1
|
Shazadi K, Arshad N, Ambreen HS, Riaz A, Mehreen A. In vivo studies could not confirm in vitro prophylactic synergism between Moringa essential oil and Lactobacillus reuteri (MT180537). BRAZ J BIOL 2024; 84:e254513. [DOI: 10.1590/1519-6984.254513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
Abstract Aerobic vaginitis (AV) is a recently defined vaginal recurring infection, which is treated with antibiotics. However, excessive and prolonged use of antibiotics disrupts healthy vaginal microflora and leads to the emergence of antibiotic resistance among pathogens. This situation has directed researchers to explore alternative antimicrobials. The current study describes in vitro and in vivo antimicrobial efficacy and pharmaceutical interactions between plant essential oils (EOs) and five lactic acid bacteria (LABs), isolated from the healthy vagina, against E. faecalis, one of the major etiological agents of AV. In vitro experiments confirm good antimicrobial activity of both plant EOs and cell free supernatant (CFS) from LABs. Based on high antimicrobial efficacy, Moringa essential oil (MO) was selected to determine its nature of interaction with CFS of five LAB strains. Synergism was recorded between MO and CFS of L. reuteri (MT180537). To validate in vitro findings, prophylactic responses of individual and synergistic application of MO and L. reuteri (MT180537) were evaluated in an E. faecalis (MW051601) induced AV murine model. The prophylactic efficacy was evidenced by a reduction in intensity of clinical symptoms, E. faecalis (MW051601) count per vaginal tissue along with a reduction in AV associated changes in histological markers of infection in animals receiving Moringa essential oil and L. reuteri (MT180537) alone or in combination. However, significant synergism between Moringa essential oil and L. reuteri (MT180537) could not be observed. Our data confirms the importance of in vivo experiments in deducing pharmacological interactions.
Collapse
Affiliation(s)
| | - N. Arshad
- University of the Punjab, Pakistan; The University of Lahore, Pakistan
| | | | - A. Riaz
- The University of Lahore, Pakistan
| | | |
Collapse
|
2
|
Wang Y, Jiang L, Zhang Y, Ran R, Meng X, Liu S. Research advances in the degradation of aflatoxin by lactic acid bacteria. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230029. [PMID: 37901116 PMCID: PMC10601132 DOI: 10.1590/1678-9199-jvatitd-2023-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Aflatoxins are toxic secondary metabolites that often contaminate food and animal feed, causing huge economic losses and serious health hazards. Aflatoxin contamination has become a major concern worldwide. Biological methods have been used to reduce aflatoxins in food and feed by inhibiting toxin production and detoxification. Among biological methods, lactic acid bacteria are of significant interest because of their safety, efficiency, and environmental friendliness. This study aimed to review the mechanisms by which lactic acid bacteria degrade aflatoxins and the factors that influence their degradation efficiency, including the action of the lactic acid bacteria themselves (cell wall adsorption) and the antifungal metabolites produced by the lactic acid bacteria. The current applications of lactic acid bacteria to food and feed were also reviewed. This comprehensive analysis provided insight into the binding mechanisms between lactic acid bacteria and aflatoxins, facilitating the practical applications of lactic acid bacteria to food and agriculture.
Collapse
Affiliation(s)
- Yuxi Wang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lishi Jiang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ran Ran
- School of Light Industry and Materials, Chengdu Textile College, Chengdu, China
| | - Xiao Meng
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shukun Liu
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Mahmoud ALE, Kilany AHAM, Hassan EA. Antifungal activity of Lysinibacillus macroides against toxigenic Aspergillus flavus and Fusarium proliferatum and analysis of its mycotoxin minimization potential. BMC Microbiol 2023; 23:269. [PMID: 37752474 PMCID: PMC10521556 DOI: 10.1186/s12866-023-03007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Toxigenic fungi (Aspergillus and Fusarium) and their metabolites represent the major cause of corn and corn-based products contamination and consequently lead to severe economic and health issues. AIM Our current study aimed to investigate the efficacy of using L. macroides Bac6 as a biological control agent against the toxigenic fungi; A. flavus f10 and F. proliferatum f30 and their mycotoxins. RESULTS The results illustrated that A. flavus f10 produced the aflatoxins AFB1 and AFG2 with concentrations of 21.239 and 13.593 ppb, respectively. While F. proliferatum f30 produced fumonisin B1 (9600 ppb). Furthermore, L. macroides showed a high potential for inhibition of toxigenic fungal growth using a dual culture method. F. proliferatum f30 and A. flavus f10 were found to be inhibited by a percentage of 80 and 62.5%, respectively. The results were confirmed using the scanning electron microscope. The antagonistic bacteria, L. macroides, showed chitinase productivity and activity of 26.45 U/L and 0.12 U/mL/min, respectively, which illustrates its potential application as a biocontrol agent. The GC-MS analysis revealed an abundance of Pyrrolo[1,2-a] pyrazine-1,4-dione, Hexahydro in the bacterial supernatant that exhibited antifungal characteristics. L. macroides had a significant reduction of AFB1 and AFG2 produced by A. flavus f10, recording 99.25% and 99% inhibition, respectively. It also showed strong inhibition of fumonisin B1 (90% inhibition) produced by F. proliferatum f30. CONCLUSION Thus, the current study is a prospective study evaluating for the first time the potential impact of L. macroides Bac6 against the toxigenic fungi and their toxins.
Collapse
Affiliation(s)
- Ahmed Lotfy E Mahmoud
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Ayat H A Mohamed Kilany
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Elhagag A Hassan
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
4
|
Sharafi H, Divsalar E, Rezaei Z, Liu SQ, Moradi M. The potential of postbiotics as a novel approach in food packaging and biopreservation: a systematic review of the latest developments. Crit Rev Food Sci Nutr 2023:1-31. [PMID: 37667831 DOI: 10.1080/10408398.2023.2253909] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Metabolic by-products are part of the so-called postbiotics of probiotics and other beneficial microorganisms, particularly lactic acid bacteria, which have gained popularity as a feasible alternative to improving food quality and safety. Postbiotics in dry and liquid forms can be easily integrated into food formulations and packaging materials, exhibiting antimicrobial and antioxidant effects owing to the presence of multiple antimicrobials, such as organic acids, bacteriocins, exopolysaccharides and bioactive peptides. Postbiotics can thus control the growth of pathogens and spoilage microorganisms, thereby extending the shelf life of food products. Because of their ability to be easily manufactured without requiring extensive processing, postbiotics are regarded as a safer and more sustainable alternative to synthetic preservatives, which can have negative environmental consequences. Additionally, food manufacturers can readily adopt postbiotics in food formulations without significant modifications. This systematic review provides an in-depth analysis of studies on the use of postbiotics in the biopreservation and packaging of a wide range of food products. The review evaluates and discusses the types of microorganisms, postbiotics preparation and modification techniques, methods of usage in dairy products, meat, poultry, seafood, fruits, vegetables, bread, and egg, and their effects on food quality and safety.
Collapse
Affiliation(s)
- Houshmand Sharafi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Elahe Divsalar
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Zeinab Rezaei
- Center of Cheshme noshan khorasan (Alis), University of Applied Science and Technology, Chanaran, Iran
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
5
|
Chang J, Luo H, Li L, Zhang J, Harvey J, Zhao Y, Zhang G, Liu Y. Mycotoxin risk management in maize gluten meal. Crit Rev Food Sci Nutr 2023; 64:7687-7706. [PMID: 36995226 DOI: 10.1080/10408398.2023.2190412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Maize gluten meal (MGM) is a by-product of maize starch and ethanol, produced by the wet milling process. Its high protein content makes it a preferred ingredient in feed. Given the high prevalence of mycotoxins in maize globally, they pose a significant challenge to use of MGM for feed: wet milling could concentrate certain mycotoxins in gluten components, and mycotoxin consumption affects animal health and can contaminate animal-source foods. To help confront this issue, this paper summarizes mycotoxin occurrence in maize, distribution during MGM production and mycotoxin risk management strategies for MGM through a comprehensive literature review. Available data emphasize the importance of mycotoxin control in MGM and the necessity of a systematic control approach, which includes: good agriculture practices (GAP) in the context of climate change, degradation of mycotoxin during MGM processing with SO2 and lactic acid bacteria (LAB) and the prospect of removing or detoxifying mycotoxins using emerging technologies. In the absence of mycotoxin contamination, MGM represents a safe and economically critical component of global animal feed. With a holistic risk assessment-based, seed-to-MGM-feed systematic approach to reducing and decontaminating mycotoxins in maize, costs and negative health impacts associated with MGM use in feed can be effectively reduced.
Collapse
Affiliation(s)
- Jinghua Chang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Hao Luo
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Lin Li
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Junnan Zhang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Jagger Harvey
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Yueju Zhao
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Guangtao Zhang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
6
|
Nazareth TDM, Calpe J, Luz C, Mañes J, Meca G. Manufacture of a Potential Antifungal Ingredient Using Lactic Acid Bacteria from Dry-Cured Sausages. Foods 2023; 12:foods12071427. [PMID: 37048247 PMCID: PMC10093346 DOI: 10.3390/foods12071427] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The growing interest in functional foods has fueled the hunt for novel lactic acid bacteria (LAB) found in natural sources such as fermented foods. Thus, the aims of this study were to isolate, identify, characterize, and quantify LAB’s antifungal activity and formulate an ingredient for meat product applications. The overlay method performed a logical initial screening by assessing isolated bacteria’s antifungal activity in vitro. Next, the antifungal activity of the fermented bacteria-free supernatants (BFS) was evaluated by agar diffusion assay against six toxigenic fungi. Subsequently, the antifungal activity of the most antifungal BFS was quantified using the microdilution method in 96-well microplates. The meat broth that showed higher antifungal activity was selected to elaborate on an ingredient to be applied to meat products. Finally, antifungal compounds such as organic acids, phenolic acids, and volatile organic compounds were identified in the chosen-fermented meat broth. The most promising biological candidates belonged to the Lactiplantibacillus plantarum and Pediococcus pentosaceus. P. pentosaceus C15 distinguished from other bacteria by the production of antifungal compounds such as nonanoic acid and phenyl ethyl alcohol, as well as the higher production of lactic and acetic acid.
Collapse
|
7
|
Dopazo V, Illueca F, Luz C, Musto L, Moreno A, Calpe J, Meca G. Revalorization by lactic acid bacterial fermentation of goat whey from cheese industry as a potential antifungal agent. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Illueca F, Moreno A, Calpe J, Nazareth TDM, Dopazo V, Meca G, Quiles JM, Luz C. Bread Biopreservation through the Addition of Lactic Acid Bacteria in Sourdough. Foods 2023; 12:foods12040864. [PMID: 36832942 PMCID: PMC9956393 DOI: 10.3390/foods12040864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Nowadays, the consumer seeks to replace synthetic preservatives with biopreservation methods, such as sourdough in bread. Lactic acid bacteria (LAB) are used as starter cultures in many food products. In this work, commercial yeast bread and sourdough breads were prepared as controls, as well as sourdough breads with L. plantarum 5L1 lyophilized. The impact of L. plantarum 5L1 on the properties of bread was studied. Antifungal compounds and the impact on the protein fraction by the different treatments in doughs and breads were also analyzed. In addition, the biopreservation capacity of the treatments in breads contaminated with fungi was studied and the mycotoxin content was analyzed. The results showed significant differences with respect to the controls in the properties of the bread and a higher total phenolic and lactic acid content in breads with higher amounts of L. plantarum 5L1. In addition, there was a higher content of alcohol and esters. Furthermore, adding this starter culture produced hydrolysis of the 50 kDa band proteins. Finally, the higher concentration of L. plantarum 5L1 delayed fungal growth and reduced the content of AFB1 and AFB2 compared to the control.
Collapse
Affiliation(s)
- Francisco Illueca
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Ana Moreno
- AgrotechUV Incubator, Scientific Park of University of Valence, St. Catedrático Agustín Escardino 9, 46980 Paterna, Spain
| | - Jorge Calpe
- AgrotechUV Incubator, Scientific Park of University of Valence, St. Catedrático Agustín Escardino 9, 46980 Paterna, Spain
| | - Tiago de Melo Nazareth
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
- Correspondence: ; Tel.: +34-963-544-959
| | - Victor Dopazo
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Giuseppe Meca
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Juan Manuel Quiles
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Carlos Luz
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| |
Collapse
|
9
|
Lafuente C, Calpe J, Musto L, Nazareth TDM, Dopazo V, Meca G, Luz C. Preparation of Sourdoughs Fermented with Isolated Lactic Acid Bacteria and Characterization of Their Antifungal Properties. Foods 2023; 12:foods12040686. [PMID: 36832761 PMCID: PMC9955050 DOI: 10.3390/foods12040686] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Traditional sourdough is obtained using a mixture of flour and water stored at room temperature until acidification. Therefore, adding lactic acid bacteria (LAB) can improve the quality and safety of sourdough bread. Faced with this problem, four drying techniques-freeze-drying, spray-drying, low-temperature drying, and drying at low humidity-have been applied. Our goals were to isolate LAB strains with antifungal potential against Aspergillus and Penicillium fungi. The antifungal capacity was evaluated with agar diffusion, co-culture in overlay agar, and a microdilution susceptibility assay. In addition, the antifungal compounds generated in sourdough were analyzed. As a result, dried sourdoughs were prepared with Lactiplantibacillus plantarum TN10, Lactiplantibacillus plantarum TF2, Pediococcus pentosaceus TF8, Pediococcus acidilactici TE4, and Pediococcus pentosaceus TI6. The minimum fungicidal concentrations ranged from 25 g/L versus P. verrucosum and 100 g/L against A. flavus. A total of 27 volatile organic compounds were produced. Moreover, the lactic acid content reached 26 g/kg of dry product, and the phenyllactic concentration was significantly higher than the control. The P. pentosaceus TI6 exhibited a higher antifungal capacity in vitro and demonstrated a higher production of antifungal compounds compared to the other strains; therefore, further studies will evaluate the impact of this sourdough in bread manufacture.
Collapse
Affiliation(s)
- Carla Lafuente
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Jorge Calpe
- AgrotechUV Incubator, University of Valencia Science Park, St. Catedrático Agustín Escardino 9, 46980 Paterna, Spain
| | - Leonardo Musto
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Tiago de Melo Nazareth
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
- Correspondence: ; Tel.: +34-963-54-49-59
| | - Victor Dopazo
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Giuseppe Meca
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Carlos Luz
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| |
Collapse
|
10
|
Simões L, Fernandes N, Teixeira J, Abrunhosa L, Dias DR. Brazilian Table Olives: A Source of Lactic Acid Bacteria with Antimycotoxigenic and Antifungal Activity. Toxins (Basel) 2023; 15:71. [PMID: 36668890 PMCID: PMC9866039 DOI: 10.3390/toxins15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Food and feed contamination by fungi, especially by toxigenic ones, is a global concern because it can pose serious health problems when the production of mycotoxins is involved. Lactic acid bacteria (LAB), well-known for fermenting foods, have been gaining attention for their antifungal and anti-mycotoxin properties. This work tested 14 LAB strains isolated from naturally fermented Brazilian table olives for growth inhibition of Aspergillus flavus, Aspergillus carbonarius, Penicillium nordicum, and Penicillium expansum. The strains Lacticaseibacillus paracasei subsp. paracasei CCMA 1764, Levilactobacillus brevis CCMA 1762, and Lactiplantibacillus pentosus CCMA 1768 showed the strongest antifungal activity, being more active against P. expansum. Aflatoxin B1 (AFB1), ochratoxin A (OTA), and patulin (PAT) production was reduced essentially by mycelia growth inhibition. The main organic acids detected in the cell free supernatant (CFS) were lactic and acetic acids. Tested LAB exhibited adsorption capacity against AFB1 (48-51%), OTA (28-33%), and PAT (23-24%). AFB1 was converted into aflatoxin B2a (AFB2a) by lactic and acetic acids produced by the strain CCMA 1764. A similar conversion was observed in solutions of these organic acids (0.1 M). These findings demonstrate the potential of isolated LAB strains as natural agents to control toxigenic fungi and their mycotoxins in fermented products, such as table olives.
Collapse
Affiliation(s)
- Luara Simões
- Biology Department, Federal University of Lavras, Lavras 37200-900, Brazil
- Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| | - Natália Fernandes
- Biology Department, Federal University of Lavras, Lavras 37200-900, Brazil
- Chemistry Department, University of California, Davis, CA 95616, USA
| | - José Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Luís Abrunhosa
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Disney Ribeiro Dias
- Department of Food Science, Federal University of Lavras, Lavras 37200-900, Brazil
| |
Collapse
|
11
|
Xia D, Mo Q, Yang L, Wang W. Crosstalk between Mycotoxins and Intestinal Microbiota and the Alleviation Approach via Microorganisms. Toxins (Basel) 2022; 14:toxins14120859. [PMID: 36548756 PMCID: PMC9784275 DOI: 10.3390/toxins14120859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungus. Due to their widespread distribution, difficulty in removal, and complicated subsequent harmful by-products, mycotoxins pose a threat to the health of humans and animals worldwide. Increasing studies in recent years have highlighted the impact of mycotoxins on the gut microbiota. Numerous researchers have sought to illustrate novel toxicological mechanisms of mycotoxins by examining alterations in the gut microbiota caused by mycotoxins. However, few efficient techniques have been found to ameliorate the toxicity of mycotoxins via microbial pathways in terms of animal husbandry, human health management, and the prognosis of mycotoxin poisoning. This review seeks to examine the crosstalk between five typical mycotoxins and gut microbes, summarize the functions of mycotoxins-induced alterations in gut microbes in toxicological processes and investigate the application prospects of microbes in mycotoxins prevention and therapy from a variety of perspectives. The work is intended to provide support for future research on the interaction between mycotoxins and gut microbes, and to advance the technology for preventing and controlling mycotoxins.
Collapse
Affiliation(s)
- Daiyang Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qianyuan Mo
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-020-85283756
| |
Collapse
|
12
|
Inhibition of Aflatoxin B1 Synthesis in Aspergillus flavus by Mate ( Ilex paraguariensis), Rosemary ( Rosmarinus officinalis) and Green Tea ( Camellia sinensis) Extracts: Relation with Extract Antioxidant Capacity and Fungal Oxidative Stress Response Modulation. Molecules 2022; 27:molecules27238550. [PMID: 36500642 PMCID: PMC9739609 DOI: 10.3390/molecules27238550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Plant extracts may represent an ecofriendly alternative to chemical fungicides to limit aflatoxin B1 (AFB1) contamination of foods and feeds. Mate (Ilex paraguariensis), rosemary (Romarinus officinalis) and green tea (Camellia sinensis) are well known for their beneficial properties, which are mainly related to their richness in bioactive phenolic compounds. AFB1 production is inhibited, with varying efficiency, by acetone/water extracts from these three plants. At 0.45 µg dry matter (DM)/mL of culture medium, mate and green tea extracts were able to completely inhibit AFB1 production in Aspergillus flavus, and rosemary extract completely blocked AFB1 biosynthesis at 3.6 µg DM/mL of culture medium. The anti-AFB1 capacity of the extracts correlated strongly with their phenolic content, but, surprisingly, no such correlation was evident with their antioxidative ability, which is consistent with the ineffectiveness of these extracts against fungal catalase activity. Anti-AFB1 activity correlated more strongly with the radical scavenging capacity of the extracts. This is consistent with the modulation of SOD induced by mate and green tea in Aspergillus flavus. Finally, rutin, a phenolic compound present in the three plants tested in this work, was shown to inhibit AFB1 synthesis and may be responsible for the anti-mycotoxin effect reported herein.
Collapse
|
13
|
Meruvu H. Redefining methods for augmenting lactic acid bacteria robustness and phenyllactic acid biocatalysis: Integration valorizes simplicity. Crit Rev Food Sci Nutr 2022; 64:4397-4409. [PMID: 36322699 DOI: 10.1080/10408398.2022.2141681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The production of phenyllactic acid (PLA) has been reported by several researchers, but so far, no mention has been made of augmented PLA production using an orchestrated assembly of simple techniques integrated to improve lactic acid bacteria (LAB) metabolism for the same. This review summarizes sequentially tailoring LAB growth and metabolism for augmented PLA catalysis through several strategies like monitoring LAB sustenance by choosing appropriate starter PLA-producing LAB strains isolated from natural environments, with desirably fastidious growth rates, properties like acidification, proteolysis, bacteriophage-resistance, aromatic/texturing-features, etc.; entrapping chosen LAB strains in novel cryogels and/or co-cultivating two/more LAB strains to improve their biotransformation potential and promote growth dependency/sustainability; adopting adaptive evolution methods designed to improve LAB strains under selection pressure inducing desired phenotypes tolerant to stress factors like heat, salt, acid, and solvent; monitoring physico-chemical LAB fermentation factors like temperature, pH, dissolved oxygen content, enzymes, and cofactors for PLA biosynthesis; and modulating purification/downstream processes to extract substantial PLA yields. This review paper serves as a comprehensive preliminary guide that can evoke a strategic experimental plan to produce industrial-scale PLA yields using simple techniques orchestrated together in the pursuit of conserving time, effort, and resources.
Collapse
Affiliation(s)
- Haritha Meruvu
- Department of Food Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| |
Collapse
|
14
|
Ben Farhat L, Aissaoui N, Torrijos R, Luz C, Meca G, Abidi F. Correlation between metabolites of lactic acid bacteria isolated from dairy traditional fermented Tunisian products and antifungal and antioxidant activities. J Appl Microbiol 2022; 133:3069-3082. [PMID: 35924966 DOI: 10.1111/jam.15763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022]
Abstract
AIMS The objective of this study is to identify and investigate the antifungal and antioxidant potential of lactic acid bacteria (LAB) isolated from traditional fermented products. METHODS AND RESULTS In this work, a collection of LAB was isolated from traditional fermented products collected in four Tunisian regions. After first screening using the overlay method, seven bacterial strains were retained due to their high antifungal effect. Four strains of Limosilactobacillus fermentum were identified, one strain of Lacticaseibacillus paracasei, one strain of Lacticaseibacillus rhamnosus and one strain of Enterococcus faecium. The antifungal as well as the antioxidant potential of these bacteria were then evaluated. Bacterial strains were effective against six fungal strains with a minimum inhibitory concentrations ranging from 25 to 100 mg/mL and a minimum fungicidal concentrations ranging from 50 to 200 mg/mL. Cell free supernatants of LAB were analyzed by HPLC-DAD and LC-MS-qTOF-MS analysis. Results showed significant production of organic acids as well as several phenolic compounds. Correlation analysis confirmed that PLA and 1,2-Dihydroxybenzene were positively correlated with antifungal potential. The results of the antioxidant activity highlighted an ABTS radical cation scavenging activity ranging from 49% to 57% and a DPPH trapping percentage ranging from 80% to 97%. CONCLUSIONS Therefore, due to these characteristics, identified lactic acid bacteria strains have shown their effectiveness to perform as antifungal and antioxidant agents. SIGNIFICANCE AND IMPACT OF THE STUDY Since microbial contamination is at the root of extensive losses in the food sector, the identified strains or their metabolites can potentially be used as additives to limit microorganism spoilage in food products and increase their shelf life.
Collapse
Affiliation(s)
- Leila Ben Farhat
- University of Carthage, INSAT, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), BP 676, 1080 Cedex, Tunisia.,University of València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
| | - Neyssene Aissaoui
- University of Carthage, INSAT, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), BP 676, 1080 Cedex, Tunisia
| | - Raquel Torrijos
- University of València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
| | - Carlos Luz
- University of València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
| | - Giuseppe Meca
- University of València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
| | - Ferid Abidi
- University of Carthage, INSAT, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), BP 676, 1080 Cedex, Tunisia
| |
Collapse
|
15
|
Salman M, Javed MR, Ali H, Mustafa G, Tariq A, Sahar T, Naheed S, Gill I, Abid M, Tawab A. Bioprotection of Zea mays L. from aflatoxigenic Aspergillus flavus by Loigolactobacillus coryniformis BCH-4. PLoS One 2022; 17:e0271269. [PMID: 35917314 PMCID: PMC9345345 DOI: 10.1371/journal.pone.0271269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Fungal infection causes deterioration, discoloration, and loss of nutritional values of food products. The use of lactic acid bacteria has diverse applications in agriculture to combat pathogens and to improve the nutritional values of cereal grains. The current research evaluated the potential of Loigolactobacillus coryniformis BCH-4 against aflatoxins producing toxigenic Aspergillus flavus strain. The cell free supernatant (CFS) of Loig. coryniformis was used for the protection of Zea mays L. treated with A. flavus. No fungal growth was observed even after seven days. The FT-IR spectrum of untreated (T1: without any treatment) and treated maize grains (T2: MRS broth + A. flavus; T3: CFS + A. flavus) showed variations in peak intensities of functional group regions of lipids, proteins, and carbohydrates. Total phenolics, flavonoid contents, and antioxidant activity of T3 were significantly improved in comparison with T1 and T2. Aflatoxins were not found in T3 while observed in T2 (AFB1 and AFB2 = 487 and 16 ng/g each). HPLC analysis of CFS showed the presence of chlorogenic acid, p-coumaric acid, 4-hydroxybenzoic acid, caffeic acid, sinapic acid, salicylic acid, and benzoic acid. The presence of these acids in the CFS of Loig. coryniformis cumulatively increased the antioxidant contents and activity of T3 treated maize grains. Besides, CFS of Loig. coryniformis was passed through various treatments (heat, neutral pH, proteolytic enzymes and catalase), to observe its stability. It suggested that the inhibitory potential of CFS against A. flavus was due to the presence of organic acids, proteinaceous compounds and hydrogen peroxide. Conclusively, Loig. coryniformis BCH-4 could be used as a good bioprotecting agent for Zea mays L. by improving its nutritional and antioxidant contents.
Collapse
Affiliation(s)
- Mahwish Salman
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
- * E-mail: (MS); (AT)
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Hazrat Ali
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Anam Tariq
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Tanzila Sahar
- Department of Biochemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Shazia Naheed
- Department of Chemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Iqra Gill
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Abid
- Department of Statistics, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Abdul Tawab
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- * E-mail: (MS); (AT)
| |
Collapse
|
16
|
Atfaoui Khadija, Omar B, Abdessamad E, Rachid I, Imane O, Hicham H, Mohammed O. Phenotypic and Genotypic Identification of the Most Acidifiers LAB Strains Isolated from Fermented Food. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Satterlee TR, Williams FN, Nadal M, Glenn AE, Lofton LW, Duke MV, Scheffler BE, Gold SE. Transcriptomic Response of Fusarium verticillioides to Variably Inhibitory Environmental Isolates of Streptomyces. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:894590. [PMID: 37746240 PMCID: PMC10512263 DOI: 10.3389/ffunb.2022.894590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/31/2022] [Indexed: 09/26/2023]
Abstract
Fusarium verticillioides is a mycotoxigenic fungus that is a threat to food and feed safety due to its common infection of maize, a global staple crop. A proposed strategy to combat this threat is the use of biological control bacteria that can inhibit the fungus and reduce mycotoxin contamination. In this study, the effect of multiple environmental isolates of Streptomyces on F. verticillioides was examined via transcriptome analysis. The Streptomyces strains ranged from inducing no visible response to dramatic growth inhibition. Transcriptionally, F. verticillioides responded proportionally to strain inhibition with either little to no transcript changes to thousands of genes being differentially expressed. Expression changes in multiple F. verticillioides putative secondary metabolite gene clusters was observed. Interestingly, genes involved in the fusaric acid gene cluster were suppressed by inhibitory strains of Streptomyces. A F. verticillioides beta-lactamase encoding gene (FVEG_13172) was found to be highly induced by specific inhibitory Streptomyces strains and its deletion increased visible response to those strains. This study demonstrates that F. verticillioides does not have an all or nothing response to bacteria it encounters but rather a measured response that is strain specific and proportional to the strength of inhibition.
Collapse
Affiliation(s)
- Timothy R. Satterlee
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Felicia N. Williams
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Marina Nadal
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Anthony E. Glenn
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Lily W. Lofton
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Mary V. Duke
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Genomics and Bioinformatics Research Unit, Stoneville, MS, United States
| | - Brian E. Scheffler
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Genomics and Bioinformatics Research Unit, Stoneville, MS, United States
| | - Scott E. Gold
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| |
Collapse
|
18
|
Smaoui S, Agriopoulou S, D'Amore T, Tavares L, Mousavi Khaneghah A. The control of Fusarium growth and decontamination of produced mycotoxins by lactic acid bacteria. Crit Rev Food Sci Nutr 2022; 63:11125-11152. [PMID: 35708071 DOI: 10.1080/10408398.2022.2087594] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Global crop and food contamination with mycotoxins are one of the primary worldwide concerns, while there are several restrictions regarding approaching conventional physical and chemical mycotoxins decontamination methods due to nutrition loss, sensory attribute reduction in foods, chemical residual, inconvenient operation, high cost of equipment, and high energy consumption of some methods. In this regard, the overarching challenges of mycotoxin contamination in food and food crops require the development of biological decontamination strategies. Using certain lactic acid bacteria (LAB) as generally recognized safe (GRAS) compounds is one of the most effective alternatives due to their potential to release antifungal metabolites against various fungal factors species. This review highlights the potential applications of LAB as biodetoxificant agents and summarizes their decontamination activities against Fusarium growth and Fusarium mycotoxins released into food/feed. Firstly, the occurrence of Fusarium and the instrumental and bioanalytical methods for the analysis of mycotoxins were in-depth discussed. Upgraded knowledge on the biosynthesis pathway of mycotoxins produced by Fusarium offers new insightful ideas clarifying the function of these secondary metabolites. Moreover, the characterization of LAB metabolites and their impact on the decontamination of the mycotoxin from Fusarium, besides the main mechanisms of mycotoxin decontamination, are covered. While the thematic growth inhibition of Fusarium and decontamination of their mycotoxin by LAB is very complex, approaching certain lactic acid bacteria (LAB) is worth deeper investigations.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax, Tunisia
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, Kalamata, Greece
| | - Teresa D'Amore
- Chemistry Department, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZSPB), Foggia, Italy
| | - Loleny Tavares
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, CEP, Brazil
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
19
|
İncili GK, Karatepe P, Akgöl M, Güngören A, Koluman A, İlhak Oİ, Kanmaz H, Kaya B, Hayaloğlu AA. Characterization of lactic acid bacteria postbiotics, evaluation in-vitro antibacterial effect, microbial and chemical quality on chicken drumsticks. Food Microbiol 2022; 104:104001. [DOI: 10.1016/j.fm.2022.104001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 11/26/2021] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
|
20
|
The effect of different solvents and acidifying reagents on the anthocyanin profiles and antioxidant capacity of purple corn. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Arsoy ES, Gül LB, Çon AH. Characterization and Selection of Potential Antifungal Lactic Acid Bacteria Isolated From Turkish Spontaneous Sourdough. Curr Microbiol 2022; 79:148. [PMID: 35397016 DOI: 10.1007/s00284-022-02839-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/14/2022] [Indexed: 11/28/2022]
Abstract
The aim of this research was to investigate the antifungal potential of lactic acid bacteria (LAB) isolated from Turkish spontaneous sourdough collected in summer and winter seasons from 25 different small bakeries in Trabzon, Giresun, Ordu, and Samsun. Lactic acid bacteria (933 isolates) were screened for inhibition of three common food spoilage molds (Aspergillus flavus, Aspergillus niger, and Penicillium expansum). Eight LAB isolates identified as Weissella cibaria 908, Lactiplantibacillus plantarum subsp. plantarum 2114, Leuconostoc pseudomesenteroides 2619, L. plantarum subsp. plantarum 2702, Fructilactobacillus sanfranciscensis 2709, Levilactobacillus brevis 2216Y, L. pentosus Y118, and L. plantarum subsp. plantarum Y201 by 16 S rRNA sequencing, which were found to have high antifungal activity against all the test molds. The antifungal activity of cell free supernatants from LAB isolates was not altered after thermal treatment and proteolytic enzyme proteinase K. The cell free supernatants obtained from LAB showed a high antifungal effect against molds with inhibition zone diameter up to 20 mm at pH 3.0, but no inhibitory activity was determined after pH neutralization. Moreover, all cell free suspension samples were able to maintain their efficacy up to a 1:4 dilution. The antifungal activity of supernatants was mostly related to organic acid content, especially lactic acid ranged from 4.33 to 8.41 g/L. The results indicated that eight bacterial isolates obtained from spontaneous Turkish sourdough could constitute biopreservative cultures, which may be used in food industry.
Collapse
Affiliation(s)
- Esra Saraç Arsoy
- Ankara Food Control Laboratory Directorate, Republic of Turkey Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Latife Betül Gül
- Department of Food Engineering, Engineering Faculty, Giresun University, Giresun, Turkey.
| | - Ahmet Hilmi Çon
- Department of Food Engineering, Engineering Faculty, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
22
|
Torrijos R, de Melo Nazareth T, Vila-Donat P, Mañes J, Meca G. Use of Mustard Extracts Fermented by Lactic Acid Bacteria to Mitigate the Production of Fumonisin B1 and B2 by Fusarium verticillioides in Corn Ears. Toxins (Basel) 2022; 14:toxins14020080. [PMID: 35202108 PMCID: PMC8880755 DOI: 10.3390/toxins14020080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/08/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
Corn (Zea mays) is a worldwide crop subjected to infection by toxigenic fungi such as Fusarium verticillioides during the pre-harvest stage. Fusarium contamination can lead to the synthesis of highly toxic mycotoxins, such as Fumonisin B1 (FB1) and Fumonisin B2 (FB2), which compromises human and animal health. The work aimed to study the antifungal properties of fermented yellow and oriental mustard extracts using nine lactic acid bacteria (LAB) in vitro. Moreover, a chemical characterization of the main phenolic compounds and organic acids were carried out in the extracts. The results highlighted that the yellow mustard, fermented by Lactiplantibacillus plantarum strains, avoided the growth of Fusarium spp. in vitro, showing Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) values, ranging from 7.8 to 15.6 g/L and 15.6 to 31.3 g/L, respectively. Then, the lyophilized yellow mustard fermented extract by L. plantarum TR71 was applied through spray-on corn ears contaminated with F. verticillioides to study the antimycotoxigenic activity. After 14 days of incubation, the control contained 14.71 mg/kg of FB1, while the treatment reduced the content to 1.09 mg/kg (92.6% reduction). Moreover, no FB2 was observed in the treated samples. The chemical characterization showed that lactic acid, 3-phenyllactic acid, and benzoic acid were the antifungal metabolites quantified in higher concentrations in the yellow mustard fermented extract with L. plantarum TR71. The results obtained confirmed the potential application of fermented mustard extracts as a solution to reduce the incidence of mycotoxins in corn ears.
Collapse
|
23
|
Pena GA, Cardenas MA, Monge MP, Yerkovich N, Planes GA, Chulze SN. Reduction of Fusarium proliferatum growth and fumonisin accumulation by ZnO nanoparticles both on a maize based medium and irradiated maize grains. Int J Food Microbiol 2021; 363:109510. [PMID: 34974282 DOI: 10.1016/j.ijfoodmicro.2021.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/01/2021] [Accepted: 12/19/2021] [Indexed: 10/19/2022]
Abstract
This study evaluated the antifungal effect of ZnO nanoparticles (ZnO-NPs) on Fusarium proliferatum growth and fumonisin accumulation both on a maize-based medium (in vitro) and on irradiated maize grains (in situ). The ZnO-NPs were obtained by drop-by-drop synthesis without further thermal treatment and characterized by scanning electronic microscopy/ energy dispersive X-ray spectroscopy (SEM/EDS) and X-ray diffraction (XRD). SEM analysis showed them as thin flakes of 200 × 200 nm, ~30 nm thickness and its purity were confirmed by XRD. During the in vitro assay ZnO-NPs (0, 0.8; 4, 8 g L-1) were evaluated at 25 °C during 21 days under darkness or photoperiod incubation (12/12 h light (cold white and black fluorescent lamps)/darkness) to determine its possible photocatalytic influence. Fumonisins were detected by high performance liquid chromatography coupled to mass spectrometry (HPLC- MS/MS). All ZnO-NPs concentrations significantly affected growth rates and FB1 accumulation by F. proliferatum RCFP 5033 (p < 0.05). Similar reduction of growth and FB1 (%) was observed at 0.8 and 8 g L-1 ZnO-NPs under photoperiod or darkness incubation. FB1 reduction was observed after 14 and 21 days, although the highest reduction occurred after 14 days under photoperiod incubation (84-98%). No clear light enhancing effect on the antifungal and anti-mycotoxin capability of the ZnO-NPs was observed. Morphological alterations in mycelia and conidia were observed by SEM. Under the in situ assay, the effect of the ZnO-NPs (0, 0.4, 0.8, 2 g kg-1) on growth rates and fumonisin B1, B2 and B3 accumulation by two F. proliferatum strains was evaluated on irradiated maize grains adjusted to 0.995, 0.98 and 0.97 aW in darkness at 25 °C during 21 days. Also, zinc acetate at 0.8 g kg-1 was included to compare their antifungal effect against the same ZnO-NPs concentration. Growth rates decreased significantly as ZnO-NPs concentrations increased. Higher than 60% of growth reduction was observed for both F. proliferatum strains. Zinc acetate significantly reduced growth, although it was less efficient that the same ZnO-NPs concentration. ZnO-NPs reduced total fumonisins accumulation by 71-99% at 0.8-2 g kg-1 ZnO-NPs and 0.98-0.995 aW. Moreover, 0.4 g kg-1 ZnO-NPs also produced significant reduction of the 3 fumonisins. This study showed the application of ZnO-NPs in maize grains could be a low cost and environmental impact strategy to control phytopathogen and toxigenic fungi such as F. proliferatum and to reduce fumonisins accumulation, both during crop development at preharvest stage and during maize storage.
Collapse
Affiliation(s)
- G A Pena
- Research Institute on Mycology and Mycotoxicology (IMICO), CONICET-UNRC, National Scientific and Technical Research Council - Argentina - National University of Río Cuarto, Road 36, Km 601 (5800) Río Cuarto, Córdoba, Argentina.
| | - M A Cardenas
- Research Institute on Mycology and Mycotoxicology (IMICO), CONICET-UNRC, National Scientific and Technical Research Council - Argentina - National University of Río Cuarto, Road 36, Km 601 (5800) Río Cuarto, Córdoba, Argentina
| | - M P Monge
- Research Institute on Mycology and Mycotoxicology (IMICO), CONICET-UNRC, National Scientific and Technical Research Council - Argentina - National University of Río Cuarto, Road 36, Km 601 (5800) Río Cuarto, Córdoba, Argentina
| | - N Yerkovich
- Research Institute on Mycology and Mycotoxicology (IMICO), CONICET-UNRC, National Scientific and Technical Research Council - Argentina - National University of Río Cuarto, Road 36, Km 601 (5800) Río Cuarto, Córdoba, Argentina
| | - G A Planes
- Research Institute for Energy Technologies and Advanced Materials (IITEMA) - CONICET- UNRC. Road 36, Km 601 (5800) Río Cuarto, Córdoba, Argentina
| | - S N Chulze
- Research Institute on Mycology and Mycotoxicology (IMICO), CONICET-UNRC, National Scientific and Technical Research Council - Argentina - National University of Río Cuarto, Road 36, Km 601 (5800) Río Cuarto, Córdoba, Argentina
| |
Collapse
|
24
|
Escrivá L, Agahi F, Vila-Donat P, Mañes J, Meca G, Manyes L. Bioaccessibility Study of Aflatoxin B 1 and Ochratoxin A in Bread Enriched with Fermented Milk Whey and/or Pumpkin. Toxins (Basel) 2021; 14:toxins14010006. [PMID: 35050983 PMCID: PMC8779489 DOI: 10.3390/toxins14010006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 01/12/2023] Open
Abstract
The presence of mycotoxins in cereals and cereal products remains a significant issue. The use of natural ingredients such as pumpkin and whey, which contain bioactive compounds, could be a strategy to reduce the use of conventional chemical preservatives. The aim of the present work was to study the bioaccessibility of aflatoxin B1 (AFB1) and ochratoxin (OTA) in bread, as well as to evaluate the effect of milk whey (with and without lactic acid bacteria fermentation) and pumpkin on reducing mycotoxins bioaccessibility. Different bread typologies were prepared and subjected to an in vitro digestion model. Gastric and intestinal extracts were analyzed by HPLC-MS/qTOF and mycotoxins bioaccessibility was calculated. All the tested ingredients but one significantly reduced mycotoxin intestinal bioaccessibility. Pumpkin powder demonstrated to be the most effective ingredient showing significant reductions of AFB1 and OTA bioaccessibility up to 74% and 34%, respectively. Whey, fermented whey, and the combination of pumpkin-fermented whey showed intestinal bioaccessibility reductions between 57-68% for AFB1, and between 11-20% for OTA. These results pointed to pumpkin and milk whey as potential bioactive ingredients that may have promising applications in the bakery industry.
Collapse
|
25
|
Li P, Lu Y, Zhao M, Chen L, Zhang C, Cheng Q, Chen C. Effects of Phenyllactic Acid, Lactic Acid Bacteria, and Their Mixture on Fermentation Characteristics and Microbial Community Composition of Timothy Silage. Front Microbiol 2021; 12:743433. [PMID: 34975781 PMCID: PMC8716789 DOI: 10.3389/fmicb.2021.743433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/15/2021] [Indexed: 01/06/2023] Open
Abstract
This study investigated the effects of phenyllactic acid (PL), lactic acid bacteria (LAB), and their mixture on fermentation characteristics and microbial community composition of timothy silage. Timothy silages were treated without (CK) or with PL [10 mg/kg fresh matter (FM) basis], LAB inoculant (IN; a mixture of Lactobacillus plantarum and L.buchneri, 105 cfu/g FM), and their mixture (PI) and stored at ambient temperature (5°C∼15°C) in a dark room for 60 days. Compared with CK, all treated silages showed lower (P < 0.05) levels of butyric acid and ammonia-N. Treatment with PL enhanced (P < 0.05) the crude protein preservation of silage by favoring the growth of L. curvatus and Saccharomyces cerevisiae and inhibition of lactic acid-assimilating yeast belonging to Issatchenkia during ensiling. In particular, treatment with PL advanced (P < 0.05) the productions of lactic acid and volatile fatty acid in IN-treated silage. Therefore, PL used as a new additive exhibited potential for improving silage fermentation when it is combined with LAB IN during ensiling.
Collapse
Affiliation(s)
- Ping Li
- College of Animal Science, Guizhou University, Guiyang, China
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Yongxiang Lu
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Man Zhao
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Liangyin Chen
- College of Animal Science, Guizhou University, Guiyang, China
| | | | - Qiming Cheng
- College of Animal Science, Guizhou University, Guiyang, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
26
|
Current and emerging tools of computational biology to improve the detoxification of mycotoxins. Appl Environ Microbiol 2021; 88:e0210221. [PMID: 34878810 DOI: 10.1128/aem.02102-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Biological organisms carry a rich potential for removing toxins from our environment, but identifying suitable candidates and improving them remain challenging. We explore the use of computational tools to discover strains and enzymes that detoxify harmful compounds. In particular, we will focus on mycotoxins-fungi-produced toxins that contaminate food and feed-and biological enzymes that are capable of rendering them less harmful. We discuss the use of established and novel computational tools to complement existing empirical data in three directions: discovering the prospect of detoxification among underexplored organisms, finding important cellular processes that contribute to detoxification, and improving the performance of detoxifying enzymes. We hope to create a synergistic conversation between researchers in computational biology and those in the bioremediation field. We showcase open bioremediation questions where computational researchers can contribute and highlight relevant existing and emerging computational tools that could benefit bioremediation researchers.
Collapse
|
27
|
Bangar SP, Sharma N, Kumar M, Ozogul F, Purewal SS, Trif M. Recent developments in applications of lactic acid bacteria against mycotoxin production and fungal contamination. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Illueca F, Vila-Donat P, Calpe J, Luz C, Meca G, Quiles JM. Antifungal Activity of Biocontrol Agents In Vitro and Potential Application to Reduce Mycotoxins (Aflatoxin B1 and Ochratoxin A). Toxins (Basel) 2021; 13:752. [PMID: 34822536 PMCID: PMC8623939 DOI: 10.3390/toxins13110752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
Food bio-preservatives are requested as substituents of chemical pesticides in food. The aim of this study was to carry out a screening of twenty biocontrol agents (BCAs) for their potential fungicidal activity in vitro. Twenty BCAs were tested against ten pathogenic fungi. Some of the cell-free supernatants (CFS) tested showed in vitro antifungal activity versus pathogenic fungi. The highest fungicidal activity was observed in the fermented CFS of Paenibacillus chibensis CECT 375, Bacillus amyloliquefaciens CECT 493, and Pantoea agglomerans CECT 850, which showed a minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of 125 and 250 g/L, respectively. The compounds responsible for the antifungal activity, such as organic and phenolic acids, were determined. Lactic acid, acetic acid, benzoic acid, and phenyllactic acid among others can be related to antifungal activity. HPLC-MS/MS analysis showed a reduction of ochratoxin A (OTA) and aflatoxin B1 (AFB1) up to 26% (Paenibacillus alvei CECT 2) and 55% (Paenibacillus polymyxa CECT 155), respectively. The present study prompts that metabolism products of BCAs are propitious for the bioconservation of food, due to their ability to reduce the proliferation of mycotoxigenic fungi and mycotoxins production.
Collapse
Affiliation(s)
| | - Pilar Vila-Donat
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (F.I.); (J.C.); (C.L.); (G.M.); (J.M.Q.)
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Zoghi A, Massoud R, Todorov SD, Chikindas ML, Popov I, Smith S, Khosravi-Darani K. Role of the lactobacilli in food bio-decontamination: Friends with benefits. Enzyme Microb Technol 2021; 150:109861. [PMID: 34489020 DOI: 10.1016/j.enzmictec.2021.109861] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
Food contamination such as toxins and heavy metals has been increasing in the last few decades as a result of industrialization in general and as part of food production in particular. Application of microorganisms in toxins and heavy metals bio-removal has been documented and applied as a favorable decontamination approach due to being environmentally friendly, reasonably simple, and economically feasible. Lactobacilli have been proposed and applied as a beneficial biologic sorbent for toxins and heavy metals in processes of reducing their hazardous bio-availability. The purpose of this review is to summarize the known role of Lactobacillus bacterial species in food bio-decontamination processes. After a quick glimpse of the worthy properties of lactobacilli, their cell wall structure is mentioned. Then the potential role of Lactobacillus strains for mycotoxins (aflatoxins, patulin, ochratoxin A, fumonisins, zearalenone, cyanotoxins, and trichothecenes) and heavy metals (lead, arsenic copper, mercury, cadmium, zinc, aluminum, chromium, and iron) bio-removal were described. In addition, the role of various factors in removal yield and the decontamination mechanism were explained. Finally, the lactobacilli-contaminant stability, in vivo studies, and being a friend or foe of Lactobacillus bacteria are discussed.
Collapse
Affiliation(s)
- Alaleh Zoghi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramona Massoud
- Department of Food and Technology, Standard Organization, Tehran, Iran
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Michael Leonidas Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, New Jersey, 08901, USA; Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia; I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Stephanie Smith
- Project SUPER, Douglass Residential College, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Kianoush Khosravi-Darani
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Luz C, Calpe J, Manuel Quiles J, Torrijos R, Vento M, Gormaz M, Mañes J, Meca G. Probiotic characterization of Lactobacillus strains isolated from breast milk and employment for the elaboration of a fermented milk product. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
32
|
Bourdichon F, Arias E, Babuchowski A, Bückle A, Bello FD, Dubois A, Fontana A, Fritz D, Kemperman R, Laulund S, McAuliffe O, Miks MH, Papademas P, Patrone V, Sharma DK, Sliwinski E, Stanton C, Von Ah U, Yao S, Morelli L. The forgotten role of food cultures. FEMS Microbiol Lett 2021; 368:fnab085. [PMID: 34223876 PMCID: PMC8397475 DOI: 10.1093/femsle/fnab085] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Fermentation is one of if not the oldest food processing technique, yet it is still an emerging field when it comes to its numerous mechanisms of action and potential applications. The effect of microbial activity on the taste, bioavailability and preservation of the nutrients and the different food matrices has been deciphered by the insights of molecular microbiology. Among those roles of fermentation in the food chain, biopreservation remains the one most debated. Presumably because it has been underestimated for quite a while, and only considered - based on a food safety and technological approach - from the toxicological and chemical perspective. Biopreservation is not considered as a traditional use, where it has been by design - but forgotten - as the initial goal of fermentation. The 'modern' use of biopreservation is also slightly different from the traditional use, due mainly to changes in cooling of food and other ways of preservation, Extending shelf life is considered to be one of the properties of food additives, classifying - from our perspective - biopreservation wrongly and forgetting the role of fermentation and food cultures. The present review will summarize the current approaches of fermentation as a way to preserve and protect the food, considering the different way in which food cultures and this application could help tackle food waste as an additional control measure to ensure the safety of the food.
Collapse
Affiliation(s)
- François Bourdichon
- Food Safety, Microbiology, Hygiene, 16 Rue Gaston de Caillavet, 75015 Paris, France
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| | - Emmanuelle Arias
- AGROSCOPE, Food Microbial Systems, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | | | - Anne Bückle
- Milchprüfring Baden-Württemberg e.V., Marie-Curie-Straße 19, 73230 Kirchheim, u.T., Germany
| | | | - Aurélie Dubois
- International Dairy Federationiry Federation, 70 Boulevard Auguste Reyers, 1030 Brussels, Belgium
| | - Alessandra Fontana
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| | - Duresa Fritz
- International Flavors and Fragrances, 20 rue Brunel, Paris 75017, France
| | - Rober Kemperman
- Lesaffre International, 152 rue du Docteur Yersin, 59120 Loos, France
| | - Svend Laulund
- Chr. Hansen A/S, Agern Allé 24, 2970 Hoersholm, Denmark
| | | | - Marta Hanna Miks
- Glycom A/S, Kogle Allé 4, 2970 Hørsholm, Denmark
- Faculty of Food Science, Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszynski 1, 10–726 Olsztyn, Poland
| | - Photis Papademas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Archiepiskopou Kyprianou, PO BOX 50329, Limassol, Cyprus
| | - Vania Patrone
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| | | | - Edward Sliwinski
- The European Federation of Food Science & Technology, Nieuwe Kanaal 9a, 6709 PA, Wageningen, The Netherlands
| | | | - Ueli Von Ah
- AGROSCOPE, Food Microbial Systems, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | - Su Yao
- China National Research Institute of Food & Fermentation Industries, China Center of Industrial Culture Collection, Building 6, No.24, Jiuxianqiaozhong Road, Chaoyang District, Beijing 100015, PR China
| | - Lorenzo Morelli
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| |
Collapse
|
33
|
Dopazo V, Luz C, Mañes J, Quiles JM, Carbonell R, Calpe J, Meca G. Bio-Preservative Potential of Microorganisms Isolated from Red Grape against Food Contaminant Fungi. Toxins (Basel) 2021; 13:toxins13060412. [PMID: 34200813 PMCID: PMC8230461 DOI: 10.3390/toxins13060412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Fungal spoilage is one of the main reasons of economic losses in the food industry, especially in the wine sector. Consequently, the search for safer and new preservation techniques has gained importance in recent years. The objective of this study was to investigate the antifungal and anti-mycotoxigenic activity from 28 microorganisms (MO) isolated from red grape. The antifungal activity of a cell free supernatant of fermented medium by the isolated MO (CFS) was tested with the agar diffusion method and the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) assay. Additionally, different antifungal compounds from the CFS were identified and quantified (organic acids, phenolic compounds, and volatile organic compounds). Finally, the most active CFS were tested as red grape bio-preservative agents. Results evidenced that CFS fermented by the strain UTA 6 had the highest antifungal activity, above all isolates, and produced a wide pool of antifungal compounds. The use of UTA 6 CFS as bio-preservative agent showed a reduction of 0.4 and 0.6 log10 spores per gram of fruit in grapes contaminated by A. flavus and B. cinerea, respectively. Moreover, UTA 6 CFS treatment reduced the occurrence of aflatoxin B1 and fumonisin (B2, B3, and B4) production in grapes contaminated by 28-100%.
Collapse
|
34
|
Habschied K, Krstanović V, Zdunić Z, Babić J, Mastanjević K, Šarić GK. Mycotoxins Biocontrol Methods for Healthier Crops and Stored Products. J Fungi (Basel) 2021; 7:348. [PMID: 33946920 PMCID: PMC8145935 DOI: 10.3390/jof7050348] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022] Open
Abstract
Contamination of crops with phytopathogenic genera such as Fusarium, Aspergillus, Alternaria, and Penicillium usually results in mycotoxins in the stored crops or the final products (bread, beer, etc.). To reduce the damage and suppress the fungal growth, it is common to add antifungal substances during growth in the field or storage. Many of these antifungal substances are also harmful to human health and the reduction of their concentration would be of immense importance to food safety. Many eminent researchers are seeking a way to reduce the use of synthetic antifungal compounds and to implement more eco-friendly and healthier bioweapons against fungal proliferation and mycotoxin synthesis. This paper aims to address the recent advances in the effectiveness of biological antifungal compounds application against the aforementioned fungal genera and their species to enhance the protection of ecological and environmental systems involved in crop growing (water, soil, air) and to reduce fungicide contamination of food derived from these commodities.
Collapse
Affiliation(s)
- Kristina Habschied
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Vinko Krstanović
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Zvonimir Zdunić
- Agricultural Institute Osijek, Južno predgrađe 17, 31000 Osijek, Croatia;
| | - Jurislav Babić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Krešimir Mastanjević
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Gabriella Kanižai Šarić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia;
| |
Collapse
|
35
|
Joutsjoki VV, Korhonen HJ. Management strategies for aflatoxin risk mitigation in maize, dairy feeds and milk value chains—case study Kenya. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Widespread aflatoxin contamination of a great number of food and feed crops has important implications on global trade and health. Frequent occurrence of aflatoxin in maize and milk poses serious health risks to consumers because these commodities are staple foods in many African countries. This situation calls for development and implementation of rigorous aflatoxin control measures that encompass all value chains, focusing on farms where food and feed-based commodities prone to aflatoxin contamination are cultivated. Good agricultural practices (GAP) have proven to be an effective technology in mitigation and management of the aflatoxin risk under farm conditions. The prevailing global climate change is shown to increase aflatoxin risk in tropical and subtropical regions. Thus, there is an urgent need to devise and apply novel methods to complement GAP and mitigate aflatoxin contamination in the feed, maize and milk value chains. Also, creation of awareness on aflatoxin management through training of farmers and other stakeholders and enforcement of regular surveillance of aflatoxin in food and feed chains are recommended strategies. This literature review addresses the current situation of aflatoxin occurrence in maize, dairy feeds and milk produced and traded in Kenya and current technologies applied to aflatoxin management at the farm level. Finally, a case study in Kenya on successful application of GAP for mitigation of aflatoxin risk at small-scale farms will be reviewed.
Collapse
|
36
|
Torrijos R, Nazareth TDM, Quiles JM, Mañes J, Meca G. Application of White Mustard Bran and Flour on Bread as Natural Preservative Agents. Foods 2021; 10:431. [PMID: 33669358 PMCID: PMC7920268 DOI: 10.3390/foods10020431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, the antifungal activity of white mustard bran (MB), a by-product of mustard (Sinapis alba) milling, and white mustard seed flour (MF) was tested against mycotoxigenic fungi in the agar diffusion method. The results obtained were posteriorly confirmed in a quantitative test, determining the minimum concentration of extract that inhibits the fungal growth (MIC) and the minimum concentration with fungicidal activity (MFC). Since MF demonstrated no antifungal activity, the MB was stored under different temperature conditions and storage time to determine its antifungal stability. Finally, an in situ assay was carried out, applying the MB as a natural ingredient into the dough to avoid P. commune CECT 20767 growth and increase the bread shelf life. The results demonstrated that the antifungal activity of MB was dose-dependent. The higher assayed dose of MB (10 g/kg) reduced the fungal population in 4.20 Log CFU/g regarding the control group. Moreover, the shelf life was extended four days compared to the control, equaling its effectiveness with the synthetic preservative sodium propionate (E-281). Therefore, MB could be an alternative to chemical additives in bread formulations since it satisfies consumer requirements. Also, the formulation of bread with MB valorizes this by-product generated during mustard seed milling, thereby helping the industry move forward sustainably by reducing environmental impact.
Collapse
Affiliation(s)
| | - Tiago de Melo Nazareth
- Department of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (R.T.); (J.M.Q.); (J.M.); (G.M.)
| | | | | | | |
Collapse
|
37
|
Luz C, D'Opazo V, Quiles J, Romano R, Mañes J, Meca G. Biopreservation of tomatoes using fermented media by lactic acid bacteria. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109618] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|