1
|
Edison LK, Kudva IT, Kariyawasam S. Host-Pathogen Interactions during Shiga Toxin-Producing Escherichia coli Adherence and Colonization in the Bovine Gut: A Comprehensive Review. Microorganisms 2024; 12:2009. [PMID: 39458318 PMCID: PMC11509540 DOI: 10.3390/microorganisms12102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a significant public health threat due to its ability to cause severe gastrointestinal diseases in humans, ranging from diarrhea to life-threatening conditions such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). As the primary reservoir of STEC, cattle play a crucial role in its transmission through contaminated food and water, posing a considerable risk to human health. This comprehensive review explores host-pathogen interactions during STEC colonization of the bovine gut, focusing on the role of gut microbiota in modulating these interactions and influencing disease outcomes. We integrated findings from published transcriptomics, proteomics, and genomics studies to provide a thorough understanding of how STEC adheres to and colonizes the bovine gastrointestinal tract. The insights from this review offer potential avenues for the development of novel preventative and therapeutic strategies aimed at controlling STEC colonization in cattle, thereby reducing the risk of zoonotic transmission.
Collapse
Affiliation(s)
- Lekshmi K. Edison
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA;
| | - Subhashinie Kariyawasam
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
2
|
Arnaboldi S, Benincà E, Evers EG. Improvement of quantitative microbiological risk assessment (QMRA) methodology through integration with gaenetic data. EFSA J 2023; 21:e211003. [PMID: 38047129 PMCID: PMC10687759 DOI: 10.2903/j.efsa.2023.e211003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Quantitative microbiological risk assessment (QMRA) methodology aims to estimate and describe the transmission of pathogenic microorganisms from animals and food to humans. In microbiological literature, the availability of whole genome sequencing (WGS) data is rapidly increasing, and incorporating this data into QMRA has the potential to enhance the reliability of risk estimates. This study provides insight into which are the key pathogen properties for incorporating WGS data to enhance risk estimation, through examination of example risk assessments for important foodborne pathogens: Listeria monocytogenes (Lm), Salmonella, Campylobacter and Shiga toxin-producing Escherichia coli. By investigating the relationship between phenotypic pathogen properties and genetic traits, a better understanding was gained regarding their impact on risk assessment. Virulence of Lm was identified as a promising property for associating different symptoms observed in humans with specific genotypes. Data from a genome-wide association study were used to correlate lineages, serotypes, sequence types, clonal complexes and the presence or absence of virulence genes of each strain with patient's symptoms. We also investigated the effect of incorporating WGS data into a QMRA model including relevant genomic traits of Lm, focusing on the dose-response phase of the risk assessment model, as described with the case/exposure ratio. The results highlighted that WGS studies which include phenotypic information must be encouraged, so as to enhance the accuracy of QMRA models. This study also underscores the importance of executing more risk assessments that consider the ongoing advancements in OMICS technologies, thus allowing for a closer investigation of different bacterial subtypes relevant to human health.
Collapse
Affiliation(s)
- Sara Arnaboldi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER)Italy
| | - Elisa Benincà
- Rijksinstituut voor Volksgezondheid en Milieu (RIVM)the Netherlands
| | - Eric G. Evers
- Rijksinstituut voor Volksgezondheid en Milieu (RIVM)the Netherlands
| |
Collapse
|
3
|
Tiwari SK, van der Putten BCL, Fuchs TM, Vinh TN, Bootsma M, Oldenkamp R, La Ragione R, Matamoros S, Hoa NT, Berens C, Leng J, Álvarez J, Ferrandis-Vila M, Ritchie JM, Fruth A, Schwarz S, Domínguez L, Ugarte-Ruiz M, Bethe A, Huber C, Johanns V, Stamm I, Wieler LH, Ewers C, Fivian-Hughes A, Schmidt H, Menge C, Semmler T, Schultsz C. Genome-wide association reveals host-specific genomic traits in Escherichia coli. BMC Biol 2023; 21:76. [PMID: 37038177 PMCID: PMC10088187 DOI: 10.1186/s12915-023-01562-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/10/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Escherichia coli is an opportunistic pathogen which colonizes various host species. However, to what extent genetic lineages of E. coli are adapted or restricted to specific hosts and the genomic determinants of such adaptation or restriction is poorly understood. RESULTS We randomly sampled E. coli isolates from four countries (Germany, UK, Spain, and Vietnam), obtained from five host species (human, pig, cattle, chicken, and wild boar) over 16 years, from both healthy and diseased hosts, to construct a collection of 1198 whole-genome sequenced E. coli isolates. We identified associations between specific E. coli lineages and the host from which they were isolated. A genome-wide association study (GWAS) identified several E. coli genes that were associated with human, cattle, or chicken hosts, whereas no genes associated with the pig host could be found. In silico characterization of nine contiguous genes (collectively designated as nan-9) associated with the human host indicated that these genes are involved in the metabolism of sialic acids (Sia). In contrast, the previously described sialic acid regulon known as sialoregulon (i.e. nanRATEK-yhcH, nanXY, and nanCMS) was not associated with any host species. In vitro growth experiments with a Δnan-9 E. coli mutant strain, using the sialic acids 5-N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) as sole carbon source, showed impaired growth behaviour compared to the wild-type. CONCLUSIONS This study provides an extensive analysis of genetic determinants which may contribute to host specificity in E. coli. Our findings should inform risk analysis and epidemiological monitoring of (antimicrobial resistant) E. coli.
Collapse
Affiliation(s)
- Sumeet K Tiwari
- Robert Koch Institute, Genome Sequencing and Genomic Epidemiology, Berlin, Germany
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Program, Norwich Research Park, Norwich, UK
| | - Boas C L van der Putten
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Thilo M Fuchs
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Trung N Vinh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | | | - Rik Oldenkamp
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Roberto La Ragione
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, UK
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Sebastien Matamoros
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ngo T Hoa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Tropical medicine and global health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Microbiology- Parasitology Unit, Biomedical Research Center and Microbiology Department, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Christian Berens
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Joy Leng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Julio Álvarez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Jenny M Ritchie
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Angelika Fruth
- Robert Koch Institute, Enteropathogenic Bacteria and Legionella, Wernigerode, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Lucas Domínguez
- Tropical medicine and global health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Microbiology- Parasitology Unit, Biomedical Research Center and Microbiology Department, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - María Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Astrid Bethe
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Charlotte Huber
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Vanessa Johanns
- Robert Koch Institute, Advanced Light and Electron Microscopy, Berlin, Germany
| | - Ivonne Stamm
- Vet Med Labor GmbH, Division of IDEXX Laboratories, Kornwestheim, Germany
| | | | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Giessen, Germany
| | - Amanda Fivian-Hughes
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Herbert Schmidt
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, University of Hohenheim, Stuttgart, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Torsten Semmler
- Robert Koch Institute, Genome Sequencing and Genomic Epidemiology, Berlin, Germany.
| | - Constance Schultsz
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|