.Z.); (F.-Z.Z.)
| | - Hui-Hui Zhang
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (T.-T.F.); (H.-H.Z.); (F.-Z.Z.)
| | - Yang-Hua Tang
- Department of Pharmacy, Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Fan-Zhong Zhang
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (T.-T.F.); (H.-H.Z.); (F.-Z.Z.)
| | - Bing-Nan Han
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (T.-T.F.); (H.-H.Z.); (F.-Z.Z.)
| |
Collapse
|