1
|
Gutiérrez-Pozo M, Verheecke-Vaessen C, Kourmpetli S, Terry LA, Medina A. Effect of Temperature, Relative Humidity, and Incubation Time on the Mycotoxin Production by Fusarium spp. Responsible for Dry Rot in Potato Tubers. Toxins (Basel) 2024; 16:414. [PMID: 39453190 PMCID: PMC11511537 DOI: 10.3390/toxins16100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Potato is the fourth most consumed crop in the world. More than half of the crop is stored for three to nine months at cold temperatures (3-10 °C) for the fresh and seed market. One of the main causes of fresh potato waste in the retail supply chain is the processing of fungal and bacterial rots during storage. Dry rot is a fungal disease that mainly affects the potato crop during storage and is responsible for 1% of tuber losses in the UK. It is produced by Fusarium spp., such as Fusarium sambucinum and F. oxysporum, which can lead to the accumulation of mycotoxins in the potato tuber. Little is known about the impact of environmental factors on the accumulation of mycotoxins in potato tubers. Understanding the ecophysiology of these fungi is key to mitigating their occurrence under commercial storage conditions. Therefore, this work aimed to elucidate the effect of three different temperatures (5, 10, and 15 °C) and two different water activities (aw; 0.97, 0.99) on the ecophysiology and mycotoxin accumulation of F. sambucinum and F. oxysporum in a potato-based semi-synthetic medium. The mycotoxin accumulation was then studied in vivo, in potato tubers cultivated under organic farming conditions, stored for 40 days at 8.5 °C. Results showed that higher temperatures and aw enhanced fungal growth, lag time, and mycotoxin accumulation in vitro. Growth rate was 2 and 3.6 times higher when the temperature increased from 5 to 10 and 15 °C, respectively. Six different mycotoxins (T-2, HT-2, diacetoxyscirpenol, 15-acetoxyscirpenol, neosolaniol, and beauvericin) were detected in vitro and in vivo. T-2 was the most abundant mycotoxin detected in vitro, observing 106 ng of T-2/g media after 21 days of incubation at 10 °C and 0.99 aw. Due to the long period of time that potato tubers spend in storage, the fluctuations of environmental factors, such as temperature and relative humidity, could promote the development of fungal rot, as well as mycotoxin accumulation. This could result in important food and economic losses for the potato market and a threat to food safety.
Collapse
Affiliation(s)
- Maria Gutiérrez-Pozo
- Magan Centre of Applied Mycology, Cranfield University, Cranfield MK43 0AL, UK; (M.G.-P.); (C.V.-V.)
- Plant Science Laboratory, Cranfield University, Cranfield MK43 0AL, UK; (S.K.)
| | - Carol Verheecke-Vaessen
- Magan Centre of Applied Mycology, Cranfield University, Cranfield MK43 0AL, UK; (M.G.-P.); (C.V.-V.)
| | - Sofia Kourmpetli
- Plant Science Laboratory, Cranfield University, Cranfield MK43 0AL, UK; (S.K.)
| | - Leon A. Terry
- Plant Science Laboratory, Cranfield University, Cranfield MK43 0AL, UK; (S.K.)
| | - Angel Medina
- Magan Centre of Applied Mycology, Cranfield University, Cranfield MK43 0AL, UK; (M.G.-P.); (C.V.-V.)
| |
Collapse
|
2
|
Rodríguez CL, Strub C, Fontana A, Verheecke-Vaessen C, Durand N, Beugré C, Guehi T, Medina A, Schorr-Galindo S. Biocontrol activities of yeasts or lactic acid bacteria isolated from Robusta coffee against Aspergillus carbonarius growth and ochratoxin A production in vitro. Int J Food Microbiol 2024; 415:110638. [PMID: 38430685 DOI: 10.1016/j.ijfoodmicro.2024.110638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Biocontrol Agents (BCAs) can be an eco-friendly alternative to fungicides to reduce the contamination with mycotoxigenic fungi on coffee. In the present study, different strains of bacteria and yeasts were isolated from Ivorian Robusta coffee. Their ability to reduce fungal growth and Ochratoxin A (OTA) production during their confrontation against Aspergillus carbonarius was screened on solid media. Some strains were able to reduce growth and OTA production by 85 % and 90 % and were molecularly identified as two yeasts, Rhodosporidiobolus ruineniae and Meyerozyma caribbica. Subsequent tests on liquid media with A. carbonarius or solely with OTA revealed adhesion of R. ruineniae to the mycelium of A. carbonarius through Scanning Electron Microscopy, and an OTA adsorption efficiency of 50 %. For M. caribbica potential degradation of OTA after 24 h incubation was observed. Both yeasts could be potential BCAs good candidates for Ivorian Robusta coffee protection against A. carbonarius and OTA contamination.
Collapse
Affiliation(s)
- Claudia López Rodríguez
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France; Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, UK
| | - Caroline Strub
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France.
| | - Angélique Fontana
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France
| | | | - Noël Durand
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France; CIRAD, UMR Qualisud, F-34398 Montpellier, France
| | - Corinne Beugré
- Laboratory of Microbiology and Molecular Biology, Department of Food Science and Technology, University of Nangui Abrogoua, Abidjan, Cote d'Ivoire
| | - Tagro Guehi
- Laboratory of Microbiology and Molecular Biology, Department of Food Science and Technology, University of Nangui Abrogoua, Abidjan, Cote d'Ivoire
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, UK
| | - Sabine Schorr-Galindo
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France
| |
Collapse
|
3
|
Meneely J, Greer B, Kolawole O, Elliott C. T-2 and HT-2 Toxins: Toxicity, Occurrence and Analysis: A Review. Toxins (Basel) 2023; 15:481. [PMID: 37624238 PMCID: PMC10467144 DOI: 10.3390/toxins15080481] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
One of the major classes of mycotoxins posing serious hazards to humans and animals and potentially causing severe economic impact to the cereal industry are the trichothecenes, produced by many fungal genera. As such, indicative limits for the sum of T-2 and HT-2 were introduced in the European Union in 2013 and discussions are ongoing as to the establishment of maximum levels. This review provides a concise assessment of the existing understanding concerning the toxicological effects of T-2 and HT-2 in humans and animals, their biosynthetic pathways, occurrence, impact of climate change on their production and an evaluation of the analytical methods applied to their detection. This study highlights that the ecology of F. sporotrichioides and F. langsethiae as well as the influence of interacting environmental factors on their growth and activation of biosynthetic genes are still not fully understood. Predictive models of Fusarium growth and subsequent mycotoxin production would be beneficial in predicting the risk of contamination and thus aid early mitigation. With the likelihood of regulatory maximum limits being introduced, increased surveillance using rapid, on-site tests in addition to confirmatory methods will be required. allowing the industry to be proactive rather than reactive.
Collapse
Affiliation(s)
- Julie Meneely
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Brett Greer
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Oluwatobi Kolawole
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Christopher Elliott
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang 12120, Thailand
| |
Collapse
|
4
|
Erazo JG, Palacios SA, Veliz NA, Del Canto A, Plem S, Ramirez ML, Torres AM. Effect of Temperature, Water Activity and Incubation Time on Trichothecene Production by Fusarium cerealis Isolated from Durum Wheat Grains. Pathogens 2023; 12:736. [PMID: 37242406 PMCID: PMC10222493 DOI: 10.3390/pathogens12050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Fusarium cerealis is a causal agent of Fusarium Head Blight in wheat, and it produces both deoxynivalenol (DON) and nivalenol (NIV). Nevertheless, the effect of environmental factors on the growth and mycotoxin production of this species has not been studied so far. The objective of this study was to investigate the impact of environmental factors on the growth and mycotoxin production of F. cerealis strains. All strains were able to grow in a wide range of water activity (aW) and temperatures, but their mycotoxin production was influenced by strain and environmental factors. NIV was produced at high aW and temperatures, while optimal conditions for DON production were observed at low aW. Interestingly, some strains were able to simultaneously produce both toxins, which could pose a more significant risk for grain contamination.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adriana M. Torres
- Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto 5800, Argentina; (J.G.E.); (S.A.P.); (N.A.V.)
| |
Collapse
|