1
|
Bownik A, Pawlik-Skowrońska B. Responses of RTgill-W1 cells to cyanobacterial metabolites microcystin-LR, anabaenopeptin-A, cylindrospermopsin, their binary and ternary mixtures. Toxicon 2024; 249:108059. [PMID: 39117156 DOI: 10.1016/j.toxicon.2024.108059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The aim of our study was to investigate the effects of cyanobacterial metabolites: microcystin-LR (MC-LR) anabaenopeptin-A (ANA-A), cylindrospermopsin (CYL), their binary and ternary mixtures on rainbow trout (Oncorhynchus mykiss) gill (RTgill-W1) cell line. We determined the following cell parameters: Hoechst and propidium iodide (PI) double staining, intracellular ATP level with luminometric assay, glutathione level with ThiolTracker Violet®- glutathione detection reagent and cytoskeletal F-actin fluorescence. The results showed that although reduction of Hoechst fluorescence was observed in both binary and ternary combinations of cyanobacterial metabolites, the mixture of MC-LR + ANA-A + CYL was the most potent inhibitor (EC50 = 148 nM). PI fluorescence and ATP levels were more increased in the cells exposed to the mixtures than those exposed to the individual metabolites with synergistic toxic changes suggesting apoptosis as the mechanism of cell death. Reduced glutathione level was also decreased in cells exposed both to single metabolites and their mixtures with the highest decrease and synergistic effects at 334 nM MC-LR+334 nM ANA-A+ 334 nM CYL suggesting induction oxidative stress by the tested compounds. Reduction of F-actin fluorescence was found in the cells from all of the groups exposed to individual metabolites and their mixtures, however the highest level of inhibition showed the binary MC-LR + CYL and the ternary MC-LR + ANA-A + CYL with synergistic interactions. The study suggests that in natural conditions fish gill cells may be very sensitive to individual cyanobacterial metabolites and more prone to their binary and ternary mixtures.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland.
| | - Barbara Pawlik-Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| |
Collapse
|
2
|
Zorrilla JG, Siciliano A, Petraretti M, Saviano L, Spampinato M, Cimmino A, Guida M, Pollio A, Bravi S, Masi M. Ecotoxicological assessment of cyclic peptides produced by a Planktothrix rubescens bloom: Impact on aquatic model organisms. ENVIRONMENTAL RESEARCH 2024; 257:119394. [PMID: 38866313 DOI: 10.1016/j.envres.2024.119394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Cyanobacterial blooms, a natural phenomenon in freshwater ecosystems, have increased in frequency and severity due to climate change and eutrophication. Some cyanobacteria are able to produce harmful substances called cyanotoxins. These metabolites possess different chemical structures and action mechanisms representing a serious concern for human health and the environment. The most studied cyanotoxins belong to the group of microcystins which are potent hepatotoxins. Anabaenopeptins are another class of cyclic peptides produced by certain species of cyanobacteria, including Planktothrix spp. Despite limited knowledge regarding individual effects of anabaenopeptins on freshwater organisms, reports have identified in vivo toxicity in representatives of freshwater zooplankton by cyanobacterial extracts or mixtures containing anabaenopeptins. This study focused on the isolation and toxicity evaluation of the cyanotoxins produced in the 2022 Planktothrix rubescens bloom in Averno lake, Italy. The three main cyclic peptides have been isolated and identified by nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS) and optical analyses as anabaenopeptins A and B, and oscillamide Y. Ecotoxicological tests on the aquatic model organisms Daphnia magna (crustacean), Raphidocelis subcapitata (algae), and Aliivibrio fischeri (bacterium) revealed that anabaenopeptins A and B do not generate significant toxicity at environmentally relevant concentrations, being also found a stimulatory effect on R. subcapitata in the case of anabaenopeptin A. By contrast, oscillamide Y displayed toxicity. Ecological implications based on ECOSAR predictions align with experimental data. Moreover, long-term exposure bioassays on different green unicellular algae species showed that R. subcapitata was not significantly affected, while Scenedesmus obliquus and Chlorella vulgaris exhibited altered growth patterns. These results, together with the already-known background in literature, highlight the complexity of interactions between organisms and the tested compounds, which may be influenced by species-specific sensitivities, physiological differences, and modes of action, possibly affected by parameters like lipophilicity.
Collapse
Affiliation(s)
- Jesús G Zorrilla
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy; Allelopathy Group, Department of Organic Chemistry, Facultad de Ciencias, Institute of Biomolecules (INBIO), University of Cadiz, C/Avenida República Saharaui, s/n, 11510, Puerto Real, Spain.
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Mariagioia Petraretti
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Lorenzo Saviano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Marisa Spampinato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy.
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Antonino Pollio
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Sergio Bravi
- Department of Earth, Environmental and Resources Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy.
| |
Collapse
|
3
|
Salmaso N, Cerasino L, Pindo M, Boscaini A. Taxonomic and functional metagenomic assessment of a Dolichospermum bloom in a large and deep lake south of the Alps. FEMS Microbiol Ecol 2024; 100:fiae117. [PMID: 39227168 PMCID: PMC11412076 DOI: 10.1093/femsec/fiae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024] Open
Abstract
Untargeted genetic approaches can be used to explore the high metabolic versatility of cyanobacteria. In this context, a comprehensive metagenomic shotgun analysis was performed on a population of Dolichospermum lemmermannii collected during a surface bloom in Lake Garda in the summer of 2020. Using a phylogenomic approach, the almost complete metagenome-assembled genome obtained from the analysis allowed to clarify the taxonomic position of the species within the genus Dolichospermum and contributed to frame the taxonomy of this genus within the ADA group (Anabaena/Dolichospermum/Aphanizomenon). In addition to common functional traits represented in the central metabolism of photosynthetic cyanobacteria, the genome annotation uncovered some distinctive and adaptive traits that helped define the factors that promote and maintain bloom-forming heterocytous nitrogen-fixing Nostocales in oligotrophic lakes. In addition, genetic clusters were identified that potentially encode several secondary metabolites that were previously unknown in the populations evolving in the southern Alpine Lake district. These included geosmin, anabaenopetins, and other bioactive compounds. The results expanded the knowledge of the distinctive competitive traits that drive algal blooms and provided guidance for more targeted analyses of cyanobacterial metabolites with implications for human health and water resource use.
Collapse
Affiliation(s)
- Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all'Adige, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Leonardo Cerasino
- Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all'Adige, Italy
| | - Adriano Boscaini
- Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all'Adige, Italy
| |
Collapse
|
4
|
Wejnerowski Ł, Dulić T, Akter S, Font-Nájera A, Rybak M, Kamiński O, Czerepska A, Dziuba MK, Jurczak T, Meriluoto J, Mankiewicz-Boczek J, Kokociński M. Community Structure and Toxicity Potential of Cyanobacteria during Summer and Winter in a Temperate-Zone Lake Susceptible to Phytoplankton Blooms. Toxins (Basel) 2024; 16:357. [PMID: 39195767 PMCID: PMC11359657 DOI: 10.3390/toxins16080357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Cyanobacterial blooms are increasingly common during winters, especially when they are mild. The goal of this study was to determine the summer and winter phytoplankton community structure, cyanotoxin presence, and toxigenicity in a eutrophic lake susceptible to cyanobacterial blooms throughout the year, using classical microscopy, an analysis of toxic cyanometabolites, and an analysis of genes involved in biosynthesis of cyanotoxins. We also assessed whether cyanobacterial diversity in the studied lake has changed compared to what was reported in previous reports conducted several years ago. Moreover, the bloom-forming cyanobacterial strains were isolated from the lake and screened for cyanotoxin presence and toxigenicity. Cyanobacteria were the main component of the phytoplankton community in both sampling times, and, in particular, Oscillatoriales were predominant in both summer (Planktothrix/Limnothrix) and winter (Limnothrix) sampling. Compared to the winter community, the summer community was denser; richer in species; and contained alien and invasive Nostocales, including Sphaerospermopsis aphanizomenoides, Raphidiopsis raciborskii, and Raphidiopsis mediterranea. In both sampling times, the blooms contained toxigenic species with genetic determinants for the production of cylindrospermopsin and microcystins. Toxicological screening revealed the presence of microcystins in the lake in summer but no cyanotoxins in the winter period of sampling. However, several cyanobacterial strains isolated from the lake during winter and summer produced anabaenopeptins and microcystins. This study indicates that summer and winter blooms of cyanobacteria in the temperate zone can differ in biomass, structure, and toxicity, and that the toxic hazards associated with cyanobacterial blooms may potentially exist during winter.
Collapse
Affiliation(s)
- Łukasz Wejnerowski
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (O.K.); (A.C.); (M.K.)
| | - Tamara Dulić
- Biochemistry and Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland;
| | - Sultana Akter
- Biotechnology, Department of Life Technologies, Faculty of Technology, University of Turku, 20520 Turku, Finland;
| | - Arnoldo Font-Nájera
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Łódź, Poland;
| | - Michał Rybak
- Department of Water Protection, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Oskar Kamiński
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (O.K.); (A.C.); (M.K.)
| | - Anna Czerepska
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (O.K.); (A.C.); (M.K.)
| | - Marcin Krzysztof Dziuba
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Tomasz Jurczak
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (T.J.); (J.M.-B.)
| | - Jussi Meriluoto
- Biochemistry and Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland;
| | - Joanna Mankiewicz-Boczek
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (T.J.); (J.M.-B.)
| | - Mikołaj Kokociński
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (O.K.); (A.C.); (M.K.)
| |
Collapse
|
5
|
Li H, Li R, Kang J, Hii KS, Mohamed HF, Xu X, Luo Z. Okeanomitos corallinicola gen. and sp. nov. (Nostocales, Cyanobacteria), a new toxic marine heterocyte-forming Cyanobacterium from a coral reef. JOURNAL OF PHYCOLOGY 2024; 60:908-927. [PMID: 38943258 DOI: 10.1111/jpy.13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 07/01/2024]
Abstract
Cyanobacterial mats supplanting coral and spreading coral diseases in tropical reefs, intensified by environmental shifts caused by human-induced pressures, nutrient enrichment, and global climate change, pose grave risks to the survival of coral ecosystems. In this study, we characterized Okeanomitos corallinicola gen. and sp. nov., a newly discovered toxic marine heterocyte-forming cyanobacterium isolated from a coral reef ecosystem of the South China Sea. Phylogenetic analysis, based on the 16S rRNA gene and the secondary structure of the 16S-23S rRNA intergenic region, placed this species in a clade distinct from closely related genera, that is, Sphaerospermopsis stricto sensu, Raphidiopsis, and Amphiheterocytum. The O. corallinicola is a marine benthic species lacking gas vesicles, distinguishing it from other members of the Aphanizomenonaceae family. The genome of O. corallinicola is large and exhibits diverse functional capabilities, potentially contributing to the resilience and adaptability of coral reef ecosystems. In vitro assays revealed that O. corallinicola demonstrates notable cytotoxic activity against various cancer cell lines, suggesting its potential as a source of novel anticancer compounds. Furthermore, the identification of residual saxitoxin biosynthesis function in the genome of O. corallinicola, a marine cyanobacteria, supports the theory that saxitoxin genes in cyanobacteria and dinoflagellates may have been horizontally transferred between them or may have originated from a shared ancestor. Overall, the identification and characterization of O. corallinicola provides valuable contributions to cyanobacterial taxonomy, offering novel perspectives on complex interactions within coral reef ecosystems.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jianhua Kang
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Kieng Soon Hii
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia
| | - Hala F Mohamed
- Botany & Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Xinya Xu
- Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhaohe Luo
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai, China
| |
Collapse
|
6
|
Chen X, Li B. Analysis of Co-localized Biosynthetic Gene Clusters Identifies a Membrane-Permeabilizing Natural Product. JOURNAL OF NATURAL PRODUCTS 2024; 87:1694-1703. [PMID: 38949271 DOI: 10.1021/acs.jnatprod.3c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Combination therapy is an effective strategy to combat antibiotic resistance. Multiple synergistic antimicrobial combinations are produced by enzymes encoded in biosynthetic gene clusters (BGCs) that co-localize on the bacterial genome. This phenomenon led to the hypothesis that mining co-localized BGCs will reveal new synergistic combinations of natural products. Here, we bioinformatically identified 38 pairs of co-localized BGCs, which we predict to produce natural products that are related to known compounds, including polycyclic tetramate macrolactams (PoTeMs). We further showed that ikarugamycin, a PoTeM, increases the membrane permeability of Acinetobacter baumannii and Staphylococcus aureus, which suggests that ikarugamycin might be an adjuvant that facilitates the entry of other natural products. Our work outlines a promising avenue to discover synergistic combinations of natural products by mining bacterial genomes.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
7
|
Wood PL. Metabolic and Lipid Biomarkers for Pathogenic Algae, Fungi, Cyanobacteria, Mycobacteria, Gram-Positive Bacteria, and Gram-Negative Bacteria. Metabolites 2024; 14:378. [PMID: 39057701 PMCID: PMC11278827 DOI: 10.3390/metabo14070378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The utilization of metabolomics and lipidomics analytical platforms in the study of pathogenic microbes is slowly expanding. These research approaches will significantly contribute to the establishment of microbial metabolite and lipid databases of significant value to all researchers in microbiology. In this review, we present a high-level overview of some examples of biomarkers that can be used to detect the presence of microbes, monitor the expansion/decline of a microbe population, and add to our understanding of microbe biofilms and pathogenicity. In addition, increased knowledge of the metabolic functions of pathogenic microbes can contribute to our understanding of microbes that are utilized in diverse industrial applications. Our review focuses on lipids, secondary metabolites, and non-ribosomal peptides that can be monitored using electrospray ionization high-resolution mass spectrometry (ESI-HRMS).
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, TN 37752, USA
| |
Collapse
|
8
|
Owens SL, Ahmed SR, Lang Harman RM, Stewart LE, Mori S. Natural Products That Contain Higher Homologated Amino Acids. Chembiochem 2024; 25:e202300822. [PMID: 38487927 PMCID: PMC11386549 DOI: 10.1002/cbic.202300822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Indexed: 04/11/2024]
Abstract
This review focuses on discussing natural products (NPs) that contain higher homologated amino acids (homoAAs) in the structure as well as the proposed and characterized biosynthesis of these non-proteinogenic amino acids. Homologation of amino acids includes the insertion of a methylene group into its side chain. It is not a very common modification found in NP biosynthesis as approximately 450 homoAA-containing NPs have been isolated from four bacterial phyla (Cyanobacteria, Actinomycetota, Myxococcota, and Pseudomonadota), two fungal phyla (Ascomycota and Basidiomycota), and one animal phylum (Porifera), except for a few examples. Amino acids that are found to be homologated and incorporated in the NP structures include the following ten amino acids: alanine, arginine, cysteine, isoleucine, glutamic acid, leucine, phenylalanine, proline, serine, and tyrosine, where isoleucine, leucine, phenylalanine, and tyrosine share the comparable enzymatic pathway. Other amino acids have their individual homologation pathway (arginine, proline, and glutamic acid for bacteria), likely utilize the primary metabolic pathway (alanine and glutamic acid for fungi), or have not been reported (cysteine and serine). Despite its possible high potential in the drug discovery field, the biosynthesis of homologated amino acids has a large room to explore for future combinatorial biosynthesis and metabolic engineering purpose.
Collapse
Affiliation(s)
- Skyler L Owens
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Shopno R Ahmed
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Rebecca M Lang Harman
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Laura E Stewart
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Shogo Mori
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| |
Collapse
|
9
|
Piel T, Sandrini G, Weenink EFJ, Qin H, Herk MJV, Morales-Grooters ML, Schuurmans JM, Slot PC, Wijn G, Arntz J, Zervou SK, Kaloudis T, Hiskia A, Huisman J, Visser PM. Shifts in phytoplankton and zooplankton communities in three cyanobacteria-dominated lakes after treatment with hydrogen peroxide. HARMFUL ALGAE 2024; 133:102585. [PMID: 38485435 DOI: 10.1016/j.hal.2024.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Abstract
Cyanobacteria can reach high densities in eutrophic lakes, which may cause problems due to their potential toxin production. Several methods are in use to prevent, control or mitigate harmful cyanobacterial blooms. Treatment of blooms with low concentrations of hydrogen peroxide (H2O2) is a promising emergency method. However, effects of H2O2 on cyanobacteria, eukaryotic phytoplankton and zooplankton have mainly been studied in controlled cultures and mesocosm experiments, while much less is known about the effectiveness and potential side effects of H2O2 treatments on entire lake ecosystems. In this study, we report on three different lakes in the Netherlands that were treated with average H2O2 concentrations ranging from 2 to 5 mg L-1 to suppress cyanobacterial blooms. Effects on phytoplankton and zooplankton communities, on cyanotoxin concentrations, and on nutrient availability in the lakes were assessed. After every H2O2 treatment, cyanobacteria drastically declined, sometimes by more than 99%, although blooms of Dolichospermum sp., Aphanizomenon sp., and Planktothrix rubescens were more strongly suppressed than a Planktothrix agardhii bloom. Eukaryotic phytoplankton were not significantly affected by the H2O2 additions and had an initial advantage over cyanobacteria after the treatment, when ample nutrients and light were available. In all three lakes, a new cyanobacterial bloom developed within several weeks after the first H2O2 treatment, and in two lakes a second H2O2 treatment was therefore applied to again suppress the cyanobacterial population. Rotifers strongly declined after most H2O2 treatments except when the H2O2 concentration was ≤ 2 mg L-1, whereas cladocerans were only mildly affected and copepods were least impacted by the added H2O2. In response to the treatments, the cyanotoxins microcystins and anabaenopeptins were released from the cells into the water column, but disappeared after a few days. We conclude that lake treatments with low concentrations of H2O2 can be a successful tool to suppress harmful cyanobacterial blooms, but may negatively affect some of the zooplankton taxa in lakes. We advise pre-tests prior to the treatment of lakes to define optimal treatment concentrations that kill the majority of the cyanobacteria and to minimize potential side effects on non-target organisms. In some cases, the pre-tests may discourage treatment of the lake.
Collapse
Affiliation(s)
- Tim Piel
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands; Agendia NV, 1043 NT Amsterdam, The Netherlands
| | - Giovanni Sandrini
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands; Department of Technology & Sources, Evides Water Company, 3006 AL Rotterdam, The Netherlands
| | - Erik F J Weenink
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands
| | - Hongjie Qin
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands; Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Maria J van Herk
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands
| | - Mariël Léon Morales-Grooters
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands; Department of Biomedical Engineering, Erasmus MC University Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - J Merijn Schuurmans
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands
| | - Pieter C Slot
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands
| | - Geert Wijn
- Arcadis Nederland B.V., P.O. Box 264, 6800 AG Arnhem, The Netherlands
| | - Jasper Arntz
- Arcadis Nederland B.V., P.O. Box 264, 6800 AG Arnhem, The Netherlands
| | - Sevasti-Kiriaki Zervou
- Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research, "Demokritos", Patriarchou Gregoriou E & 27 Neapoleos Str, 15341 Athens, Greece
| | - Triantafyllos Kaloudis
- Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research, "Demokritos", Patriarchou Gregoriou E & 27 Neapoleos Str, 15341 Athens, Greece; Laboratory of Organic Micropollutants, Water Quality Control Department, Athens Water Supply & Sewerage Company (EYDAP SA), Athens, Greece
| | - Anastasia Hiskia
- Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research, "Demokritos", Patriarchou Gregoriou E & 27 Neapoleos Str, 15341 Athens, Greece
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands
| | - Petra M Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands
| |
Collapse
|
10
|
Bownik A, Pawlik-Skowrońska B, Wlodkowic D, Mieczan T. Interactive effects of cyanobacterial metabolites aeruginosin-98B, anabaenopeptin-B and cylindrospermopsin on physiological parameters and novel in vivo fluorescent indicators in Chironomus aprilinus larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169846. [PMID: 38185144 DOI: 10.1016/j.scitotenv.2023.169846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
We aimed to determine the effects of single cyanobacterial metabolites aeruginosin-B (AER-B), anabaenopeptin-B (ANA-B), cylindrospermopsin (CYL), their binary and ternary mixtures on biomarkers of Chironomus aprilinus larvae: oxygen consumption, fat body structure and two novel fluorescent indicators: imaging of nuclei in cells of body integument, and the catecholamine level. The obtained results showed that oxygen consumption was inhibited by single tested cyanobacterial metabolites except for ANA-B at the lowest concentration (250 μg/L). Although the mixtures of the metabolites inhibited oxygen consumption with antagonistic interactions between the components stimulation was noted in the group exposed to the lowest concentrations of AER-B + CYL (125 μg/L + 125 μg/L, respectively) and the ternary mixture of AER-B + ANA-B + CYL (83.3 μg/L + 83.3 μg/L + 83.3 μg/L, respectively). In vivo fluorescent staining with Hoechst 34580 showed that single AER-B had lower cytotoxic potential on body integument cells than ANA-B and CYL and most binary mixtures except for AER-B + CYL induced synergistic toxicity. Catecholamine level was decreased in animals exposed to single metabolites, their binary and ternary mixtures; however, the interactions between the components in the ternary mixture were antagonistic. Fat body was found to be disrupted in the larvae exposed to single metabolites and their combinations. Antagonistic toxic interactions between the oligopeptide components were found in most binary and the ternary mixtures; however, synergistic effect was noted in the binary mixture of AER-B + CYL. The results suggest that in natural conditions Chironomus larvae and possibly other benthic invertebrates may be affected by cyanobacterial metabolites, however various components and in mixtures and their concentrations may determine varied physiological effects and diverse interactions.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland.
| | - Barbara Pawlik-Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Plenty Road, P.O. Box 71, Bundoora, VIC 3083, Australia
| | - Tomasz Mieczan
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland
| |
Collapse
|
11
|
Halary S, Duval C, Marie B, Bernard C, Piquet B, Gros O, Bourguet-Kondracki ML, Duperron S. Genomes of nine biofilm-forming filamentous strains of Cyanobacteria (genera Jaaginema, Scytonema, and Karukerafilum gen. nov.) isolated from mangrove habitats of Guadeloupe (Lesser Antilles). FEMS MICROBES 2023; 5:xtad024. [PMID: 38213393 PMCID: PMC10781437 DOI: 10.1093/femsmc/xtad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024] Open
Abstract
Biofilm-forming cyanobacteria are abundant in mangrove ecosystems, colonizing various niches including sediment surface and periphyton where they can cover large areas, yet have received limited attention. Several filamentous isolates were recently isolated from Guadeloupe, illustrating the diversity and novelty present in these biofilms. In this study, nine strains belonging to three novel lineages found abundantly in Guadeloupe biofilms are characterized by genome sequencing, morphological and ultrastructural examination, metabolome fingerprinting and searched for secondary metabolites biosynthesis pathways. Assignation of two lineages to known genera is confirmed, namely Scytonema and Jaaginema. The third lineage corresponds to a new Coleofasciculales genus herein described as Karukerafilum gen. nov. The four strains belonging to this genus group into two subclades, one of which displays genes necessary for nitrogen fixation as well as the complete pathway for geosmin production. This study gives new insights into the diversity of mangrove biofilm-forming cyanobacteria, including genome-based description of a new genus and the first genome sequence available for the genus Jaaginema.
Collapse
Affiliation(s)
- Sébastien Halary
- Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Charlotte Duval
- Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Benjamin Marie
- Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Cécile Bernard
- Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Bérénice Piquet
- Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Olivier Gros
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 97110 Pointe-à-Pitre, France
| | - Marie-Lise Bourguet-Kondracki
- Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Sébastien Duperron
- Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 75005 Paris, France
| |
Collapse
|
12
|
Esposito G, Glukhov E, Gerwick WH, Medio G, Teta R, Lega M, Costantino V. Lake Avernus Has Turned Red: Bioindicator Monitoring Unveils the Secrets of "Gates of Hades". Toxins (Basel) 2023; 15:698. [PMID: 38133202 PMCID: PMC10747548 DOI: 10.3390/toxins15120698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Lake Avernus is a volcanic lake located in southern Italy. Since ancient times, it has inspired numerous myths and legends due to the occurrence of singular phenomena, such as coloring events. Only recently has an explanation been found for them, i.e., the recurring color change over time is due to the alternation of cyanobacterial blooms that are a consequence of natural nutrient inputs as well as pollution resulting from human activities. This current report specifically describes the red coloring event that occurred on Lake Avernus in March 2022, the springtime season in this region of Italy. Our innovative multidisciplinary approach, the 'Fast Detection Strategy' (FDS), was devised to monitor cyanobacterial blooms and their toxins. It integrates remote sensing data from satellites and drones, on-site sampling, and analytical/bioinformatics analyses into a cohesive information flow. Thanks to FDS, we determined that the red color was attributable to a bloom of Planktothrix rubescens, a toxin-producing cyanobacterium. Here, we report the detection and identification of 14 anabenopeptins from this P. rubescens strain, seven of which are known and seven are newly reported herein. Moreover, we explored the mechanisms and causes behind this cyclic phenomenon, confirming cyanobacteria's role as reliable indicators of environmental changes. This investigation further validates FDS's effectiveness in detecting and characterizing cyanobacterial blooms and their associated toxins, expanding its potential applications.
Collapse
Affiliation(s)
- Germana Esposito
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (G.E.); (V.C.)
| | - Evgenia Glukhov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (E.G.); (W.H.G.)
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (E.G.); (W.H.G.)
| | - Gabriele Medio
- Department of Engineering, University of Naples Parthenope, 80133 Napoli, Italy;
| | - Roberta Teta
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (G.E.); (V.C.)
| | - Massimiliano Lega
- Department of Engineering, University of Naples Parthenope, 80133 Napoli, Italy;
| | - Valeria Costantino
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (G.E.); (V.C.)
| |
Collapse
|
13
|
Pawlik-Skowrońska B, Bownik A, Pogorzelec M, Kulczycka J, Sumińska A. First report on adverse effects of cyanobacterial anabaenopeptins, aeruginosins, microginin and their mixtures with microcystin and cylindrospermopsin on aquatic plant physiology: An experimental approach. Toxicon 2023; 236:107333. [PMID: 37951248 DOI: 10.1016/j.toxicon.2023.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/12/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
Cyanobacteria produce a variety of oligopeptides beyond microcystins and other metabolites. Their biological activities are not fully recognized especially to aquatic plants. Acute toxicity tests on Spirodela polyrhiza and Lemna minor exposed to a range of concentrations of cyanobacterial metabolites: anabaenopeptins (ANA-A, ANA-B), aeruginosins 98 (Aer-A, Aer-B), microginin-FR1 (MG-FR1), microcystin-LR (MC-LR) and cylindrospermopsin (Cyl) were carried out to compare their influence on plant physiology. Effects of their binary mixtures were determined by isobole approach and calculation of the combination index (CI) that indicates a type of metabolites' interaction. Cyclic oligopeptides microcystin-LR and anabaenopeptin-A revealed the strongest inhibition of S. polyrhiza growth while other metabolites appeared less toxic. Oxygen evolution was inhibited by Cyl, MC-LR, ANA-A, ANA-B, while both variants of aeruginosins and MG-FR1 did not affect this process. Photosynthetic pigments' contents decreased in S. polyrhiza exposed to ANA-A and Cyl, while MC-LR and Aer-A caused their slight increase. 96 h-EC50 values showed that the growth of L. minor was more sensitive to MC-LR, ANA-A, MG-FR1 and Cyl than the growth of S. polyrhiza. In S. polyrhiza synergistic effects of all the binary mixtures of peptides with MC-LR on oxygen evolution were observed, while antagonistic one on the growth of S. polyrhiza exposed to the mixtures with aeruginosins and ANA-A. The mixtures of MC-LR and MG-FR1 with cylindrospermopsin revealed synergistic effects on the growth but antagonistic one to the O2 evolution. Quadruple mixtures (ANA-A + MC-LR + MG-FR1+Cyl) did not reveal any inhibitive effect on the plant growth and very slight on the oxygen evolution, irrespectively of their total concentrations. Various effects caused by ANA-A and ANA-B suggest the importance of molecule structures of metabolites for toxicity. Composition of the mixtures of cyanobacterial metabolites was essential for the observed effects.
Collapse
Affiliation(s)
- Barbara Pawlik-Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences in Lublin, Dobrzanskiego 37, 20-262, Lublin, Poland.
| | - Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences in Lublin, Dobrzanskiego 37, 20-262, Lublin, Poland
| | - Magdalena Pogorzelec
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences in Lublin, Dobrzanskiego 37, 20-262, Lublin, Poland
| | - Justyna Kulczycka
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences in Lublin, Dobrzanskiego 37, 20-262, Lublin, Poland
| | - Aleksandra Sumińska
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences in Lublin, Dobrzanskiego 37, 20-262, Lublin, Poland
| |
Collapse
|
14
|
Bérubé C, Guay LD, Fraser T, Lapointe V, Cardinal S, Biron É. Convenient route to Fmoc-homotyrosine via metallaphotoredox catalysis and its use in the total synthesis of anabaenopeptin cyclic peptides. Org Biomol Chem 2023; 21:9011-9020. [PMID: 37921761 DOI: 10.1039/d3ob01608k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Herein, we report the first solid-phase total synthesis of the natural cyclic peptide anabaenopeptin F and the use of metallaphotoredox catalysis to overcome the key challenges associated with the preparation of the non-proteinogenic amino acid homotyrosine contained in these peptides. Starting from L-homoserine, enantiopure Fmoc-protected homotyrosine was prepared in a straightforward manner by metallaphotoredox catalysis with N-Fmoc-(S)-2-amino-4-bromobutanoic acid and 4-tert-butoxybromobenzene partners. The prepared protected amino acid was used in solid-phase peptide synthesis to achieve the total synthesis of anabaenopeptin F and establish the stereochemistry of the isoleucine residue. Protease inhibition studies with the synthesized anabaenopeptin F showed inhibitory activities against carboxypeptidase B in the low nanomolar range. The high convergency of the synthetic methodologies paves the way for the rapid access to N-Fmoc-protected non-proteinogenic and unnatural amino acids and the total synthesis of complex bioactive peptides containing these amino acids.
Collapse
Affiliation(s)
- Christopher Bérubé
- Faculté de Pharmacie, Université Laval, Québec, Québec, Canada, G1 V 0A6.
- Laboratory of Medicinal Chemistry, Centre de Recherche du CHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec, Québec, Canada, G1 V 0A6
| | - Louis-David Guay
- Faculté de Pharmacie, Université Laval, Québec, Québec, Canada, G1 V 0A6.
- Laboratory of Medicinal Chemistry, Centre de Recherche du CHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec, Québec, Canada, G1 V 0A6
| | - Tommy Fraser
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, Québec, Canada, G5L 3A1
| | - Victor Lapointe
- Faculté de Pharmacie, Université Laval, Québec, Québec, Canada, G1 V 0A6.
- Laboratory of Medicinal Chemistry, Centre de Recherche du CHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec, Québec, Canada, G1 V 0A6
| | - Sébastien Cardinal
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, Québec, Canada, G5L 3A1
| | - Éric Biron
- Faculté de Pharmacie, Université Laval, Québec, Québec, Canada, G1 V 0A6.
- Laboratory of Medicinal Chemistry, Centre de Recherche du CHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec, Québec, Canada, G1 V 0A6
| |
Collapse
|
15
|
Ricciardelli A, Pollio A, Costantini M, Zupo V. Harmful and beneficial properties of cyanotoxins: Two sides of the same coin. Biotechnol Adv 2023; 68:108235. [PMID: 37567398 DOI: 10.1016/j.biotechadv.2023.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Cyanotoxins are by definition "harmful agents" produced by cyanobacteria. Their toxicity has been extensively studied and reviewed over the years. Cyanotoxins have been commonly classified, based on their poisonous effects on mammals, into three main classes, neurotoxins, hepatotoxins and dermatotoxins, and, considering their chemical features, mainly identified as peptides, alkaloids and lipopolysaccharides. Here we propose a broader subdivision of cyanotoxins into eight distinct classes, taking into account their molecular structures, biosynthesis and modes of action: alkaloids, non-ribosomal peptides, polyketides, non-protein amino acids, indole alkaloids, organophosphates, lipopeptides and lipoglycans. For each class, the structures and primary mechanisms of toxicity of the main representative cyanotoxins are reported. Despite their powerful biological activities, only recently scientists have considered the biotechnological potential of cyanotoxins, and their applications both in medical and in industrial settings, even if only a few of these have reached the biotech market. In this perspective, we discuss the potential uses of cyanotoxins as anticancer, antimicrobial, and biocidal agents, as common applications for cytotoxic compounds. Furthermore, taking into account their mechanisms of action, we describe peculiar potential bioactivities for several cyanotoxin classes, such as local anaesthetics, antithrombotics, neuroplasticity promoters, immunomodulating and antifouling agents. In this review, we aim to stimulate research on the potential beneficial roles of cyanotoxins, which require interdisciplinary cooperation to facilitate the discovery of innovative biotechnologies.
Collapse
Affiliation(s)
- Annarita Ricciardelli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthìa, 80125 Naples, Italy.
| | - Antonino Pollio
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthìa, 80125 Naples, Italy.
| | - Maria Costantini
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy.
| | - Valerio Zupo
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Ischia Marine Centre, Punta San Pietro, 80077 Naples, Italy.
| |
Collapse
|
16
|
Holland DC, Schroder WA, Calcott MJ, Kaemmerer E, Avery VM, Ekins MG, Carroll AR. Cyclotheonellazoles D-I, Potent Elastase Inhibitory Thiazole-Containing Cyclic Peptides from Theonella sp. (2131). JOURNAL OF NATURAL PRODUCTS 2023; 86:2216-2227. [PMID: 37609780 DOI: 10.1021/acs.jnatprod.3c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Six new thiazole-containing cyclic peptides, the cyclotheonellazoles D-I (1-6), were isolated from the Australian marine sponge Theonella sp. (2131) with their structures assigned by comprehensive 1D and 2D NMR spectroscopic and MS spectrometric analyses, Marfey's derivatization studies, and comparison with time-dependent density functional theory (TDDFT) calculated ECD data. The Type 2 azole-homologated peptides herein comprise up to five nonproteinogenic amino acids, including the protease transition state mimic α-keto-β-amino acid residue 3-amino-4-methyl-2-oxohexanoic acid (Amoha), while 1-3 also contain a terminal hydantoin residue not previously found in cyclotheonellazoles. The keramamides A (7) and L (8) were reisolated affording expanded exploration of their biological activities. The peptides were examined for protease inhibitory activities against two mammalian serine proteases (elastase and chymotrypsin) and SARS-CoV-2 3-chymotrypsin-like protease (3CLpro), a validated antiviral therapeutic target for COVID-19. Peptides 1-6 and keramamide A (7) displayed potent nanomolar inhibition of elastase (IC50 16.0 to 61.8 nM), while 7 also contained modest inhibition of chymotrypsin and SARS-CoV-2 3CLpro (IC50 0.73 and 1.1 μM, respectively). The cyclotheonellazoles D-E (1-3) do not affect the viability of human breast, ovarian, and colon cancer cells (>100 μM), with the cytotoxicity previously reported for keramamide L (8) not replicated (inactive >20 μM).
Collapse
Affiliation(s)
- Darren C Holland
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University,Nathan, Queensland 4111, Australia
| | - Wayne A Schroder
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Mark J Calcott
- School of Biological Sciences, Victoria University of Wellington, Wellington 6102, New Zealand
| | - Elke Kaemmerer
- Discovery Biology, Griffith University, Nathan, Queensland 4111, Australia
| | - Vicky M Avery
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University,Nathan, Queensland 4111, Australia
- Discovery Biology, Griffith University, Nathan, Queensland 4111, Australia
| | - Merrick G Ekins
- Queensland Museum, South Brisbane BC, Queensland 4101, Australia
| | - Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University,Nathan, Queensland 4111, Australia
| |
Collapse
|
17
|
Weisthal Algor S, Sukenik A, Carmeli S. Hydantoanabaenopeptins from Lake Kinneret Microcystis Bloom, Isolation, and Structure Elucidation of the Possible Intermediates in the Anabaenopeptins Biosynthesis. Mar Drugs 2023; 21:401. [PMID: 37504933 PMCID: PMC10381486 DOI: 10.3390/md21070401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Anabaenopeptins are common metabolites of cyanobacteria. In the course of reisolation of the known aeruginosins KT608A and KT608B for bioassay studies, we noticed the presence of some unknown anabaenopeptins in the extract of a Microcystis cell mass collected during the 2016 spring bloom event in Lake Kinneret, Israel. The 1H NMR spectra of some of these compounds presented a significant difference in the appearance of the ureido bridge protons, and their molecular masses did not match any one of the 152 known anabaenopeptins. Analyses of the 1D and 2D NMR, HRMS, and MS/MS spectra of the new compounds revealed their structures as the hydantoin derivatives of anabaenopeptins A, B, F, and 1[Dht]-anabaenopeptin A and oscillamide Y (1, 2, 3, 6, and 4, respectively) and a new anabaenopeptin, 1[Dht]-anabaenopeptin A (5). The known anabaenopeptins A, B, and F and oscillamide Y (7, 8, 9, and 10, respectively) were present in the extract as well. We propose that 1-4 and 6 are the possible missing intermediates in the previously proposed partial biosynthesis route to the anabaenopeptins. Compounds 1-6 were tested for inhibition of the serine proteases trypsin and chymotrypsin and found inactive at a final concentration of ca. 54 μM.
Collapse
Affiliation(s)
- Shira Weisthal Algor
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Assaf Sukenik
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic & Limnological Research Institute, Migdal 49500, Israel
| | - Shmuel Carmeli
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
18
|
do Amaral SC, Xavier LP, Vasconcelos V, Santos AV. Cyanobacteria: A Promising Source of Antifungal Metabolites. Mar Drugs 2023; 21:359. [PMID: 37367684 PMCID: PMC10300848 DOI: 10.3390/md21060359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Cyanobacteria are a rich source of secondary metabolites, and they have received a great deal of attention due to their applicability in different industrial sectors. Some of these substances are known for their notorious ability to inhibit fungal growth. Such metabolites are very chemically and biologically diverse. They can belong to different chemical classes, including peptides, fatty acids, alkaloids, polyketides, and macrolides. Moreover, they can also target different cell components. Filamentous cyanobacteria have been the main source of these compounds. This review aims to identify the key features of these antifungal agents, as well as the sources from which they are obtained, their major targets, and the environmental factors involved when they are being produced. For the preparation of this work, a total of 642 documents dating from 1980 to 2022 were consulted, including patents, original research, review articles, and theses.
Collapse
Affiliation(s)
- Samuel Cavalcante do Amaral
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Luciana Pereira Xavier
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| |
Collapse
|
19
|
Jacinavicius FR, Geraldes V, Fernandes K, Crnkovic CM, Gama WA, Pinto E. Toxicological effects of cyanobacterial metabolites on zebrafish larval development. HARMFUL ALGAE 2023; 125:102430. [PMID: 37220983 DOI: 10.1016/j.hal.2023.102430] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 05/25/2023]
Abstract
Freshwater cyanobacteria are known worldwide for their potential to produce toxins. However, these organisms are also found in marine, terrestrial and extreme environments and produce unique compounds, other than toxins. Nevertheless, their effects on biological systems are still barely known. This work tested extracts of different cyanobacterial strains against zebrafish (Danio rerio) larvae and analyzed their metabolomic profiles using liquid chromatography combined with mass spectrometry. Strains Desertifilum tharense, Anagnostidinema amphibium, and Nostoc sp. promoted morphological abnormalities such as pericardial edema, edema in the digestive system region, curvature of the tail and spine in zebrafish larvae in vivo. In contrast, Microcystis aeruginosa and Chlorogloeopsis sp. did not promote such changes. Metabolomics revealed unique compounds belonging to the classes of terpenoids, peptides, and linear lipopeptides/microginins in the nontoxic strains. The toxic strains were shown to contain unique compounds belonging to the classes of cyclic peptides, amino acids and other peptides, anabaenopeptins, lipopeptides, terpenoids, and alkaloids and derivatives. Other unknown compounds were also detected, highlighting the rich structural diversity of secondary metabolites produced by cyanobacteria. The effects of cyanobacterial metabolites on living organisms, mainly those related to potential human and ecotoxicological risks, are still poorly known. This work highlights the diverse, complex, and unique metabolomic profiles of cyanobacteria and the biotechnological potential and associated risks of exposure to their metabolites.
Collapse
Affiliation(s)
- Fernanda R Jacinavicius
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, São Paulo, SP, CEP 05508-900, Brazil.
| | - Vanessa Geraldes
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, São Paulo, SP, CEP 05508-900, Brazil; Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, CEP 13418-260, Brazil
| | - Kelly Fernandes
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, CEP 13418-260, Brazil
| | - Camila M Crnkovic
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, São Paulo, SP, CEP 05508-900, Brazil
| | - Watson A Gama
- Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, Recife, PE, CEP 52171-900, Brazil
| | - Ernani Pinto
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, São Paulo, SP, CEP 05508-900, Brazil; Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, CEP 13418-260, Brazil
| |
Collapse
|
20
|
Bownik A, Adamczuk M, Pawlik-Skowrońska B, Mieczan T. Cyanobacterial metabolites: aeruginosin 98A, microginin-FR1, anabaenopeptin-A, cylindrospermopsin and their mixtures affect behavioral and physiological responses of Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104161. [PMID: 37245609 DOI: 10.1016/j.etap.2023.104161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
We determined the effects influence of cyanobacterial products metabolites: aeruginosin-A (AER-A), microginin-FR1 (MG-FR1), anabaenopeptin-A (ANA-A), cylindrospermopsin (CYL) and their binary and quadruple mixtures on swimming behavior, heart rate, thoracic limb activity, oxygen consumption and in vivo cell health of Daphnia magna. The study showed that CYL induced mortality of daphnids at the highest concentrations, however three oligopeptides had no lethal effect. All the tested Each single metabolites inhibited swimming speed. The mixtures AER+MG-FR1 and AER-A+ANA-A induced antagonistic and the quadruple mixture synergistic effects. Physiological endpoints were depressed by CYL, however they were simulated by the oligopeptides and their binary mixtures. The quadruple mixture inhibited the physiological parameters with antagonistic interactions between the components were antagonistic. Single CYL, MG-FR1 and ANA-A induced cytotoxicity with synergistic interactions and the metabolites in mixtures showed. The study suggests that swimming behavior and physiological parameters may be affected by single cyanobacterial oligopeptides, however their mixtures may induce different total effects.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| | - Małgorzata Adamczuk
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| | - Barbara Pawlik-Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| | - Tomasz Mieczan
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| |
Collapse
|
21
|
Bownik A, Adamczuk M, Skowrońska BP. Effects of cyanobacterial metabolites: Aeruginosin 98A, microginin-FR1, anabaenopeptin-A, cylindrospermopsin in binary and quadruple mixtures on the survival and oxidative stress biomarkers of Daphnia magna. Toxicon 2023; 229:107137. [PMID: 37121403 DOI: 10.1016/j.toxicon.2023.107137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/04/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
The aim of our study was to determine the effects of aeruginosin 98 A (ARE-A), microginin-FR1 (MG-FR1), anabaenopeptin-A (ANA-A) cylindrospermopsin (CYL) and their binary and quadruple mixtures on the survival and the levels of oxidative stress biomarkers in Daphnia magna: total glutathione (GSH), catalase (CAT), dismutase (SOD) and malondialdehyde (MDA). The biochemical indicators were measured with ELISA kits and the interactive effects were determined by isobole and polygonal analysis with Compusyn® computer software. The study revealed that oligopeptides did not decrease daphnid survival, only CYL inhibited this parameter, with synergistic effects when it was used as a component. The single metabolites at the two highest concentrations and all the binary and quadruple mixtures at all concentrations diminished GSH level, however both in the binary and in the quadruple mixtures most of the interactions between the metabolites were antagonistic. Nearly additive effects were found only in AER-A + CYL and MG-FR1+CYL. On the other hand, CAT activity was slightly increased in daphnids exposed to the binary mixtures with antagonistic interactions, however nearly addivive effects were found in animals exposed to the mixture of AER-A + ANA-A and synergistic in the quadruple mixture. SOD was elevated in daphnids exposed to single AER-A and MG-FR1, however it was diminished in the animals exposed to ANA-A and CYL. Binary mixtures in which CYL was present as a component decreased the level of this enzyme with nearly additive interactions in ANA-A + CYL. The quadruple mixture increased SOD level, with antagonistic interactions. Both single cyanobacterial metabolites, their binary and quadruple mixtures induced lipid peroxidation measured by MDA level and most of interactions in the binary mixtures were synergistic. The study suggested that antioxidative system of Daphnia magna responded to the tested metabolites and the real exposure to mixtures of these products may lead to various interactive effects with varied total toxicity.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland.
| | - Małgorzata Adamczuk
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| | - Barbara Pawlik Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| |
Collapse
|
22
|
McDonald K, DesRochers N, Renaud JB, Sumarah MW, McMullin DR. Metabolomics Reveals Strain-Specific Cyanopeptide Profiles and Their Production Dynamics in Microcystis aeruginosa and M. flos-aquae. Toxins (Basel) 2023; 15:254. [PMID: 37104192 PMCID: PMC10147050 DOI: 10.3390/toxins15040254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Cyanobacterial blooms that release biologically active metabolites into the environment are increasing in frequency as a result of the degradation of freshwater ecosystems globally. The microcystins are one group of cyanopeptides that are extensively studied and included in water quality risk management frameworks. Common bloom-forming cyanobacteria produce incredibly diverse mixtures of other cyanopeptides; however, data on the abundance, distribution, and biological activities of non-microcystin cyanopeptides are limited. We used non-targeted LC-MS/MS metabolomics to study the cyanopeptide profiles of five Microcystis strains: four M. aeruginosa and one M. flos-aquae. Multivariate analysis and GNPS molecular networking demonstrated that each Microcystis strain produced a unique mixture of cyanopeptides. In total, 82 cyanopeptides from the cyanopeptolin (n = 23), microviridin (n = 18), microginin (n = 12), cyanobactin (n = 14), anabaenopeptin (n = 6), aeruginosin (n = 5), and microcystin (n = 4) classes were detected. Microcystin diversity was low compared with the other detected cyanopeptide classes. Based on surveys of the literature and spectral databases, most cyanopeptides represented new structures. To identify growth conditions yielding high amounts of multiple cyanopeptide groups, we next examined strain-specific cyanopeptide co-production dynamics for four of the studied Microcystis strains. When strains were cultivated in two common Microcystis growth media (BG-11 and MA), the qualitative cyanopeptides profiles remained unchanged throughout the growth cycle. For each of the cyanopeptide groups considered, the highest relative cyanopeptide amounts were observed in the mid-exponential growth phase. The outcomes of this study will guide the cultivation of strains producing common and abundant cyanopeptides contaminating freshwater ecosystems. The synchronous production of each cyanopeptide group by Microcystis highlights the need to make more cyanopeptide reference materials available to investigate their distributions and biological functions.
Collapse
Affiliation(s)
| | - Natasha DesRochers
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Justin B. Renaud
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Mark W. Sumarah
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - David R. McMullin
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
23
|
Nugumanova G, Ponomarev ED, Askarova S, Fasler-Kan E, Barteneva NS. Freshwater Cyanobacterial Toxins, Cyanopeptides and Neurodegenerative Diseases. Toxins (Basel) 2023; 15:toxins15030233. [PMID: 36977124 PMCID: PMC10057253 DOI: 10.3390/toxins15030233] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Cyanobacteria produce a wide range of structurally diverse cyanotoxins and bioactive cyanopeptides in freshwater, marine, and terrestrial ecosystems. The health significance of these metabolites, which include genotoxic- and neurotoxic agents, is confirmed by continued associations between the occurrence of animal and human acute toxic events and, in the long term, by associations between cyanobacteria and neurodegenerative diseases. Major mechanisms related to the neurotoxicity of cyanobacteria compounds include (1) blocking of key proteins and channels; (2) inhibition of essential enzymes in mammalian cells such as protein phosphatases and phosphoprotein phosphatases as well as new molecular targets such as toll-like receptors 4 and 8. One of the widely discussed implicated mechanisms includes a misincorporation of cyanobacterial non-proteogenic amino acids. Recent research provides evidence that non-proteinogenic amino acid BMAA produced by cyanobacteria have multiple effects on translation process and bypasses the proof-reading ability of the aminoacyl-tRNA-synthetase. Aberrant proteins generated by non-canonical translation may be a factor in neuronal death and neurodegeneration. We hypothesize that the production of cyanopeptides and non-canonical amino acids is a more general mechanism, leading to mistranslation, affecting protein homeostasis, and targeting mitochondria in eukaryotic cells. It can be evolutionarily ancient and initially developed to control phytoplankton communities during algal blooms. Outcompeting gut symbiotic microorganisms may lead to dysbiosis, increased gut permeability, a shift in blood-brain-barrier functionality, and eventually, mitochondrial dysfunction in high-energy demanding neurons. A better understanding of the interaction between cyanopeptides metabolism and the nervous system will be crucial to target or to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Galina Nugumanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Eugene D Ponomarev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, 3010 Bern, Switzerland
| | - Natasha S Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
24
|
Konkel R, Grabski M, Cegłowska M, Wieczerzak E, Węgrzyn G, Mazur-Marzec H. Anabaenopeptins from Nostoc edaphicum CCNP1411. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12346. [PMID: 36231642 PMCID: PMC9564503 DOI: 10.3390/ijerph191912346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria of the Nostoc genus belong to the most prolific sources of bioactive metabolites. In our previous study on Nostoc edaphicum strain CCNP1411, the occurrence of cyanopeptolins and nostocyclopeptides was documented. In the current work, the production of anabaenopeptins (APs) by the strain was studied using genetic and chemical methods. Compatibility between the analysis of the apt gene cluster and the structure of the identified APs was found. Three of the APs, including two new variants, were isolated as pure compounds and tested against four serine proteases and carboxypeptidase A (CPA). The in vitro enzymatic assays showed a typical activity of this class of cyanopeptides, i.e., the most pronounced effects were observed in the case of CPA. The activity of the detected compounds against important metabolic enzymes confirms the pharmaceutical potential of anabaenopeptins.
Collapse
Affiliation(s)
- Robert Konkel
- Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland
| | - Michał Grabski
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80308 Gdańsk, Poland
| | - Marta Cegłowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81712 Sopot, Poland
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80308 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80308 Gdańsk, Poland
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland
| |
Collapse
|
25
|
Bownik A, Adamczuk M, Pawlik-Skowrońska B. Behavioral disturbances induced by cyanobacterial oligopeptides microginin-FR1, anabaenopeptin-A and microcystin-LR are associated with neuromotoric and cytotoxic changes in Brachionus calyciflorus. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129472. [PMID: 35785735 DOI: 10.1016/j.jhazmat.2022.129472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Aquatic animals are exposed to various cyanobacterial products released concomitantly to the environment by decaying blooms. Although there exist results on the toxicity of cyanobacterial extracts little is known on the influence of pure oligopeptides or their mixtures and elucidated mechanisms of behavioral toxicity in zooplanktonic organisms. Therefore, the aim of the present study was to assess the effects of single and mixed pure cyanobacterial oligopeptides: microginin FR-1 (MG-FR1), anabaenopeptin-A (ANA-A) and microcystin-LR (MC-LR) at various concentrations on the swimming behavior and catecholamine neurotransmitter activity, muscular F-actin structure, DNA nuclear content and cell viability of a model rotifer Brachionus calyciflorus. Swimming behavior was analyzed with the use of video digital analysis. Fluorescent microscopy imaging was used to analyze neuromotoric biomarkers in the whole organisms: neuromediator release (by staining with EC517 probe), muscle F-actin filaments (by staining with blue phalloidin dye). DNA content and cytotoxicity was also determined by Hoechst 34580 and propidium iodide double staining, respectively. The results showed that single oligopeptides inhibited all the tested endpoints. The binary mixtures induced synergistic interaction on swimming speed except for MG-FR1 +MC-LR which was nearly additive. Both binary and ternary mixtures also synergistically degraded F-actin and triggered cytotoxic effects visible in the whole organisms. Antagonistic inhibitory effects of all the binary mixtures were found on catecholamine neurotransmitter activity, however the ternary mixture induced additive toxicity. Antagonistic effects of both binary and ternary mixtures were also noted on nuclear DNA content. The results of the study suggest that both depression of neurotransmission and impairment of muscle F-actin structure in muscles may contribute to mechanisms of Brachionus swimming speed inhibition by the tested single cyanobacterial oligopeptides and their mixtures. The study also showed that natural exposure of rotifers to mixtures of these cyanobacterial metabolites may result in different level of interactive toxicity with antagonistic, additive synergistic effects depending on the variants and concentrations present in the environment.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland.
| | - Małgorzata Adamczuk
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland
| | - Barbara Pawlik-Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland
| |
Collapse
|
26
|
Painter KJ, Venkiteswaran JJ, Simon DF, Vo Duy S, Sauvé S, Baulch HM. Early and late cyanobacterial bloomers in a shallow, eutrophic lake. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1212-1227. [PMID: 35833582 DOI: 10.1039/d2em00078d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cyanobacterial blooms present challenges for water treatment, especially in regions like the Canadian prairies where poor water quality intensifies water treatment issues. Buoyant cyanobacteria that resist sedimentation present a challenge as water treatment operators attempt to balance pre-treatment and toxic disinfection by-products. Here, we used microscopy to identify and describe the succession of cyanobacterial species in Buffalo Pound Lake, a key drinking water supply. We used indicator species analysis to identify temporal grouping structures throughout two sampling seasons from May to October 2018 and 2019. Our findings highlight two key cyanobacterial bloom phases - a mid-summer diazotrophic bloom of Dolichospermum spp. and an autumn Planktothrix agardhii bloom. Dolichospermum crassa and Woronichinia compacta served as indicators of the mid-summer and autumn bloom phases, respectively. Different cyanobacterial metabolites were associated with the distinct bloom phases in both years: toxic microcystins were associated with the mid-summer Dolichospermum bloom and some newly monitored cyanopeptides (anabaenopeptin A and B) with the autumn Planktothrix bloom. Despite forming a significant proportion of the autumn phytoplankton biomass (>60%), the Planktothrix bloom had previously not been detected by sensor or laboratory-derived chlorophyll-a. Our results demonstrate the power of targeted taxonomic identification of key species as a tool for managers of bloom-prone systems. Moreover, we describe an autumn Planktothrix agardhii bloom that has the potential to disrupt water treatment due to its evasion of detection. Our findings highlight the importance of identifying this autumn bloom given the expectation that warmer temperatures and a longer ice-free season will become the norm.
Collapse
Affiliation(s)
- Kristin J Painter
- School of Environment and Sustainability, Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada.
| | - Jason J Venkiteswaran
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Dana F Simon
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Helen M Baulch
- School of Environment and Sustainability, Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada.
| |
Collapse
|
27
|
Silva SG, Paula P, da Silva JP, Mil-Homens D, Teixeira MC, Fialho AM, Costa R, Keller-Costa T. Insights into the Antimicrobial Activities and Metabolomes of Aquimarina ( Flavobacteriaceae, Bacteroidetes) Species from the Rare Marine Biosphere. Mar Drugs 2022; 20:423. [PMID: 35877716 PMCID: PMC9323603 DOI: 10.3390/md20070423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022] Open
Abstract
Two novel natural products, the polyketide cuniculene and the peptide antibiotic aquimarin, were recently discovered from the marine bacterial genus Aquimarina. However, the diversity of the secondary metabolite biosynthetic gene clusters (SM-BGCs) in Aquimarina genomes indicates a far greater biosynthetic potential. In this study, nine representative Aquimarina strains were tested for antimicrobial activity against diverse human-pathogenic and marine microorganisms and subjected to metabolomic and genomic profiling. We found an inhibitory activity of most Aquimarina strains against Candida glabrata and marine Vibrio and Alphaproteobacteria species. Aquimarina sp. Aq135 and Aquimarina muelleri crude extracts showed particularly promising antimicrobial activities, amongst others against methicillin-resistant Staphylococcus aureus. The metabolomic and functional genomic profiles of Aquimarina spp. followed similar patterns and were shaped by phylogeny. SM-BGC and metabolomics networks suggest the presence of novel polyketides and peptides, including cyclic depsipeptide-related compounds. Moreover, exploration of the ‘Sponge Microbiome Project’ dataset revealed that Aquimarina spp. possess low-abundance distributions worldwide across multiple marine biotopes. Our study emphasizes the relevance of this member of the microbial rare biosphere as a promising source of novel natural products. We predict that future metabologenomics studies of Aquimarina species will expand the spectrum of known secondary metabolites and bioactivities from marine ecosystems.
Collapse
Affiliation(s)
- Sandra Godinho Silva
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Patrícia Paula
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - José Paulo da Silva
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Dalila Mil-Homens
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Miguel Cacho Teixeira
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Arsénio Mendes Fialho
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Rodrigo Costa
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Tina Keller-Costa
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
28
|
Cyanotoxins in Bloom: Ever-Increasing Occurrence and Global Distribution of Freshwater Cyanotoxins from Planktic and Benthic Cyanobacteria. Toxins (Basel) 2022; 14:toxins14040264. [PMID: 35448873 PMCID: PMC9029585 DOI: 10.3390/toxins14040264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022] Open
Abstract
Toxic cyanobacteria in freshwater bodies constitute a major threat to public health and aquatic ecosystems [...]
Collapse
|
29
|
Zervou SK, Kaloudis T, Gkelis S, Hiskia A, Mazur-Marzec H. Anabaenopeptins from Cyanobacteria in Freshwater Bodies of Greece. Toxins (Basel) 2021; 14:4. [PMID: 35050981 PMCID: PMC8781842 DOI: 10.3390/toxins14010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022] Open
Abstract
Cyanobacteria are photosynthetic microorganisms that are able to produce a large number of secondary metabolites. In freshwaters, under favorable conditions, they can rapidly multiply, forming blooms, and can release their toxic/bioactive metabolites in water. Among them, anabaenopeptins (APs) are a less studied class of cyclic bioactive cyanopeptides. The occurrence and structural variety of APs in cyanobacterial blooms and cultured strains from Greek freshwaters were investigated. Cyanobacterial extracts were analyzed with LC-qTRAP MS/MS using information-dependent acquisition in enhanced ion product mode in order to obtain the fragmentation mass spectra of APs. Thirteen APs were detected, and their possible structures were annotated based on the elucidation of fragmentation spectra, including three novel ones. APs were present in the majority of bloom samples (91%) collected from nine Greek lakes during different time periods. A large variety of APs was observed, with up to eight congeners co-occurring in the same sample. AP F (87%), Oscillamide Y (87%) and AP B (65%) were the most frequently detected congeners. Thirty cyanobacterial strain cultures were also analyzed. APs were only detected in one strain (Microcystis ichtyoblabe). The results contribute to a better understanding of APs produced by freshwater cyanobacteria and expand the range of structurally characterized APs.
Collapse
Affiliation(s)
- Sevasti-Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., 15310 Athens, Greece; (T.K.); (A.H.)
| | - Triantafyllos Kaloudis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., 15310 Athens, Greece; (T.K.); (A.H.)
| | - Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., 15310 Athens, Greece; (T.K.); (A.H.)
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland;
| |
Collapse
|