1
|
Du X, Zheng M, Zhang H, Qiu Y, Ji F, Nie Z, Xu H, Li X, Wu S, Wang Z, Xing F, Xia Y. New application of a dye-decolorizing peroxidase immobilized on magnetic nanoparticles for efficient simultaneous degradation of two mycotoxins. Food Chem 2025; 463:141341. [PMID: 39307048 DOI: 10.1016/j.foodchem.2024.141341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 11/06/2024]
Abstract
Nowadays the enzymatic approaches are the most promising strategies for mycotoxins detoxification in food stuffs. Herein, the dye-decolorizing peroxidase RhDypB from Rhodococcus jostii was studied for its ability to degrade two mycotoxins in both free and the immobilized enzyme forms. This enzyme was recombinantly expressed and purified, while Fe3O4 nanoparticles were prepared and modified with chitosan as the immobilization carrier. The immobilized enzyme Fe3O4@CS@RhDypB demonstrated degradation rate of 85.61 % toward aflatoxin B1, while it was firstly found to be able to degrade zearalenone with the rate of 86.52 %, at pH 4.0 on 30 °C. The degradation products were identified as aflatoxin Q1 and 15-OH-ZEN respectively. After 5 cycles of reuse, Fe3O4@CS@RhDypB still exhibited degradation rates of 38.50 % and 49.76 % toward the mycotoxins, indicating its high reusability. Moreover, Fe3O4@CS@RhDypB exhibited excellent stability after 10 days of storage. This work identified potential applications of nanoparticle-immobilized enzyme for biodegradation of mycotoxins in food industry.
Collapse
Affiliation(s)
- Xinling Du
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mumin Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Han Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yangyu Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fuchun Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zishen Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Huidong Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoxuan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Jia M, Yu X, Xu K, Gu X, Harmer NJ, Zhao Y, Xiang Y, Sheng X, Li C, Du XD, Pan J, Hao W. The High-Efficiency Degradation of Multiple Mycotoxins by Lac-W Laccase in the Presence of Mediators. Toxins (Basel) 2024; 16:477. [PMID: 39591232 PMCID: PMC11598361 DOI: 10.3390/toxins16110477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Mycotoxin cocontamination is a severe threat to health and economic security worldwide. The mycotoxins aflatoxin B1 (AFB1), zearalenone (ZEN), deoxynivalenol, T-2 toxin, fumonisin B1, and ochratoxin A are of particular concern due to their substantial toxicity. Lac-W is a laccase with the unique property of degrading these six mycotoxins in the absence of redox mediators. Nevertheless, their degradation rates are low. This work aims to improve the ability of Lac-W to degrade these six mycotoxins and to elucidate its detoxification mechanism. Including redox mediators increased the Lac-W degradation efficiency drastically, and completely degraded AFB1 and ZEN within one hour. Additionally, Lac-W-AS has good temperature, pH, and ions adaptability in ZEN degradation. Lac-W-AS reduced the ZEN toxicity because ZEN degradation products significantly restored the bioluminescence intensity of Vibrio fischeri. A Lac-W-AS-mediated oxidation product of ZEN was structurally characterized as 15-OH-ZEN by UHPLC-MS/MS. Linear sweep voltammetry showed that AS affected the potential of Lac-W and accelerated the oxidation of ZEN. Finally, the combination of mediators (acetosyringone and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate)) improved the degradation rate of mycotoxins. This work highlights that the combination of Lac-W with mediators serves as a good candidate for degrading multi-mycotoxin contaminants in food and feedstuff.
Collapse
Affiliation(s)
- Mengshuang Jia
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaohu Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Kun Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaodan Gu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | | | - Youbao Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuqiang Xiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xia Sheng
- College of Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenglong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiajia Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenbo Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
3
|
Jiang X, Tehreem S, Rahim K, Wang M, Wu P, Zhang G. Enhancing the thermal stability and activity of zearalenone lactone hydrolase to promote zearalenone degradation via semi-rational design. Enzyme Microb Technol 2024; 180:110499. [PMID: 39191068 DOI: 10.1016/j.enzmictec.2024.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
Zearalenone (ZEN) is a fungal toxin produced by Fusarium exospore, which poses a significant threat to both animal and human health due to its reproductive toxicity. Removing ZEN through ZEN lactonase is currently the most effective method reported, however, all published ZEN lactonases suffer from the poor thermal stability, losing almost all activity after 10 min of treatment at 55℃. In this study, we heterologously expressed ZHD11A from Phialophora macrospora and engineered it via semi-rational design. A mutant I160Y-G242S that can retain about 40 % residual activity at 55℃ for 10 min was obtained, which is the most heat-tolerant ZEN hydrolase reported to date. Moreover, the specific activity of the I160Y-G242S was also elevated 2-fold compared to ZHD11A from 220 U/mg to 450 U/mg, which is one of the most active ZEN lactonses reported. Dynamics analysis revealed that the decreased flexibility of the main-chain carbons contributes to increased thermal stability and the improved substrate binding affinity and catalytic turnover contribute to enhanced activity of variant I160Y-G242S. In all, the mutant I160Y-G242S is an excellent candidate for the industrial application of ZEN degradation.
Collapse
Affiliation(s)
- Xue Jiang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Sana Tehreem
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Kashif Rahim
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meixing Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Zhen H, Hu Y, Xiong K, Li M, Jin W. The occurrence and biological control of zearalenone in cereals and cereal-based feedstuffs: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1344-1359. [PMID: 39102376 DOI: 10.1080/19440049.2024.2385713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
Zearalenone, a prominent mycotoxin produced by Fusarium spp., ubiquitously contaminates cereal grains and animal feedstuffs. The thermal stability of zearalenone creates serious obstacles for traditional removal methods, which may introduce new safety issues, or reducing nutritional quality. In contrast, biological technologies provide appealing benefits such as easy to apply and effective, with low toxicity byproducts. Thus, this review aims to describe the occurrence of zearalenone in cereals and cereal-based feedstuffs in the recent 5 years, outline the rules and regulations regarding zearalenone in the major countries, and discuss the recent developments of biological methods for controlling zearalenone in cereals and cereal-based feedstuffs. In addition, this article also reviews the application and the development trend of biological strategies for removal zearalenone in cereals and cereal-based feedstuffs.
Collapse
Affiliation(s)
- Hongmin Zhen
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yumeng Hu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| | - Ke Xiong
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing, China
| | - Mengmeng Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| | - Wen Jin
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| |
Collapse
|
5
|
Gao J, Ali MY, Kamaraj Y, Zhang Z, Weike L, Sethupathy S, Zhu D. A comprehensive review on biological funnel mechanism in lignin valorization: Pathways and enzyme dynamics. Microbiol Res 2024; 287:127835. [PMID: 39032264 DOI: 10.1016/j.micres.2024.127835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Lignin, a significant byproduct of the paper and pulp industry, is attracting interest due to its potential utilization in biomaterial-based sectors and biofuel production. Investigating biological methods for converting lignin into valuable products is crucial for effective utilization and has recently gained growing attention. Several microorganisms effectively decomposed low molecular weight lignins, transforming them into intermediate compounds via upper and lower metabolic pathways. This review focuses on assessing bacterial metabolic pathways involved in the breakdown of lignin into aromatic compounds and their subsequent utilization by different bacteria through various metabolic pathways. Understanding these pathways is essential for developing efficient synthetic metabolic systems to valorize lignin and obtain valuable industrial aromatic chemicals. The concept of "biological funneling," which involves examining key enzymes, their interactions, and the complex metabolic pathways associated with lignin conversion, is crucial in lignin valorization. By manipulating lignin metabolic pathways and utilizing biological routes, many aromatic compounds can be synthesized within cellular factories. Although there is insufficient evidence regarding the complete metabolism of polyaromatic hydrocarbons by particular microorganisms, understanding lignin-degrading enzymes, regulatory mechanisms, and interactions among various enzyme systems is essential for optimizing lignin valorization. This review highlights recent advancements in lignin valorization, bio-funneling, multi-omics, and analytical characterization approaches for aromatic utilization. It provides up-to-date information and insights into the latest research findings and technological innovations. The review offers valuable insights into the future potential of biological routes for lignin valorization.
Collapse
Affiliation(s)
- Jiayue Gao
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mohamed Yassin Ali
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China; Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Yoganathan Kamaraj
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhenghao Zhang
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Li Weike
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
6
|
Bossa M, Monesterolo NE, Monge MDP, Rhein P, Chulze SN, Alaniz-Zanon MS, Chiotta ML. Fungal Laccases and Fumonisin Decontamination in Co-Products of Bioethanol from Maize. Toxins (Basel) 2024; 16:350. [PMID: 39195760 PMCID: PMC11359460 DOI: 10.3390/toxins16080350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Maize (Zea mays L.) may be infected by Fusarium verticillioides and F. proliferatum, and consequently contaminated with fumonisins (FBs), as well as the co-products of bioethanol intended for animal feed. Laccase enzymes have a wide industrial application such as mycotoxin degradation. The aims were to isolate and identify fungal laccase-producing strains, to evaluate laccase production, to determine the enzymatic stability under fermentation conditions, and to analyse the effectiveness in vitro of enzymatic extracts (EEs) containing laccases in degrading FB1. Strains belonging to Funalia trogii, Phellinus tuberculosus, Pleurotus ostreatus, Pycnoporus sanguineus and Trametes gallica species showed laccase activity. Different isoforms of laccases were detected depending on the evaluated species. For the FB1 decontamination assays, four enzymatic activities (5, 10, 15 and 20 U/mL) were tested, in the absence and presence of vanillic acid (VA) and 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) as redox mediators (1 and 10 mM). Trametes gallica B4-IMICO-RC EE was the most effective strain in buffer, achieving a 60% of FB1 reduction. Laccases included in EEs remained stable at different alcoholic degrees in maize steep liquor (MSL), but no significant FB1 reduction was observed under the conditions evaluated using MSL. This study demonstrate that although laccases could be good candidates for the development of a strategy to reduce FB1, further studies are necessary to optimise this process in MSL.
Collapse
Affiliation(s)
- Marianela Bossa
- Instituto de Investigación en Micología y Micotoxicología (IMICO), CONICET-Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Argentina; (M.B.); (M.d.P.M.); (S.N.C.)
| | - Noelia Edith Monesterolo
- Instituto de Biotecnología Ambiental y de la Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Argentina;
| | - María del Pilar Monge
- Instituto de Investigación en Micología y Micotoxicología (IMICO), CONICET-Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Argentina; (M.B.); (M.d.P.M.); (S.N.C.)
| | - Paloma Rhein
- Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Argentina;
| | - Sofía Noemí Chulze
- Instituto de Investigación en Micología y Micotoxicología (IMICO), CONICET-Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Argentina; (M.B.); (M.d.P.M.); (S.N.C.)
| | - María Silvina Alaniz-Zanon
- Instituto de Investigación en Micología y Micotoxicología (IMICO), CONICET-Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Argentina; (M.B.); (M.d.P.M.); (S.N.C.)
| | - María Laura Chiotta
- Instituto de Investigación en Micología y Micotoxicología (IMICO), CONICET-Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Argentina; (M.B.); (M.d.P.M.); (S.N.C.)
| |
Collapse
|
7
|
Liu M, Zhang X, Luan H, Zhang Y, Xu W, Feng W, Song P. Bioenzymatic detoxification of mycotoxins. Front Microbiol 2024; 15:1434987. [PMID: 39091297 PMCID: PMC11291262 DOI: 10.3389/fmicb.2024.1434987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Mycotoxins are secondary metabolites produced during the growth, storage, and transportation of crops contaminated by fungi and are physiologically toxic to humans and animals. Aflatoxin, zearalenone, deoxynivalenol, ochratoxin, patulin, and fumonisin are the most common mycotoxins and can cause liver and nervous system damage, immune system suppression, and produce carcinogenic effects in humans and animals that have consumed contaminated food. Physical, chemical, and biological methods are generally used to detoxify mycotoxins. Although physical methods, such as heat treatment, irradiation, and adsorption, are fast and simple, they have associated problems including incomplete detoxification, limited applicability, and cause changes in food characteristics (e.g., nutritive value, organoleptic properties, and palatability). Chemical detoxification methods, such as ammonification, ozonation, and peroxidation, pollute the environment and produce food safety risks. In contrast, bioenzymatic methods are advantageous as they achieve selective detoxification and are environmentally friendly and reusable; thus, these methods are the most promising options for the detoxification of mycotoxins. This paper reviews recent research progress on common mycotoxins and the enzymatic principles and mechanisms for their detoxification, analyzes the toxicity of the degradation products and describes the challenges faced by researchers in carrying out enzymatic detoxification. In addition, the application of enzymatic detoxification in food and feed is discussed and future directions for the development of enzymatic detoxification methods are proposed for future in-depth study of enzymatic detoxification methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
8
|
Sun Z, You Y, Xu H, You Y, He W, Wang Z, Li A, Xia Y. Food-Grade Expression of Two Laccases in Pichia pastoris and Study on Their Enzymatic Degradation Characteristics for Mycotoxins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38600054 DOI: 10.1021/acs.jafc.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Mycotoxin contamination poses substantial health risks to humans and animals. In this study, the two laccases PpLac1 and AoLac2 from Pleurotus pulmonarius and Aspergillus oryzae were selected and heterologously expressed in Pichia pastoris in a food-grade manner to detoxify aflatoxin B1 (AFB1), zearalenone (ZEN), and deoxynivalenol (DON). Both laccases exhibited degradation activity toward these three mycotoxins, while the efficiency of these for DON was relatively low. Therefore, molecular docking between these laccases and DON was conducted to analyze their potential interaction mechanisms. Furthermore, the degradation conditions of AFB1 and ZEN by the two laccases were optimized, and the optimal degradation rates for AFB1 and ZEN by PpLac1 reached 78.51 and 78.90%, while those for AFB1 and ZEN by AoLac2 reached 72.27 and 80.60%, respectively. The laccases PpLac1 and AoLac2 successfully transformed AFB1 and ZEN into the compounds AFQ1 and 15-OH-ZEN, which were 90 and 98% less toxic than the original compounds, respectively. Moreover, the culture supernatants demonstrated effective mycotoxin degradation results for AFB1 and ZEN in contaminated feed samples. The residual levels of AFB1 and ZEN in all samples ranged from 6.61 to 8.72 μg/kg and 3.44 to 98.15 μg/kg, respectively, and these levels were below the limit set by the European Union standards. All of the results in this study indicated that the two laccases have excellent application potential in the feed industry.
Collapse
Affiliation(s)
- Zhen Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yingxin You
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Huidong Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yang You
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenjing He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Aitao Li
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Guo Y, Tang Y, Zhang L, Liu Y, Ma Q, Zhao L. Enzymatic characterization and application of soybean hull peroxidase as an efficient and renewable biocatalyst for degradation of zearalenone. Int J Biol Macromol 2024; 260:129664. [PMID: 38266837 DOI: 10.1016/j.ijbiomac.2024.129664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/15/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Zearalenone (ZEN) is a notorious mycotoxin commonly found in Fusarium-contaminated crops, which causes great loss in livestock farming and serious health problems to humans. In the present work, we found that crude peroxidase extraction from soybean hulls could use H2O2 as a co-substate to oxidize ZEN. Molecular docking and dynamic simulation also supported that ZEN could bind to the active site of soybean hull peroxidase (SHP). Subsequently, SHP extracted from soybean hulls was purified using a combined purification protocol involving ammonium sulfate precipitation, ion exchange chromatography and size exclusion chromatography. The purified SHP showed wide pH resistance and high thermal stability. This peroxidase could degrade 95 % of ZEN in buffer with stepwise addition of 100 μM H2O2 in 1 h. The two main ZEN degradation products were identified as 13-OH-ZEN and 13-OH-ZEN-quinone. Moreover, SHP-catalyzed ZEN degradation products displayed much less cytotoxicity to human liver cells than ZEN. The application of SHP in various food matrices obtained 54 % to 85 % ZEN degradation. The findings in this study will promote the utilization of SHP as a cheap and renewable biocatalyst for degrading ZEN in food.
Collapse
Affiliation(s)
- Yongpeng Guo
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yu Tang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Liangyu Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanrong Liu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Ding S, Lin C, Xiao Q, Feng F, Wang J, Zhang X, Yang S, Li L, Li F. Effective degradation of zearalenone by dye-decolorizing peroxidases from Pleurotus ostreatus and its metabolic pathway and toxicity analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168500. [PMID: 37952667 DOI: 10.1016/j.scitotenv.2023.168500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
The widespread detection of zearalenone (ZEN) in cereal crops and feeds poses a significant threat to both humans and animals. Consequently, the urgency for the international community to address this issue is evident in the demand for safe and effective measures to mitigate zearalenone contamination and explore detoxification methods. In this study, a dye-decolorizing peroxidase (PoDyP4) from Pleurotus ostreatus is characterized for its impressive ZEN degradation effectiveness. PoDyP4 was demonstrated that the ability to almost completely degrade ZEN at pH 6.0 and 40 °C for 2 h, even at high concentrations of 1 mM. The promotion of enzymatic degradation of ZEN was most pronounced in the presence of Mg2+, while Cu2+ and Fe2+ exhibited a notable inhibitory effect. The degradation mechanism elucidated the detoxification of ZEN by PoDyP4 through hydroxylation and polymerization reactions. The resulting metabolic products displayed significantly reduced toxicity and minimal impact on the viability and apoptosis of mouse spermatocytes GC-2 cells, in comparison to the original ZEN. Hydrophobic contacts and hydrogen bonds were found to be crucial for ZEN-PoDyP4 stability via molecular docking. This finding suggests that PoDyP4 may have a promising application in the field of food and feed for zearalenone detoxification.
Collapse
Affiliation(s)
- Shuai Ding
- Department of Bioengineering, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Chen Lin
- Department of Bioengineering, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qiuyun Xiao
- R & D Center of Yunnan Yuntianhua Co., Ltd., Yunnan 650100, China
| | - Fa Feng
- Department of Bioengineering, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Junfeng Wang
- Department of Bioengineering, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xing Zhang
- R & D Center of Yunnan Yuntianhua Co., Ltd., Yunnan 650100, China
| | - Shengjing Yang
- R & D Center of Yunnan Yuntianhua Co., Ltd., Yunnan 650100, China
| | - Lingling Li
- Department of Bioengineering, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Fei Li
- Department of Bioengineering, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China.
| |
Collapse
|
11
|
Bossa M, Alaniz-Zanon MS, Monesterolo NE, Monge MDP, Coria YM, Chulze SN, Chiotta ML. Aflatoxin Decontamination in Maize Steep Liquor Obtained from Bioethanol Production Using Laccases from Species within the Basidiomycota Phylum. Toxins (Basel) 2024; 16:27. [PMID: 38251243 PMCID: PMC10819231 DOI: 10.3390/toxins16010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Maize (Zea mays L.) is an important crop in Argentina. Aspergillus section Flavi can infect this crop at the pre-harvest stage, and the harvested grains can be contaminated with aflatoxins (AFs). During the production of bioethanol from maize, AF levels can increase up to three times in the final co-products, known as, dry and wet distiller's grain with solubles (DDGS and WDGS), intended for animal feed. Fungal enzymes like laccases can be a useful tool for reducing AF contamination in the co-products obtained from this process. The aim of the present study was to evaluate the ability of laccase enzymes included in enzymatic extracts (EE) produced by different species in the Basidiomycota phylum to reduce AF (AFB1 and AFB2) accumulation under the conditions of in vitro assays. Four laccase activities (5, 10, 15, and 20 U/mL) exerted by nine isolates were evaluated in the absence and presence of vanillic acid (VA), serving as a laccase redox mediator for the degradation of total AFs. The enzymatic stability in maize steep liquor (MSL) was confirmed after a 60 h incubation period. The most effective EE in terms of reducing AF content in the buffer was selected for an additional assay carried out under the same conditions using maize steep liquor obtained after the saccharification stage during the bioethanol production process. The highest degradation percentages were observed at 20 U/mL of laccase enzymatic activity and 1 mM of VA, corresponding to 26% for AFB1 and 26.6% for AFB2. The present study provides valuable data for the development of an efficient tool based on fungal laccases for preventing AF accumulation in the co-products of bioethanol produced from maize used for animal feed.
Collapse
Affiliation(s)
- Marianela Bossa
- Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina; (M.B.); (M.S.A.-Z.); (M.d.P.M.); (Y.M.C.); (S.N.C.)
| | - María Silvina Alaniz-Zanon
- Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina; (M.B.); (M.S.A.-Z.); (M.d.P.M.); (Y.M.C.); (S.N.C.)
| | - Noelia Edith Monesterolo
- Instituto de Biotecnología Ambiental y de la Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina;
| | - María del Pilar Monge
- Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina; (M.B.); (M.S.A.-Z.); (M.d.P.M.); (Y.M.C.); (S.N.C.)
| | - Yamila Milagros Coria
- Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina; (M.B.); (M.S.A.-Z.); (M.d.P.M.); (Y.M.C.); (S.N.C.)
| | - Sofía Noemí Chulze
- Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina; (M.B.); (M.S.A.-Z.); (M.d.P.M.); (Y.M.C.); (S.N.C.)
| | - María Laura Chiotta
- Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina; (M.B.); (M.S.A.-Z.); (M.d.P.M.); (Y.M.C.); (S.N.C.)
| |
Collapse
|
12
|
Fang J, Sheng L, Ye Y, Ji J, Sun J, Zhang Y, Sun X. Recent advances in biosynthesis of mycotoxin-degrading enzymes and their applications in food and feed. Crit Rev Food Sci Nutr 2023:1-17. [PMID: 38108665 DOI: 10.1080/10408398.2023.2294166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mycotoxins are secondary metabolites produced by fungi in food and feed, which can cause serious health problems. Bioenzymatic degradation is gaining increasing popularity due to its high specificity, gentle degradation conditions, and environmental friendliness. We reviewed recently reported biosynthetic mycotoxin-degrading enzymes, traditional and novel expression systems, enzyme optimization strategies, food and feed applications, safety evaluation of both degrading enzymes and degradation products, and commercialization potentials. Special emphasis is given to the novel expression systems, advanced optimization strategies, and safety considerations for industrial use. Over ten types of recombinases such as oxidoreductase and hydrolase have been studied in the enzymatic hydrolysis of mycotoxins. Besides traditional expression system of Escherichia coli and yeasts, these enzymes can also be expressed in novel systems such as Bacillus subtilis and lactic acid bacteria. To meet the requirements of industrial applications in terms of degradation efficacy and stability, genetic engineering and computational tools are used to optimize enzymatic expression. Currently, registration and technical difficulties have restricted commercial application of mycotoxin-degrading enzymes. To overcome these obstacles, systematic safety evaluation of both biosynthetic enzymes and their degradation products, in-depth understanding of degradation mechanisms and a comprehensive evaluation of their impact on food and feed quality are urgently needed.
Collapse
Affiliation(s)
- Jinpei Fang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| |
Collapse
|
13
|
Sun H, He Z, Xiong D, Long M. Mechanisms by which microbial enzymes degrade four mycotoxins and application in animal production: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:256-274. [PMID: 38033608 PMCID: PMC10685049 DOI: 10.1016/j.aninu.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 12/02/2023]
Abstract
Mycotoxins are toxic compounds that pose a serious threat to animal health and food safety. Therefore, there is an urgent need for safe and efficient methods of detoxifying mycotoxins. As biotechnology has continued to develop, methods involving biological enzymes have shown great promise. Biological enzymatic methods, which can fundamentally destroy the structures of mycotoxins and produce degradation products whose toxicity is greatly reduced, are generally more specific, efficient, and environmentally friendly. Mycotoxin-degrading enzymes can thus facilitate the safe and effective detoxification of mycotoxins which gives them a huge advantage over other methods. This article summarizes the newly discovered degrading enzymes that can degrade four common mycotoxins (aflatoxins, zearalenone, deoxynivalenol, and ochratoxin A) in the past five years, and reveals the degradation mechanism of degrading enzymes on four mycotoxins, as well as their positive effects on animal production. This review will provide a theoretical basis for the safe treatment of mycotoxins by using biological enzyme technology.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ziqi He
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Dongwei Xiong
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Miao Long
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
14
|
Kitwetch B, Rangseekaew P, Chromkaew Y, Pathom-Aree W, Srinuanpan S. Employing a Plant Probiotic Actinomycete for Growth Promotion of Lettuce ( Lactuca sativa L. var. longifolia) Cultivated in a Hydroponic System under Nutrient Limitation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3793. [PMID: 38005691 PMCID: PMC10675278 DOI: 10.3390/plants12223793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/28/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023]
Abstract
The consumption of lettuce is associated with an increased risk of ingesting nitrate, a naturally occurring and potentially harmful compound that can have adverse effects on human health. Hydroponic cultivation systems serve as effective tools for regulating nutrient solutions and nitrogen availability, which are essential for controlling nitrate levels. However, the techniques for reducing nutrient levels need to be appropriately calibrated based on lettuce growth responses and their interactions with the environment and growing conditions. Previous studies have demonstrated that plant probiotic actinomycetes can alleviate nutritional stress in various crops. However, there is a noticeable gap in research concerning the effects of actinomycetes on hydroponically grown lettuce, particularly under nutrient-limiting conditions. This study aimed to evaluate the effectiveness of the actinomycete Streptomyces thermocarboxydus S3 in enhancing lettuce growth in a nutrient-restricted hydroponic system. The results indicated that the detrimental effects of nutrient stress on lettuce were mitigated by the inoculation of lettuce with S. thermocarboxydus S3. This mitigation was evident in various growth parameters, including leaf count, shoot length, and the fresh and dry weights of both shoots and roots. In the presence of nutritional stress, S. thermocarboxydus S3 likely mitigated the negative effects on lettuce by reducing hydrogen peroxide levels, presumably through the synthesis of H2O2-scavenging enzymes. Furthermore, S. thermocarboxydus S3 successfully survived and colonized lettuce roots. Therefore, the inoculation of lettuce with S. thermocarboxydus S3 offers significant advantages for promoting lettuce growth in nutrient-limited hydroponic systems.
Collapse
Affiliation(s)
- Benyapa Kitwetch
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pharada Rangseekaew
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yupa Chromkaew
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Biorefinery and Bioprocess Engineering Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
15
|
Gari J, Abdella R. Degradation of zearalenone by microorganisms and enzymes. PeerJ 2023; 11:e15808. [PMID: 37601268 PMCID: PMC10434127 DOI: 10.7717/peerj.15808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Mycotoxins are toxic metabolites produced by fungi that may cause serious health problems in humans and animals. Zearalenone is a secondary metabolite produced by fungi of the genus Fusarium, widely exists in animal feed and human food. One concern with the use of microbial strains and their enzyme derivatives for zearalenone degradation is the potential variability in the effectiveness of the degradation process. The efficiency of degradation may depend on various factors such as the type and concentration of zearalenone, the properties of the microbial strains and enzymes, and the environmental conditions. Therefore, it is important to carefully evaluate the efficacy of these methods under different conditions and ensure their reproducibility. Another important consideration is the safety and potential side effects of using microbial strains and enzymes for zearalenone degradation. It is necessary to evaluate the potential risks associated with the use of genetically modified microorganisms or recombinant enzymes, including their potential impact on the environment and non-target organisms. Additionally, it is important to ensure that the degradation products are indeed harmless and do not pose any health risks to humans or animals. Furthermore, while the use of microbial strains and enzymes may offer an environmentally friendly and cost-effective solution for zearalenone degradation, it is important to explore other methods such as physical or chemical treatments as well. These methods may offer complementary approaches for zearalenone detoxification, and their combination with microbial or enzyme-based methods may improve overall efficacy. Overall, the research on the biodegradation of zearalenone using microorganisms and enzyme derivatives is promising, but there are important considerations that need to be addressed to ensure the safety and effectiveness of these methods. Development of recombinant enzymes improves enzymatic detoxification of zearalenone to a non-toxic product without damaging the nutritional content. This review summarizes biodegradation of zearalenone using microorganisms and enzyme derivatives to nontoxic products. Further research is needed to fully evaluate the potential of these methods for mitigating the impact of mycotoxins in food and feed.
Collapse
Affiliation(s)
- Jiregna Gari
- Department of Veterinary Laboratory Technology, Ambo University, Ambo, Oromia, Ethiopia
| | - Rahma Abdella
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
16
|
Statsyuk NV, Popletaeva SB, Shcherbakova LA. Post-Harvest Prevention of Fusariotoxin Contamination of Agricultural Products by Irreversible Microbial Biotransformation: Current Status and Prospects. BIOTECH 2023; 12:32. [PMID: 37218749 PMCID: PMC10204369 DOI: 10.3390/biotech12020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Biological degradation of mycotoxins is a promising environmentally-friendly alternative to chemical and physical detoxification methods. To date, a lot of microorganisms able to degrade them have been described; however, the number of studies determining degradation mechanisms and irreversibility of transformation, identifying resulting metabolites, and evaluating in vivo efficiency and safety of such biodegradation is significantly lower. At the same time, these data are crucial for the evaluation of the potential of the practical application of such microorganisms as mycotoxin-decontaminating agents or sources of mycotoxin-degrading enzymes. To date, there are no published reviews, which would be focused only on mycotoxin-degrading microorganisms with the proved irreversible transformation of these compounds into less toxic compounds. In this review, the existing information about microorganisms able to efficiently transform the three most common fusariotoxins (zearalenone, deoxinyvalenol, and fumonisin B1) is presented with allowance for the data on the corresponding irreversible transformation pathways, produced metabolites, and/or toxicity reduction. The recent data on the enzymes responsible for the irreversible transformation of these fusariotoxins are also presented, and the promising future trends in the studies in this area are discussed.
Collapse
Affiliation(s)
- Natalia V. Statsyuk
- All-Russian Research Institute of Phytopathology, 143050 Bolshie Vyazemy, Russia (L.A.S.)
| | | | | |
Collapse
|
17
|
Silva D, Rodrigues F, Lorena C, Borges PT, Martins LO. Biocatalysis for biorefineries: The case of dye-decolorizing peroxidases. Biotechnol Adv 2023; 65:108153. [PMID: 37044267 DOI: 10.1016/j.biotechadv.2023.108153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
Dye-decolorizing Peroxidases (DyPs) are heme-containing enzymes in fungi and bacteria that catalyze the reduction of hydrogen peroxide to water with concomitant oxidation of various substrates, including anthraquinone dyes, lignin-related phenolic and non-phenolic compounds, and metal ions. Investigation of DyPs has shed new light on peroxidases, one of the most extensively studied families of oxidoreductases; still, details of their microbial physiological role and catalytic mechanisms remain to be fully disclosed. They display a distinctive ferredoxin-like fold encompassing anti-parallel β-sheets and α-helices, and long conserved loops surround the heme pocket with a role in catalysis and stability. A tunnel routes H2O2 to the heme pocket, whereas binding sites for the reducing substrates are in cavities near the heme or close to distal aromatic residues at the surface. Variations in reactions, the role of catalytic residues, and mechanisms were observed among different classes of DyP. They were hypothetically related to the presence or absence of distal H2O molecules in the heme pocket. The engineering of DyPs for improved properties directed their biotechnological applications, primarily centered on treating textile effluents and degradation of other hazardous pollutants, to fields such as biosensors and valorization of lignin, the most abundant renewable aromatic polymer. In this review, we track recent research contributions that furthered our understanding of the activity, stability, and structural properties of DyPs and their biotechnological applications. Overall, the study of DyP-type peroxidases has significant implications for environmental sustainability and the development of new bio-based products and materials with improved end-of-life options via biodegradation and chemical recyclability, fostering the transition to a sustainable bio-based industry in the circular economy realm.
Collapse
Affiliation(s)
- Diogo Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - F Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Constança Lorena
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Patrícia T Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
18
|
Ge J, Wang X, Bai Y, Wang Y, Wang Y, Tu T, Qin X, Su X, Luo H, Yao B, Huang H, Zhang J. Engineering Escherichia coli for efficient assembly of heme proteins. Microb Cell Fact 2023; 22:59. [PMID: 36978060 PMCID: PMC10053478 DOI: 10.1186/s12934-023-02067-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Heme proteins, such as hemoglobin, horseradish peroxidase and cytochrome P450 (CYP) enzyme, are highly versatile and have widespread applications in the fields of food, healthcare, medical and biological analysis. As a cofactor, heme availability plays a pivotal role in proper folding and function of heme proteins. However, the functional production of heme proteins is usually challenging mainly due to the insufficient supply of intracellular heme. RESULTS Here, a versatile high-heme-producing Escherichia coli chassis was constructed for the efficient production of various high-value heme proteins. Initially, a heme-producing Komagataella phaffii strain was developed by reinforcing the C4 pathway-based heme synthetic route. Nevertheless, the analytical results revealed that most of the red compounds generated by the engineered K. phaffii strain were intermediates of heme synthesis which were unable to activate heme proteins. Subsequently, E. coli strain was selected as the host to develop heme-producing chassis. To fine-tune the C5 pathway-based heme synthetic route in E. coli, fifty-two recombinant strains harboring different combinations of heme synthesis genes were constructed. A high-heme-producing mutant Ec-M13 was obtained with negligible accumulation of intermediates. Then, the functional expression of three types of heme proteins including one dye-decolorizing peroxidase (Dyp), six oxygen-transport proteins (hemoglobin, myoglobin and leghemoglobin) and three CYP153A subfamily CYP enzymes was evaluated in Ec-M13. As expected, the assembly efficiencies of heme-bound Dyp and oxygen-transport proteins expressed in Ec-M13 were increased by 42.3-107.0% compared to those expressed in wild-type strain. The activities of Dyp and CYP enzymes were also significantly improved when expressed in Ec-M13. Finally, the whole-cell biocatalysts harboring three CYP enzymes were employed for nonanedioic acid production. High supply of intracellular heme could enhance the nonanedioic acid production by 1.8- to 6.5-fold. CONCLUSION High intracellular heme production was achieved in engineered E. coli without significant accumulation of heme synthesis intermediates. Functional expression of Dyp, hemoglobin, myoglobin, leghemoglobin and CYP enzymes was confirmed. Enhanced assembly efficiencies and activities of these heme proteins were observed. This work provides valuable guidance for constructing high-heme-producing cell factories. The developed mutant Ec-M13 could be employed as a versatile platform for the functional production of difficult-to-express heme proteins.
Collapse
Affiliation(s)
- Jianzhong Ge
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
19
|
Sun F, Yu D, Zhou H, Lin H, Yan Z, Wu A. CotA laccase from Bacillus licheniformis ZOM-1 effectively degrades zearalenone, aflatoxin B1 and alternariol. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Li K, Jia J, Xu Q, Wu N. Whole-genome sequencing and phylogenomic analyses of a novel zearalenone-degrading Bacillus subtilis B72. 3 Biotech 2023; 13:103. [PMID: 36866327 PMCID: PMC9971418 DOI: 10.1007/s13205-023-03517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
Bacillus strain B72 was previously isolated as a novel zearalenone (ZEN) degradation strain from the oil field soil in Xinjiang, China. The genome of B72 was sequenced with a 400 bp paired-end using the Illumina HiSeq X Ten platform. De novo genome assembly was performed using SOAPdenovo2 assemblers. Phylogenetic analysis using 16S rRNA gene sequencing demonstrated that B72 is closely related to the novel Bacillus subtilis (B. subtilis) strain DSM 10. A phylogenetic tree based on 31 housekeeping genes, constructed with 19 strains closest at the species level, showed that B72 was closely related to B. subtilis 168, B. licheniformis PT-9, and B. tequilensis KCTC 13622. Detailed phylogenomic analysis using average nucleotide identity (ANI) and genome-to-genome distance calculator (GGDC) demonstrated that B72 might be classified as a novel B. subtilis strain. Our study demonstrated that B72 could degrade 100% of ZEN in minimal medium after 8 h of incubation, which makes it the fastest degrading strain to date. Moreover, we confirmed that ZEN degradation by B72 might involve degrading enzymes produced during the initial period of bacterial growth. Subsequently, functional genome annotation revealed that the laccase-encoding genes yfiH (gene 1743) and cotA (gene 2671) might be related to ZEN degradation in B72. The genome sequence of B. subtilis B72 reported here will provide a reference for genomic research on ZEN degradation in the field of food and feed. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03517-y.
Collapse
Affiliation(s)
- Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Jianyao Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Na Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
- College of Life Sciences, Nanjing Normal University, Nanjing, 210046 China
| |
Collapse
|
21
|
Adegoke TV, Yang B, Xing F, Tian X, Wang G, Tai B, Si P, Hussain S, Jahan I. Microbial Enzymes Involved in the Biotransformation of Major Mycotoxins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:35-51. [PMID: 36573671 DOI: 10.1021/acs.jafc.2c06195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mycotoxins, the most researched biological toxins, can contaminate food and feed, resulting in severe health implications for humans and animals. Physical, chemical, and biological techniques are used to mitigate mycotoxin contamination. The biotransformation method using whole microbial cells or isolated enzymes is the best choice to mitigate mycotoxins. Using specific enzymes may avoid the disadvantages of utilizing a full microbe, such as accidental harm to the product's organoleptic characteristics and hazardous safety features. Moreover, the degradation rates of the isolated enzymes are higher than those of the whole-cell reactions, and they are substrate-specific. Their specificity is comprehensive and is shown at the positional and/or chiral center in many circumstances. Currently, only a few enzymes of microbial origin are commercially available. Therefore, there is a need to identify more novel enzymes of microbial origin that can mitigate mycotoxins. In this review, we conducted an in-depth summary of the microbial enzymes involved in the biotransformation of mycotoxins.
Collapse
Affiliation(s)
- Tosin Victor Adegoke
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bolei Yang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuguo Xing
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyu Tian
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gang Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bowen Tai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Peidong Si
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sarfaraz Hussain
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Israt Jahan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
22
|
Guo Y, Wang Y, Tang Y, Ma Q, Ji C, Zhao L. Combined in silico investigation and in vitro characterization of the zearalenone detoxification potential of dye-decolorizing peroxidase from Bacillus subtilis 168. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
23
|
Murtaza B, Li X, Dong L, Javed MT, Xu L, Saleemi MK, Li G, Jin B, Cui H, Ali A, Wang L, Xu Y. Microbial and enzymatic battle with food contaminant zearalenone (ZEN). Appl Microbiol Biotechnol 2022; 106:4353-4365. [PMID: 35705747 DOI: 10.1007/s00253-022-12009-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Zearalenone (ZEN) contamination of various foods and feeds is an important global problem. In some animals and humans, ZEN causes significant health issues in addition to massive economic losses, annually. Therefore, removal or degradation of the ZEN in foods and feeds is required to be done. The conventional physical and chemical methods have some serious issues including poor efficiency, decrease in nutritional value, palatability of feed, and use of costly equipment. Research examined microbes from diverse media for their ability to degrade zearalenone and other toxins, and the findings of several investigations revealed that enzymes produced from microbes play a significant role in the degradation of mycotoxins. In established bacterial hosts, genetically engineered technique was used to enhance heterologously produced degrading enzymes. Then, the bio-degradation of ZEN by the use of micro-organisms or their enzymes is much more advantageous and is close to nature and ecofriendly. Furthermore, an effort is made to put forward the work done by different scientists on the biodegradation of ZEN by the use of fungi, yeast, bacteria, and/or their enzymes to degrade the ZEN to non-toxic products. KEY POINTS: •Evolved microbial strains degraded ZEA more quickly •Different degrading properties were studied.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China.,Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | - Liming Dong
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | | | - Le Xu
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | | | - Gen Li
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Bowen Jin
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Huijing Cui
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Ashiq Ali
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China.,Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China. .,Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China.
| |
Collapse
|
24
|
Shinella oryzae sp. nov., a novel zearalenone-resistant bacterium isolated from rice paddy soil. Antonie van Leeuwenhoek 2022; 115:573-587. [DOI: 10.1007/s10482-022-01724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/27/2022] [Indexed: 10/18/2022]
|
25
|
Qin X, Xin Y, Zou J, Su X, Wang X, Wang Y, Zhang J, Tu T, Yao B, Luo H, Huang H. Efficient Degradation of Aflatoxin B 1 and Zearalenone by Laccase-like Multicopper Oxidase from Streptomyces thermocarboxydus in the Presence of Mediators. Toxins (Basel) 2021; 13:754. [PMID: 34822538 PMCID: PMC8621583 DOI: 10.3390/toxins13110754] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Multicopper oxidases (MCOs) are a diverse group of enzymes that could catalyze the oxidation of different xenobiotic compounds, with simultaneous reduction in oxygen to water. Aside from laccase, one member of the MCO superfamily has shown great potential in the biodegradation of mycotoxins; however, the mycotoxin degradation ability of other MCOs is uncertain. In this study, a novel MCO-encoding gene, StMCO, from Streptomyces thermocarboxydus, was identified, cloned, and heterologously expressed in Escherichia coli. The purified recombinant StMCO exhibited the characteristic blue color and bivalent copper ion-dependent enzyme activity. It was capable of oxidizing the model substrate ABTS, phenolic compound DMP, and azo dye RB5. Notably, StMCO could directly degrade aflatoxin B1 (AFB1) and zearalenone (ZEN) in the absence of mediators. Meanwhile, the presence of various lignin unit-derived natural mediators or ABTS could significantly accelerate the degradation of AFB1 and ZEN by StMCO. Furthermore, the biological toxicities of their corresponding degradation products, AFQ1 and 13-OH-ZEN-quinone, were remarkably decreased. Our findings suggested that efficient degradation of mycotoxins with mediators might be a common feature of the MCOs superfamily. In summary, the unique properties of MCOs make them good candidates for degrading multiple major mycotoxins in contaminated feed and food.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Q.); (Y.X.); (J.Z.); (X.S.); (X.W.); (Y.W.); (J.Z.); (T.T.); (B.Y.)
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Q.); (Y.X.); (J.Z.); (X.S.); (X.W.); (Y.W.); (J.Z.); (T.T.); (B.Y.)
| |
Collapse
|