1
|
Moro CF, Nogueira FCS, Almeida CGM, Real-Guerra R, Dalberto PF, Bizarro CV, Ligabue-Braun R, Carlini CR. One enzyme, many faces: urease is also canatoxin. J Biomol Struct Dyn 2023; 41:10750-10761. [PMID: 36546698 DOI: 10.1080/07391102.2022.2158938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Ureases catalyze the hydrolysis of urea into carbamate and ammonia. Well-conserved proteins, most plant ureases are hexamers of a single chain subunit, like the most abundant isoform of the jack bean (Canavalia ensiformis) urease (JBU). Canatoxin (CNTX) was originally isolated from these seeds as a neurotoxic protein, and later characterized as an isoform of JBU with lower molecular mass and enzyme activity. Inactive CNTX oligomers form upon storage and stabilization of CNTX was achieved by treatment with low concentration of formaldehyde, avoiding its oligomerization. Here, nano-LC-MS/MS-based peptide analysis of CNTX revealed 804 amino acids identical to those of JBU's sequence (840 amino acids). De novo sequencing of CNTX revealed 15 different peptides containing substitution of amino acid residues, denoting CNTX as a product of a paralog gene of JBU. The MS/MS analysis of formaldehyde-treated CNTX showed that amino acid residues located at the trimer-trimer interface of JBU's hexamer were modified. The data confirmed that CNTX is an isoform of JBU and elucidated that stabilization by formaldehyde treatment occurs by modification of amino acids at the protein's surface that prevents the formation of the hexamer and of higher molecular mass inactive aggregates. HIGHLIGHTSCanatoxin (CNTX) is an isoform of jack bean urease (JBU, hexamer of 90 kDa chains)MS/MS sequencing of CNTX showed 804 amino acids identical in JBU (840 residues)Formaldehyde treatment of CNTX stabilizes its toxicity and avoids oligomerizationModified amino acid residues in CNTX are at the trimer-trimer interface of JBUCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Carlo Frederico Moro
- Graduate Program in Medicine and Health Sciences, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Fábio C S Nogueira
- Proteomics Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlos Gabriel Moreira Almeida
- Graduate Program in Medicine and Health Sciences, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rafael Real-Guerra
- Interdisciplinary Department, Universidade Federal do Rio Grande do Sul, Tramandaí, RS, Brazil
| | - Pedro Ferrari Dalberto
- Graduate Program in Cellular and Molecular Biology, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Cristiano V Bizarro
- Graduate Program in Cellular and Molecular Biology, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- National Institute of Science and Technology in Tuberculosis (INCT-TB), Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Celia R Carlini
- Brain Institute-Instituto do Cérebro do Rio Grande do Sul (INSCER), Porto Alegre, RS, Brazil
- National Institute of Science and Technology in Brain Diseases, Excitotoxity and Neuroprotection (INCT-EN), Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Barreto YC, Oliveira RS, Borges BT, Rosa ME, Zanatta AP, de Almeida CGM, Vinadé L, Carlini CR, Belo CAD. The neurotoxic mechanism of Jack Bean Urease in insects involves the interplay between octopaminergic and dopaminergic pathways. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105290. [PMID: 36549826 DOI: 10.1016/j.pestbp.2022.105290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
In the last decades, the entomotoxicity of JBU and its derived peptides became an object of study, due mainly to the ubiquitous interaction of these compounds with different species of insects and their potential as natural insecticides. In this work, we investigated the neurotoxic effects of JBU in Nauphoeta cinerea cockroaches by dissecting pharmacologically the monoaminergic pathways involved. Selective pharmacological modulators for monoaminergic pathways in in vivo and ex vivo experimental models were employed. Thus, the analysis of N. cinerea neurolocomotory behavior demonstrated that JBU (1.5 and 3 μg/g) induces a significant decrease in the exploratory activity. In these assays, pretreatment of animals with phentolamine, SCH23390 or reserpine, interfered significantly with the response of JBU. Using in vivo abductor metathoracic preparations JBU (1.5 μg/g) induced progressive neuromuscular blockade, in 120 min recordings. In this set of experiments, the previous treatment of the animals with phentolamine, SCH23390 or reserpine, completely inhibited JBU-induced neuromuscular blockade. The recordings of spontaneous compound neural action potentials in N. cinerea legs showed that JBU, only in the smallest dose, significantly decreased the number of potentials in 60 min recordings. When the animals were pretreated with phentolamine, SCH23390, or reserpine, but not with mianserin, there was a significant prevention of the JBU-inhibitory responses on the action potentials firing. Meanwhile, the treatment of the animals with mianserin did not affect JBU's inhibitory activity. The data presented in this work strongly suggest that the neurotoxic response of JBU in N. cinerea involves a cross talking between OCTOPAMIN-ergic and DOPAMIN-ergic nerve systems, but not the SEROTONIN-ergic neurotransmission. Further molecular biology studies with expression of insect receptors associated with voltage clamp techniques will help to discriminate the selectivity of JBU over the monoaminergic transmission.
Collapse
Affiliation(s)
- Yuri Correia Barreto
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Raquel Soares Oliveira
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Bruna Trindade Borges
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Maria Eduarda Rosa
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Ana Paula Zanatta
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Carlos Gabriel Moreira de Almeida
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde (PPGMCS), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lúcia Vinadé
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Celia Regina Carlini
- Brain Institute of Rio Grande do Sul (INSCER), Pontifícia Universidade Católica do Rio Grande de Sul, Porto Alegre, RS, Brazil
| | - Cháriston André Dal Belo
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica (PPGBTox), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil; Departamento Multidisciplinar, Escola Paulista de Política, Economia e Negócios (EPPEN), Universidade Federal de São Paulo (UNIFESP), Rua Angélica, 100, Jardim das Flores, 06110295, Osasco, SP, Brazil.
| |
Collapse
|
3
|
Grahl MVC, Lopes FC, Martinelli AHS, Carlini CR, Fruttero LL. Structure-Function Insights of Jaburetox and Soyuretox: Novel Intrinsically Disordered Polypeptides Derived from Plant Ureases. Molecules 2020; 25:molecules25225338. [PMID: 33207637 PMCID: PMC7696265 DOI: 10.3390/molecules25225338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/24/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) do not have a stable 3D structure but still have important biological activities. Jaburetox is a recombinant peptide derived from the jack bean (Canavalia ensiformis) urease and presents entomotoxic and antimicrobial actions. The structure of Jaburetox was elucidated using nuclear magnetic resonance which reveals it is an IDP with small amounts of secondary structure. Different approaches have demonstrated that Jaburetox acquires certain folding upon interaction with lipid membranes, a characteristic commonly found in other IDPs and usually important for their biological functions. Soyuretox, a recombinant peptide derived from the soybean (Glycine max) ubiquitous urease and homologous to Jaburetox, was also characterized for its biological activities and structural properties. Soyuretox is also an IDP, presenting more secondary structure in comparison with Jaburetox and similar entomotoxic and fungitoxic effects. Moreover, Soyuretox was found to be nontoxic to zebra fish, while Jaburetox was innocuous to mice and rats. This profile of toxicity affecting detrimental species without damaging mammals or the environment qualified them to be used in biotechnological applications. Both peptides were employed to develop transgenic crops and these plants were active against insects and nematodes, unveiling their immense potentiality for field applications.
Collapse
Affiliation(s)
- Matheus V. Coste Grahl
- Graduate Program in Medicine and Health Sciences, Brain Institute of Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, Brazil;
| | - Fernanda Cortez Lopes
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Building 43431, Porto Alegre CEP 91501-970, RS, Brazil;
| | - Anne H. Souza Martinelli
- Department of Biophysics & Deparment of Molecular Biology and Biotechnology-Biosciences Institute (IB), Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil;
| | - Celia R. Carlini
- Graduate Program in Medicine and Health Sciences, Brain Institute of Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, Brazil;
- Brain Institute and School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
- Correspondence: (C.R.C.); (L.L.F.); Tel.: +55-51-3320-3485 (C.R.C.); +54-351-535-3850 (L.L.F.)
| | - Leonardo L. Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba CP 5000, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba CP 5000, Argentina
- Correspondence: (C.R.C.); (L.L.F.); Tel.: +55-51-3320-3485 (C.R.C.); +54-351-535-3850 (L.L.F.)
| |
Collapse
|
4
|
Perin APA, Noronha MS, Moyetta NR, Coste Grahl MV, Fruttero LL, Staniscuaski F. Jaburetox, a urease-derived peptide: Effects on enzymatic pathways of the cockroach Nauphoeta cinerea. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21731. [PMID: 32761928 DOI: 10.1002/arch.21731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Jaburetox is a recombinant peptide derived from one of the Canavalia ensiformis urease isoforms. This peptide induces several toxic effects on insects of different orders, including interference on muscle contractility in cockroaches, modulation of UDP-N-acetylglucosamine pyrophosphorylase (UAP) and nitric oxide synthase (NOS) activities in the central nervous system of triatomines, as well as activation of the immune system in Rhodnius prolixus. When injected, the peptide is lethal for R. prolixus and Triatoma infestans. Here, we evaluated Jaburetox toxicity to Nauphoeta cinerea cockroaches, exploring the effects on the central nervous system through the activities of UAP, NOS, acid phosphatases (ACP), and acetylcholinesterase (AChE). The results indicated that N. cinerea is not susceptible to the lethal effect of the peptide. Moreover, both in vivo and in vitro treatments with Jaburetox inhibited NOS activity, without modifying the protein levels. No alterations on ACP activity were observed. In addition, the enzyme activity of UAP only had its activity affected at 18 hr after injection. The peptide increased the AChE activity, suggesting a mechanism involved in overcoming the toxic effects. In conclusion, our findings indicate that Jaburetox affects the nitrinergic signaling as well as the AChE and UAP activities and establishes N. cinerea as a Jaburetox-resistant model for future comparative studies.
Collapse
Affiliation(s)
- Ana P A Perin
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mila S Noronha
- Brain Institute (Instituto do Cérebro-INSCER), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Natalia R Moyetta
- Brain Institute (Instituto do Cérebro-INSCER), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Matheus V Coste Grahl
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo L Fruttero
- Brain Institute (Instituto do Cérebro-INSCER), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Staniscuaski
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Molecular Biology and Biotechnology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
5
|
Moyetta NR, Fruttero LL, Leyria J, Ramos FO, Carlini CR, Canavoso L. The entomotoxin Jack Bean Urease changes cathepsin D activity in nymphs of the hematophagous insect Dipetalogaster maxima (Hemiptera: Reduviidae). Comp Biochem Physiol B Biochem Mol Biol 2020; 251:110511. [PMID: 33007467 DOI: 10.1016/j.cbpb.2020.110511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 01/12/2023]
Abstract
In insects, cathepsin D is a lysosomal aspartic endopeptidase involved in several functions such as digestion, defense and reproduction. Jack Bean Urease (JBU) is the most abundant urease isoform obtained from the seeds of the plant Canavalia ensiformis. JBU is a multifunctional protein with entomotoxic effects unrelated to its catalytic activity, by mechanisms not yet fully understood. In this work, we employed nymphs of the hematophagous insect Dipetalogaster maxima as an experimental model in order to study the effects of JBU on D. maxima CatD (DmCatD). In insects without treatment, immunofluorescence assays revealed a conspicuous distribution pattern of DmCatD in the anterior and posterior midgut as well as in the fat body and hemocytes. Western blot assays showed that the active form of DmCatD was present in the fat body, the anterior and posterior midgut; whereas the proenzyme was visualized in hemocytes and hemolymph. The transcript of DmCatD and its enzymatic activity was detected in the anterior and posterior midgut as well as in fat body and hemocytes. JBU injections induced a significant increase of DmCatD activity in the posterior midgut (at 3 h post-injection) whereas in the hemolymph, such an effect was observed after 18 h. These changes were not correlated with modifications in DmCatD mRNA and protein levels or changes in the immunofluorescence pattern. In vitro experiments might suggest a direct effect of the toxin in DmCatD activity. Our findings indicated that the tissue-specific increment of cathepsin D activity is a novel effect of JBU in insects.
Collapse
Affiliation(s)
- Natalia R Moyetta
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, CP 5000, Argentina.
| | - Leonardo L Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, CP 5000, Argentina.
| | - Jimena Leyria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, CP 5000, Argentina.
| | - Fabian O Ramos
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, CP 5000, Argentina.
| | - Célia R Carlini
- Brain Institute (INSCER) and School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90610-000, Brazil.
| | - Lilián Canavoso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, CP 5000, Argentina.
| |
Collapse
|
6
|
Coste Grahl MV, Perin APA, Lopes FC, Porto BN, Uberti AF, Canavoso LE, Stanisçuaski F, Fruttero LL. The role of extracellular nucleic acids in the immune system modulation of Rhodnius prolixus (Hemiptera: Reduviidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104591. [PMID: 32527424 DOI: 10.1016/j.pestbp.2020.104591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/11/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Extracellular traps (ETs) are extracellular nucleic acids associated with cytoplasmic proteins that may aid in the capture and killing of pathogens. To date, only a few insects were shown to display this kind of immune response. Jaburetox, a peptide derived from jack bean urease, showed toxic effects in Rhodnius prolixus, affecting its immune response. The present study aims to evaluate the role of extracellular nucleic acids in R. prolixus' immune response, using Jaburetox as a model entomotoxin. The insects were treated with extracellular nucleic acids and/or Jaburetox, and the cellular and humoral responses were assessed. We also evaluated the release of extracellular nucleic acids induced by toxins, and performed immunocompetence assays using pathogenic bacteria. Our results demonstrated that extracellular nucleic acids can modulate the insect immune responses, either alone or associated with the toxin. Although RNA and DNA induced a cellular immune response, only DNA was able to neutralize the Jaburetox-induced aggregation of hemocytes. Likewise, the activation of the humoral response was different for RNA and DNA. Nevertheless, it was observed that both, extracellular DNA and RNA, immunocompensated the Jaburetox effects on insect defenses upon the challenge of a pathogenic bacterium. The toxin was not able to alter cellular viability, in spite of inducing an increase in the reactive species of oxygen formation. In conclusion, we have demonstrated a protective role for extracellular nucleic acids in R. prolixus´ immune response to toxins and pathogenic bacteria.
Collapse
Affiliation(s)
- Matheus V Coste Grahl
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Ana Paula A Perin
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Fernanda C Lopes
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Bárbara N Porto
- Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, Building 60, CEP 90610-000 Porto Alegre, Brazil.
| | - Augusto F Uberti
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, CEP 90610-000 Porto Alegre, Brazil.
| | - Lilian E Canavoso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| | - Fernanda Stanisçuaski
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, CEP 91501-970 Porto Alegre, RS, Brazil; Department of Molecular Biology and Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Leonardo L Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| |
Collapse
|
7
|
Sá CA, Vieira LR, Pereira Almeida Filho LC, Real-Guerra R, Lopes FC, Souza TM, Vasconcelos IM, Staniscuaski F, Carlini CR, Urano Carvalho AF, Farias DF. Risk assessment of the antifungal and insecticidal peptide Jaburetox and its parental protein the Jack bean (Canavalia ensiformis) urease. Food Chem Toxicol 2019; 136:110977. [PMID: 31759068 DOI: 10.1016/j.fct.2019.110977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/09/2023]
Abstract
Jaburetox (JBTX) is an insecticidal and antifungal peptide derived from jack bean (Canavalia ensiformis) urease that has been considered a candidate for developing genetically modified crops. This study aimed to perform the risk assessment of the peptide JBTX following the general recommendations of the two-tiered, weight-of-evidence approach proposed by International Life Sciences Institute. The urease of C. ensiformis (JBU) and its isoform JBURE IIb (the JBTX parental protein) were assessed. The history of safe use revealed no hazard reports for the studied proteins. The available information shows that JBTX possesses selective activity against insects and fungi. JBTX and JBU primary amino acids sequences showed no relevant similarity to toxic, antinutritional or allergenic proteins. Additionally, JBTX and JBU were susceptible to in vitro digestibility, and JBU was also susceptible to heat treatment. The results did not identify potential risks of adverse effects and reactions associated to JBTX. However, further allergen (e.g. serum IgE binding test) and toxicity (e.g. rodent toxicity tests) experimentation can be done to gather additional safety information on JBTX, and to meet regulatory inquiries for commercial approval of transgenic cultivars expressing this peptide.
Collapse
Affiliation(s)
- Chayenne Alves Sá
- Graduate Program in Biochemistry, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| | - Leonardo Rogério Vieira
- Graduate Program in Biochemistry, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| | | | - Rafael Real-Guerra
- Center for Coastal, Limnological and Marine Studies (CECLIMAR), Federal University of Rio Grande do Sul, 95625-000, Imbé, RS, Brazil; Interdisciplinary Department, Federal University of Rio Grande do Sul, 95625-000, Tramandaí, RS, Brazil
| | - Fernanda Cortez Lopes
- Center of Biotechnology and Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, 91501-970, Porto Alegre, Brazil
| | - Terezinha Maria Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Ilka Maria Vasconcelos
- Graduate Program in Biochemistry, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| | - Fernanda Staniscuaski
- Center of Biotechnology and Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, 91501-970, Porto Alegre, Brazil; Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, 91501-970, Porto Alegre, Brazil
| | - Célia Regina Carlini
- Center of Biotechnology and Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, 91501-970, Porto Alegre, Brazil; Brain Institute (Instituto do Cérebro-INSCER), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Building 63, CEP 90610-000, Porto Alegre, Brazil
| | - Ana Fontenele Urano Carvalho
- Graduate Program in Biochemistry, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil; Department of Biology, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| | - Davi Felipe Farias
- Graduate Program in Biochemistry, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil; Laboratory for Risk Assesment of Novel Technologies - LabRisk, Department of Molecular Biology, Federal University of Paraíba, 58051-900, João Pessoa, Brazil.
| |
Collapse
|
8
|
Kappaun K, Martinelli AHS, Broll V, Zambelli B, Lopes FC, Ligabue-Braun R, Fruttero LL, Moyetta NR, Bonan CD, Carlini CR, Ciurli S. Soyuretox, an Intrinsically Disordered Polypeptide Derived from Soybean (Glycine Max) Ubiquitous Urease with Potential Use as a Biopesticide. Int J Mol Sci 2019; 20:E5401. [PMID: 31671552 PMCID: PMC6862595 DOI: 10.3390/ijms20215401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
Ureases from different biological sources display non-ureolytic properties that contribute to plant defense, in addition to their classical enzymatic urea hydrolysis. Antifungal and entomotoxic effects were demonstrated for Jaburetox, an intrinsically disordered polypeptide derived from jack bean (Canavalia ensiformis) urease. Here we describe the properties of Soyuretox, a polypeptide derived from soybean (Glycine max) ubiquitous urease. Soyuretox was fungitoxic to Candida albicans, leading to the production of reactive oxygen species. Soyuretox further induced aggregation of Rhodnius prolixus hemocytes, indicating an interference on the insect immune response. No relevant toxicity of Soyuretox to zebrafish larvae was observed. These data suggest the presence of antifungal and entomotoxic portions of the amino acid sequences encompassing both Soyuretox and Jaburetox, despite their small sequence identity. Nuclear Magnetic Resonance (NMR) and circular dichroism (CD) spectroscopic data revealed that Soyuretox, in analogy with Jaburetox, possesses an intrinsic and largely disordered nature. Some folding is observed upon interaction of Soyuretox with sodium dodecyl sulfate (SDS) micelles, taken here as models for membranes. This observation suggests the possibility for this protein to modify its secondary structure upon interaction with the cells of the affected organisms, leading to alterations of membrane integrity. Altogether, Soyuretox can be considered a promising biopesticide for use in plant protection.
Collapse
Affiliation(s)
- Karine Kappaun
- Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
| | - Anne H S Martinelli
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
| | - Valquiria Broll
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy.
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy.
| | - Fernanda C Lopes
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
| | - Leonardo L Fruttero
- Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
- Department of Clinical Biochemistry, CIBICI-CONICET, Facultad de Ciencias Quimicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.
| | - Natalia R Moyetta
- Department of Clinical Biochemistry, CIBICI-CONICET, Facultad de Ciencias Quimicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.
| | - Carla D Bonan
- Department of Cellular and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 91501-970, RS, Brazil.
| | - Celia R Carlini
- Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
- Brain Institute-InsCer, Laboratory of Neurotoxins, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy.
| |
Collapse
|
9
|
Dos Santos DS, Zanatta AP, Martinelli AHS, Rosa ME, de Oliveira RS, Pinto PM, Peigneur S, Tytgat J, Orchard I, Lange AB, Carlini CR, Dal Belo CA. Jaburetox, a natural insecticide derived from Jack Bean Urease, activates voltage-gated sodium channels to modulate insect behavior. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:67-76. [PMID: 30744898 DOI: 10.1016/j.pestbp.2018.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/30/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
Jaburetox (Jbtx) is an insecticidal peptide derived from Canavalia ensiformis urease, whose mechanism of action is not completely elucidated. We employed behavioral, electromyographical and electrophysiological protocols to identify the cellular and molecular targets involved in the Jbtx entomotoxicity in cockroaches and locusts. In Nauphoeta cinerea, Jbtx (32 μg/g) altered the locomotory behaviour inducing a significative decrease in the distance travelled followed by a significant increase in stopped time (52 ± 85 cm and 2573 ± 89 s, p < .05, n = 40). Jbtx (8 to 32 μg/g body weight, respectively) also increased the leg and antennae grooming activities (p < .05, n = 40, respectively). Jbtx (8 to 16 μg/g) induced a maximum neuromuscular blockade of 80.72% (n = 6, p < .05) and was cardiotoxic, decreasing the cockroach heart rate. The electrophysiological profiles of both muscle and nerve of L. migratoria showed that Jbtx (2.5 × 10-7 and 2.5 × 10-3 μg/ body weight) induced a significant increase in the amplitude of nerve action potentials (n = 5, p < .05). Voltage clamp analysis of Jbtx (200 nM) applied in Xenopus laevis oocytes heterologously expressed with Nav 1.1 channels showed a significant increase in the sodium currents. In conclusion, this work revealed that the entomotoxic activity of Jbtx involves complex behavioral alterations that begins with an initial activation of voltage-gated sodium channels.
Collapse
Affiliation(s)
- Douglas Silva Dos Santos
- Graduate Program in Biological Sciences: Biochemical Toxicology, Federal University of Santa Maria-UFSM, Santa Maria, RS, Brazil; University of Toronto Mississauga-UTM, Department of Biology. Mississauga, ON, Canada
| | - Ana Paula Zanatta
- Graduate Program in Biological Sciences, Federal University of Pampa-UNIPAMPA, São Gabriel, RS, Brazil
| | - Anne Helene Souza Martinelli
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| | - Maria Eduarda Rosa
- Graduate Program in Biological Sciences, Federal University of Pampa-UNIPAMPA, São Gabriel, RS, Brazil
| | - Raquel Soares de Oliveira
- Graduate Program in Biological Sciences, Federal University of Pampa-UNIPAMPA, São Gabriel, RS, Brazil; University of Toronto Mississauga-UTM, Department of Biology. Mississauga, ON, Canada
| | - Paulo Marcos Pinto
- Graduate Program in Biological Sciences, Federal University of Pampa-UNIPAMPA, São Gabriel, RS, Brazil; Toxicology and Pharmacology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Steve Peigneur
- Toxicology and Pharmacology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ian Orchard
- University of Toronto Mississauga-UTM, Department of Biology. Mississauga, ON, Canada
| | - Angela B Lange
- University of Toronto Mississauga-UTM, Department of Biology. Mississauga, ON, Canada
| | - Celia R Carlini
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul, InsCer, PUCRS, Porto Alegre, RS, Brazil
| | - Cháriston A Dal Belo
- Graduate Program in Biological Sciences: Biochemical Toxicology, Federal University of Santa Maria-UFSM, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences, Federal University of Pampa-UNIPAMPA, São Gabriel, RS, Brazil.
| |
Collapse
|
10
|
Carrazoni T, Nguyen C, Maciel LF, Delgado-Cañedo A, Stewart BA, Lange AB, Dal Belo CA, Carlini CR, Orchard I. Jack bean urease modulates neurotransmitter release at insect neuromuscular junctions. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 146:63-70. [PMID: 29626993 DOI: 10.1016/j.pestbp.2018.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/09/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Plants have developed a vast range of mechanisms to compete with phytophagous insects, including entomotoxic proteins such as ureases. The legume Canavalia ensiformis produces several urease isoforms, of which the more abundant is called Jack Bean Urease (JBU). Previews work has demonstrated the potential insecticidal effects of JBU, by mechanisms so far not entirely elucidated. In this work, we investigated the mechanisms involved in the JBU-induced activity upon neurotransmitter release on insect neuromuscular junctions. METHODS Electrophysiological recordings of nerve and muscle action potentials, and calcium imaging bioassays were employed. RESULTS AND CONCLUSION JBU (0.28 mg/animal/day) in Locusta migratoria 2nd instar through feeding and injection did not induce lethality, although it did result in a reduction of 20% in the weight gain at the end of 168 h (n = 9, p ≤ 0.05). JBU (0.014 and 0.14 mg) injected direct into the locust hind leg induced a dose and time-dependent decrease in the amplitude of muscle action potentials, with a maximum decrease of 70% in the amplitude at the highest dose (n = 5, p ≤ 0.05). At the same doses JBU did not alter the amplitude of action potentials evoked from motor neurons. Using Drosophila 3rd instar larvae neuromuscular preparations, JBU (10-7 M) increased the occurrence of miniature Excitatory Junctional Potentials (mEJPs) in the presence of 1 mM CaCl2 (n = 5, p ≤ 0.05). In low calcium (0.4 mM) assays, JBU (10-7 M) was not able to modulate the occurrence of the events. In Ca2+-free conditions, with EGTA or CoCl2, JBU induced a significant decrease in the occurrence of mEPJs (n = 5, p ≤ 0.05). Injected into the 3rd abdominal ganglion of Nauphoeta cinerea cockroaches, JBU (1 μM) induced a significant increase in Ca2+ influx (n = 7, p ≤ 0.01), similar to that seen for high KCl (35 mM) condition. Taken together the results confirm a direct action of JBU upon insect neuromuscular junctions and possibly central synapses, probably by disrupting the calcium machinery in the pre-synaptic region of the neurons.
Collapse
Affiliation(s)
- Thiago Carrazoni
- Universidade Federal do Rio Grande do Sul, Graduate Program in Cell and Molecular Biology, Center of Biotechnology, Porto Alegre, RS, Brazil; University of Toronto Mississauga, Department of Biology, Mississauga, ON, Canada; Pontifícia Universidade Católica do Rio Grande de Sul, Brain Institute, Porto Alegre, RS, Brazil.
| | - Christine Nguyen
- University of Toronto Mississauga, Department of Biology, Mississauga, ON, Canada
| | - Lucas F Maciel
- Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | | | - Bryan A Stewart
- University of Toronto Mississauga, Department of Biology, Mississauga, ON, Canada
| | - Angela B Lange
- University of Toronto Mississauga, Department of Biology, Mississauga, ON, Canada
| | | | - Celia R Carlini
- Universidade Federal do Rio Grande do Sul, Graduate Program in Cell and Molecular Biology, Center of Biotechnology, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande de Sul, Brain Institute, Porto Alegre, RS, Brazil.
| | - Ian Orchard
- University of Toronto Mississauga, Department of Biology, Mississauga, ON, Canada.
| |
Collapse
|
11
|
Stahl E, Hilfiker O, Reymond P. Plant-arthropod interactions: who is the winner? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:703-728. [PMID: 29160609 DOI: 10.1111/tpj.13773] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 05/17/2023]
Abstract
Herbivorous arthropods have interacted with plants for millions of years. During feeding they release chemical cues that allow plants to detect the attack and mount an efficient defense response. A signaling cascade triggers the expression of hundreds of genes, which encode defensive proteins and enzymes for synthesis of toxic metabolites. This direct defense is often complemented by emission of volatiles that attract beneficial parasitoids. In return, arthropods have evolved strategies to interfere with plant defenses, either by producing effectors to inhibit detection and downstream signaling steps, or by adapting to their detrimental effect. In this review, we address the current knowledge on the molecular and chemical dialog between plants and herbivores, with an emphasis on co-evolutionary aspects.
Collapse
Affiliation(s)
- Elia Stahl
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Olivier Hilfiker
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| |
Collapse
|
12
|
Moyetta NR, Broll V, Perin APA, Uberti AF, Coste Grahl MV, Staniscuaski F, Carlini CR, Fruttero LL. Jaburetox-induced toxic effects on the hemocytes of Rhodnius prolixus (Hemiptera: Reduviidae). Comp Biochem Physiol C Toxicol Pharmacol 2017; 200:17-26. [PMID: 28602911 DOI: 10.1016/j.cbpc.2017.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 01/01/2023]
Abstract
Jaburetox is a recombinant peptide derived from a Canavalia ensiformis urease that presents toxic effects upon several species of insects, phytopathogenic fungi and yeasts of medical importance. So far, no toxicity of Jaburetox to mammals has been shown. Previous reports have identified biochemical targets of this toxic peptide in insect models, although its mechanism of action is not completely understood. In this work, we aimed to characterize the effects of Jaburetox in hemolymphatic insect cells. For this purpose, the model insect and Chagas' disease vector Rhodnius prolixus was used. In vivo and in vitro experiments indicated that Jaburetox interacts with a subset of hemocytes and it can be found in various subcellular compartments. In insects injected with Jaburetox there was an increase in the gene expression of the enzymes UDP-N-acetylglucosamine pyrophosphorylase (UAP), chitin synthase and nitric oxide synthase (NOS). Nevertheless, the expression of NOS protein, the enzyme activities of UAP and acid phosphatase (a possible link between UAP and NOS) as well as the phosphorylation state of proteins remained unchanged upon the in vivo Jaburetox treatment. Nitric oxide (NO) imaging using fluorescent probes showed that Jaburetox augmented NO production in the hemocyte aggregates when compared to controls. Even though Jaburetox activated the hemocytes, as demonstrated by wheat germ agglutinin binding assays, the peptide did not lead to an increase of their phagocytic behavior. Taken together, these findings contribute to our understanding of toxic effects of Jaburetox, a peptide with biotechnological applications and a prospective tool for rational insect control.
Collapse
Affiliation(s)
- Natalia R Moyetta
- Brain Institute (Instituto do Cérebro-INSCER), Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, prédio 63, CEP 90610-000 Porto Alegre, RS, Brazil
| | - Valquiria Broll
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, prédio 43431, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Ana Paula A Perin
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, prédio 43431, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Augusto F Uberti
- Brain Institute (Instituto do Cérebro-INSCER), Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, prédio 63, CEP 90610-000 Porto Alegre, RS, Brazil
| | - Matheus V Coste Grahl
- Brain Institute (Instituto do Cérebro-INSCER), Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, prédio 63, CEP 90610-000 Porto Alegre, RS, Brazil
| | - Fernanda Staniscuaski
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, prédio 43431, CEP 91501-970 Porto Alegre, RS, Brazil; Department of Molecular Biology and Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, prédio 43431, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Celia R Carlini
- Brain Institute (Instituto do Cérebro-INSCER), Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, prédio 63, CEP 90610-000 Porto Alegre, RS, Brazil; Department of Molecular Biology and Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, prédio 43431, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Leonardo L Fruttero
- Brain Institute (Instituto do Cérebro-INSCER), Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, prédio 63, CEP 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Pogorilyi RP, Pylypchuk I, Melnyk IV, Zub YL, Seisenbaeva GA, Kessler VG. Sol-Gel Derived Adsorbents with Enzymatic and Complexonate Functions for Complex Water Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E298. [PMID: 28956812 PMCID: PMC5666463 DOI: 10.3390/nano7100298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022]
Abstract
Sol-gel technology is a versatile tool for preparation of complex silica-based materials with targeting functions for use as adsorbents in water purification. Most efficient removal of organic pollutants is achieved by using enzymatic reagents grafted on nano-carriers. However, enzymes are easily deactivated in the presence of heavy metal cations. In this work, we avoided inactivation of immobilized urease by Cu (II) and Cd (II) ions using magnetic nanoparticles provided with additional complexonate (diethylene triamine pentaacetic acid or DTPA) functions. Obtained nanomaterials were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). According to TGA, the obtained Fe₃O₄/SiO₂-NH₂-DTPA nanoadsorbents contained up to 0.401 mmol/g of DTPA groups. In the concentration range Ceq = 0-50 mmol/L, maximum adsorption capacities towards Cu (II) and Cd (II) ions were 1.1 mmol/g and 1.7 mmol/g, respectively. Langmuir adsorption model fits experimental data in concentration range Ceq = 0-10 mmol/L. The adsorption mechanisms have been evaluated for both of cations. Crosslinking of 5 wt % of immobilized urease with glutaraldehyde prevented the loss of the enzyme in repeated use of the adsorbent and improved the stability of the enzymatic function leading to unchanged activity in at least 18 cycles. Crosslinking of 10 wt % urease on the surface of the particles allowed a decrease in urea concentration in 20 mmol/L model solutions to 2 mmol/L in up to 10 consequent decomposition cycles. Due to the presence of DTPA groups, Cu2+ ions in concentration 1 µmol/L did not significantly affect the urease activity. Obtained magnetic Fe₃O₄/SiO₂-NH₂-DTPA-Urease nanocomposite sorbents revealed a high potential for urease decomposition, even in presence of heavy metal ions.
Collapse
Affiliation(s)
- Roman P Pogorilyi
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17, General Naumov Street, 03164 Kyiv, Ukraine.
| | - Ievgen Pylypchuk
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17, General Naumov Street, 03164 Kyiv, Ukraine.
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden.
| | - Inna V Melnyk
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17, General Naumov Street, 03164 Kyiv, Ukraine.
| | - Yurii L Zub
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17, General Naumov Street, 03164 Kyiv, Ukraine.
| | - Gulaim A Seisenbaeva
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden.
| | - Vadim G Kessler
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden.
| |
Collapse
|
14
|
Fruttero LL, Moyetta NR, Krug MS, Broll V, Grahl MVC, Real-Guerra R, Stanisçuaski F, Carlini CR. Jaburetox affects gene expression and enzyme activities in Rhodnius prolixus, a Chagas' disease vector. Acta Trop 2017; 168:54-63. [PMID: 28108369 DOI: 10.1016/j.actatropica.2017.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/18/2022]
Abstract
Jaburetox, a recombinant peptide of ∼11kDa derived from one of the Canavalia ensiformis (Jack Bean) urease isoforms, is toxic and lethal to insects belonging to different orders when administered orally or via injection. Previous findings indicated that Jaburetox acts on insects in a complex fashion, inhibiting diuresis and the transmembrane potential of Malpighian tubules, interfering with muscle contractility and affecting the immune system. In vitro, Jaburetox forms ionic channels and alters permeability of artificial lipid membranes. Moreover, recent data suggested that the central nervous system (CNS) is a target organ for ureases and Jaburetox. In this work, we employed biochemical, molecular and cellular approaches to explore the mode of action of Jaburetox using Rhodnius prolixus, one of the main Chagas' disease vectors, as experimental model. In vitro incubations with fluorescently labeled Jaburetox indicated a high affinity of the peptide for the CNS but not for salivary glands (SG). The in vitro treatment of CNS or SG homogenates with Jaburetox partially inhibited the activity of nitric oxide synthase (NOS), thus disrupting nitrinergic signaling. This inhibitory effect was also observed in vivo (by feeding) for CNS but not for SG, implying differential modulation of NOS in these organs. The inhibition of NOS activity did not correlate to a decrease in expression of its mRNA, as assessed by qPCR. UDP-N-acetylglucosamine pyrophosphorylase (UAP), a key enzyme in chitin synthesis and glycosylation pathways and a known target of Jaburetox in insect CNS, was also affected in SG, with activation of the enzyme seen after both in vivo or in vitro treatments with the peptide. Unexpectedly, incubation of Jaburetox with a recombinant R. prolixus UAP had no effect on its activity, implying that the enzyme's modulation by the peptide requires the participation of other factor(s) present in CNS or SG homogenates. Feeding Jaburetox to R. prolixus decreased the mRNA levels of UAP and chitin synthase, indicating a complex regulation exerted by the peptide on these enzymes. No changes were observed upon Jaburetox treatment in vivo and in vitro on the activity of the enzyme acid phosphatase, a possible link between UAP and NOS. Here we have demonstrated for the first time that the Jaburetox induces changes in gene expression and that SG are another target for the toxic action of the peptide. Taken together, these findings contribute to a better understanding of the mechanism of action of Jaburetox as well as to the knowledge on basic aspects of the biochemistry and neurophysiology of insects, and might help in the development of optimized strategies for insect control.
Collapse
Affiliation(s)
- Leonardo L Fruttero
- Brain Institute (Instituto do Cérebro-INSCER), Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, prédio 63, CEP 90610-000, Porto Alegre, Rio Grande do Sul, Brazil; Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, prédio 43431, CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Natalia R Moyetta
- Brain Institute (Instituto do Cérebro-INSCER), Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, prédio 63, CEP 90610-000, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Monique Siebra Krug
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, prédio 43431, CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Valquiria Broll
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, prédio 43431, CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Matheus V Coste Grahl
- Brain Institute (Instituto do Cérebro-INSCER), Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, prédio 63, CEP 90610-000, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Rafael Real-Guerra
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, prédio 43431, CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Fernanda Stanisçuaski
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, prédio 43431, CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil; Department of Molecular Biology and Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, prédio 43431, CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Celia R Carlini
- Brain Institute (Instituto do Cérebro-INSCER), Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, prédio 63, CEP 90610-000, Porto Alegre, Rio Grande do Sul, Brazil; Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, prédio 43431, CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
15
|
Martinelli AH, Lopes FC, Broll V, Defferrari MS, Ligabue-Braun R, Kappaun K, Tichota DM, Fruttero LL, Moyetta NR, Demartini DR, Postal M, Medeiros-Silva M, Becker-Ritt AB, Pasquali G, Carlini CR. Soybean ubiquitous urease with purification facilitator: An addition to the moonlighting studies toolbox. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Alzogaray RA, Zerba EN. Rhodnius prolixus intoxicated. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:93-113. [PMID: 27113321 DOI: 10.1016/j.jinsphys.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/08/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
Rhodnius prolixus (Hemiptera: Reduviidae) is a hematophagous insect native from South America. By the end of the 20th century, it was one of the main vectors of Chagas disease in Venezuela, Colombia, several Central American countries and southern Mexico. The aim of the present article is to review the literature regarding R. prolixus toxicology. British entomologist Vincent B. Wigglesworth carried out the first studies on this subject over seventy years ago. A wide bibliographical search allowed to locate one hundred and thirty scientific articles describing the effects of different insecticides on R. prolixus. About one-third of these articles report the acute toxicity and/or sublethal effects produced by the main synthetic neurotoxic families of insecticides (organochlorines, organophosphates, carbamates and pyrethroids). Only a couple of these studies have regarded the toxicokinetics or toxicodynamics of these insecticides. Insect growth or development disruptors, such as juvenoids, chitin synthesis inhibitors, precocenes, azadirachtin and lignoids, have been thoroughly studied in R. prolixus. Important aspects on the mode of action of ureases were also described in this species. By the end of the 1960's, resistance to insecticides was detected in R. prolixus from Venezuela. Some years later, the existence of pyrethroid-resistant individuals was also reported. Control programmes for R. prolixus in countries where Chagas is endemic have only used synthetic neurotoxic insecticides. In 2011, Central America and southern Mexico were declared free of this insect. The recent sequencing of the R. prolixus genome will provide valuable information to understand the molecular basis of insecticide resistance in this species.
Collapse
Affiliation(s)
- Raúl A Alzogaray
- UNIDEF, CITEDEF, CONICET, CIPEIN, Villa Martelli, Argentina; Instituto de Investigación e Ingeniería Ambiental (3IA), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| | - Eduardo N Zerba
- UNIDEF, CITEDEF, CONICET, CIPEIN, Villa Martelli, Argentina; Instituto de Investigación e Ingeniería Ambiental (3IA), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
17
|
Carrazoni T, de Avila Heberle M, Perin APA, Zanatta AP, Rodrigues PV, dos Santos FDM, de Almeida CGM, Vaz Breda R, dos Santos DS, Pinto PM, da Costa JC, Carlini CR, Dal Belo CA. Central and peripheral neurotoxicity induced by the Jack Bean Urease (JBU) in Nauphoeta cinerea cockroaches. Toxicology 2016; 368-369:162-171. [DOI: 10.1016/j.tox.2016.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/28/2016] [Accepted: 09/14/2016] [Indexed: 11/29/2022]
|
18
|
Fruttero LL, Moyetta NR, Uberti AF, Grahl MVC, Lopes FC, Broll V, Feder D, Carlini CR. Humoral and cellular immune responses induced by the urease-derived peptide Jaburetox in the model organism Rhodnius prolixus. Parasit Vectors 2016; 9:412. [PMID: 27455853 PMCID: PMC4960889 DOI: 10.1186/s13071-016-1710-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the entomotoxicity of plant ureases has been reported almost 20 years ago, their insecticidal mechanism of action is still not well understood. Jaburetox is a recombinant peptide derived from one of the isoforms of Canavalia ensiformis (Jack Bean) urease that presents biotechnological interest since it is toxic to insects of different orders. Previous studies of our group using the Chagas disease vector and model insect Rhodnius prolixus showed that the treatment with Jack Bean Urease (JBU) led to hemocyte aggregation and hemolymph darkening, among other effects. In this work, we employed cell biology and biochemical approaches to investigate whether Jaburetox would induce not only cellular but also humoral immune responses in this species. RESULTS The findings indicated that nanomolar doses of Jaburetox triggered cation-dependent, in vitro aggregation of hemocytes of fifth-instar nymphs and adults. The use of specific eicosanoid synthesis inhibitors revealed that the cellular immune response required cyclooxygenase products since indomethacin prevented the Jaburetox-dependent aggregation whereas baicalein and esculetin (inhibitors of the lipoxygenases pathway) did not. Cultured hemocytes incubated with Jaburetox for 24 h showed cytoskeleton disorganization, chromatin condensation and were positive for activated caspase 3, an apoptosis marker, although their phagocytic activity remained unchanged. Finally, in vivo treatments by injection of Jaburetox induced both a cellular response, as observed by hemocyte aggregation, and a humoral response, as seen by the increase of spontaneous phenoloxidase activity, a key enzyme involved in melanization and defense. On the other hand, the humoral response elicited by Jaburetox injections did not lead to an increment of antibacterial or lysozyme activities. Jaburetox injections also impaired the clearance of the pathogenic bacteria Staphylococcus aureus from the hemolymph leading to increased mortality, indicating a possible immunosuppression induced by treatment with the peptide. CONCLUSIONS In our experimental conditions and as part of its toxic action, Jaburetox activates some responses of the immune system of R. prolixus both in vivo and in vitro, although this induction does not protect the insects against posterior bacterial infections. Taken together, these findings contribute to the general knowledge of insect immunity and shed light on Jaburetox's mechanism of action.
Collapse
Affiliation(s)
- Leonardo L Fruttero
- Brain Institute (INSCER) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Instituto do Cérebro (InsCer) - Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, prédio 63, CEP 90610-000, Porto Alegre, RS, Brazil.
| | - Natalia R Moyetta
- Brain Institute (INSCER) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Augusto F Uberti
- Brain Institute (INSCER) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Matheus V Coste Grahl
- Brain Institute (INSCER) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda C Lopes
- Brain Institute (INSCER) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Valquiria Broll
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Denise Feder
- Department of General Biology l, Insect Biology Laboratory, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Celia R Carlini
- Brain Institute (INSCER) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Biophysics, Biosciences Institute (IB), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Meyer M, Huttenlocher F, Cedzich A, Procopio S, Stroeder J, Pau-Roblot C, Lequart-Pillon M, Pelloux J, Stintzi A, Schaller A. The subtilisin-like protease SBT3 contributes to insect resistance in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4325-38. [PMID: 27259555 PMCID: PMC5301937 DOI: 10.1093/jxb/erw220] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Subtilisin-like proteases (SBTs) constitute a large family of extracellular plant proteases, the function of which is still largely unknown. In tomato plants, the expression of SBT3 was found to be induced in response to wounding and insect attack in injured leaves but not in healthy systemic tissues. The time course of SBT3 induction resembled that of proteinase inhibitor II and other late wound response genes suggesting a role for SBT3 in herbivore defense. Consistent with such a role, larvae of the specialist herbivore Manduca sexta performed better on transgenic plants silenced for SBT3 expression (SBT3-SI). Supporting a contribution of SBT3 to systemic wound signaling, systemic induction of late wound response genes was attenuated in SBT3-SI plants. The partial loss of insect resistance may thus be explained by a reduction in systemic defense gene expression. Alternatively, SBT3 may play a post-ingestive role in plant defense. Similar to other anti-nutritive proteins, SBT3 was found to be stable and active in the insect's digestive system, where it may act on unidentified proteins of insect or plant origin. Finally, a reduction in the level of pectin methylesterification that was observed in transgenic plants with altered levels of SBT3 expression suggested an involvement of SBT3 in the regulation of pectin methylesterases (PMEs). While such a role has been described in other systems, PME activity and the degree of pectin methylesterification did not correlate with the level of insect resistance in SBT3-SI and SBT3 overexpressing plants and are thus unrelated to the observed resistance phenotype.
Collapse
Affiliation(s)
- Michael Meyer
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Franziska Huttenlocher
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Anna Cedzich
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Susanne Procopio
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Jasper Stroeder
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Corinne Pau-Roblot
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie, 80039 Amiens, France
| | - Michelle Lequart-Pillon
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie, 80039 Amiens, France
| | - Jérôme Pelloux
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie, 80039 Amiens, France
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
20
|
Effect of the urease-derived peptide Jaburetox on the central nervous system of Triatoma infestans (Insecta: Heteroptera). Biochim Biophys Acta Gen Subj 2015; 1850:255-62. [DOI: 10.1016/j.bbagen.2014.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/31/2014] [Accepted: 11/07/2014] [Indexed: 01/15/2023]
|
21
|
Medeiros-Silva M, Franck WL, Borba MP, Pizzato SB, Strodtman KN, Emerich DW, Stacey G, Polacco JC, Carlini CR. Soybean ureases, but not that of Bradyrhizobium japonicum, are involved in the process of soybean root nodulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3517-24. [PMID: 24716625 DOI: 10.1021/jf5000612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ureases are abundant in plants, bacteria, and in the soil, but their role in signaling between soybean and soil microorganisms has not been investigated. The bacterium Bradyrhizobium japonicum forms nitrogen-fixing nodules on soybean roots. Here, we evaluated the role(s) of ureases in the process of soybean nodulation. Chemotaxis assays demonstrated that soybean and jack bean ureases were more chemotactic toward bacterial cells than the corresponding plant lectins. The eu1-a,eu4 soybean, deficient in urease isoforms, formed fewer but larger nodules than the wild-type, regardless of the bacterial urease phenotype. Leghemoglobin production in wild-type plants was higher and peaked earlier than in urease-deficient plants. Inhibition of urease activity in wild-type plants did not result in the alterations seen in mutated plants. We conclude that soybean urease(s) play(s) a role in the soybean-B. japonicum symbiosis, which is independent of its ureolytic activity. Bacterial urease does not play a role in nodulation.
Collapse
Affiliation(s)
- Mônica Medeiros-Silva
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology and #Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul CEP 91501-970, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Martinelli AH, Kappaun K, Ligabue-Braun R, Defferrari MS, Piovesan AR, Stanisçuaski F, Demartini DR, Dal Belo CA, Almeida CG, Follmer C, Verli H, Carlini CR, Pasquali G. Structure–function studies on jaburetox, a recombinant insecticidal peptide derived from jack bean (Canavalia ensiformis) urease. Biochim Biophys Acta Gen Subj 2014; 1840:935-44. [DOI: 10.1016/j.bbagen.2013.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 11/02/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
|
23
|
Piovesan AR, Martinelli AHS, Ligabue-Braun R, Schwartz JL, Carlini CR. Canavalia ensiformis urease, Jaburetox and derived peptides form ion channels in planar lipid bilayers. Arch Biochem Biophys 2014; 547:6-17. [PMID: 24583269 DOI: 10.1016/j.abb.2014.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/22/2023]
Abstract
Ureases catalyze the hydrolysis of urea into NH3 and CO2. They are synthesized by plants, fungi and bacteria but not by animals. Ureases display biological activities unrelated to their enzymatic activity, i.e., platelet and neutrophil activation, fungus inhibition and insecticidal effect. Urease from Canavalia ensiformis (jack bean) is toxic to several hemipteran and coleopteran insects. Jaburetox is an insecticidal fragment derived from jack bean urease. Among other effects, Jaburetox has been shown to interact with lipid vesicles. In this work, the ion channel activity of C. ensiformis urease, Jaburetox and three deletion mutants of Jaburetox (one lacking the N-terminal region, one lacking the C-terminal region and one missing the central β-hairpin) were tested on planar lipid bilayers. All proteins formed well resolved, highly cation-selective channels exhibiting two conducting states whose conductance ranges were 7-18pS and 32-79pS, respectively. Urease and the N-terminal mutant of Jaburetox were more active at negative potentials, while the channels of the other peptides did not display voltage-dependence. This is the first direct demonstration of the capacity of C. ensiformis urease and Jaburetox to permeabilize membranes through an ion channel-based mechanism, which may be a crucial step of their diverse biological activities, including host defense.
Collapse
Affiliation(s)
- Angela R Piovesan
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil
| | - Anne H S Martinelli
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil; Department of Biophysics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil
| | - Rodrigo Ligabue-Braun
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil
| | - Jean-Louis Schwartz
- Groupe d'étude des protéines membranaires (GÉPROM, FQR-S) and Department of Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada; Centre SÈVE (FQR-NT), Université de Sherbrooke, Sherbrooke, Quebec J1K 2R, Canada.
| | - Celia R Carlini
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil; Department of Biophysics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil.
| |
Collapse
|
24
|
Defferrari MS, da Silva R, Orchard I, Carlini CR. Jack bean (Canavalia ensiformis) urease induces eicosanoid-modulated hemocyte aggregation in the Chagas' disease vector Rhodnius prolixus. Toxicon 2014; 82:18-25. [PMID: 24561121 DOI: 10.1016/j.toxicon.2014.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/29/2014] [Accepted: 02/04/2014] [Indexed: 12/25/2022]
Abstract
Ureases are multifunctional proteins that display biological activities independently of their enzymatic function, such as induction of exocytosis and insecticidal effects. Rhodnius prolixus, a major vector of Chagas' disease, is a model for studies on the entomotoxicity of jack bean urease (JBU). We have previously shown that JBU induces the production of eicosanoids in isolated tissues of R. prolixus. In insects, the immune response comprises cellular and humoral reactions, and is centrally modulated by eicosanoids. Cyclooxygenase products signal immunity in insects, mainly cellular reactions, such as hemocyte aggregation. In searching for a link between JBU's toxic effects and immune reactions in insects, we have studied the effects of this toxin on R. prolixus hemocytes. JBU triggers aggregation of hemocytes after injection into the hemocoel and when applied to isolated cells. On in vitro assays, the eicosanoid synthesis inhibitors dexamethasone (phospholipase A2 indirect inhibitor) and indomethacin (cyclooxygenase inhibitor) counteracted JBU's effect, indicating that eicosanoids, more specifically cyclooxygenase products, are likely to mediate the aggregation response. Contrarily, the inhibitors esculetin and baicalein were inactive, suggesting that lipoxygenase products are not involved in JBU's effect. Extracellular calcium was also necessary for JBU's effect, in agreement to other cell models responsive to ureases. A progressive darkening of the medium of JBU-treated hemocytes was observed, suggestive of a humoral response. JBU was immunolocalized in the cultured cells upon treatment along with cytoskeleton damage. The highest concentration of JBU tested on cultured cells also led to nuclei aggregation of adherent hemocytes. This is the first time urease has been shown to affect insect hemocytes, contributing to our understanding of the entomotoxic mechanisms of action of this protein.
Collapse
Affiliation(s)
- M S Defferrari
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - R da Silva
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| | - I Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - C R Carlini
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto do Cérebro - InsCer, Pontificia Universidade Católica do Rio Grande do Sul, and Department of Biophysics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
25
|
A phospholipase A2 gene is linked to Jack bean urease toxicity in the Chagas' disease vector Rhodnius prolixus. Biochim Biophys Acta Gen Subj 2014; 1840:396-405. [DOI: 10.1016/j.bbagen.2013.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 07/26/2013] [Accepted: 09/11/2013] [Indexed: 01/10/2023]
|
26
|
Real-Guerra R, Carlini CR, Stanisçuaski F. Role of lysine and acidic amino acid residues on the insecticidal activity of Jackbean urease. Toxicon 2013; 71:76-83. [DOI: 10.1016/j.toxicon.2013.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 05/04/2013] [Accepted: 05/14/2013] [Indexed: 01/10/2023]
|
27
|
Ligabue-Braun R, Andreis FC, Verli H, Carlini CR. 3-to-1: unraveling structural transitions in ureases. Naturwissenschaften 2013; 100:459-67. [PMID: 23619940 DOI: 10.1007/s00114-013-1045-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/05/2013] [Accepted: 04/05/2013] [Indexed: 01/08/2023]
Abstract
Ureases are nickel-dependent enzymes which catalyze the hydrolysis of urea to ammonia and carbamate. Despite the apparent wealth of data on ureases, many crucial aspects regarding these enzymes are still unknown, or constitute matter for ongoing debates. One of these is most certainly their structural organization: ureases from plants and fungi have a single unit, while bacterial and archaean ones have three-chained structures. However, the primitive state of these proteins--single- or three-chained--is yet unknown, despite many efforts in the field. Through phylogenetic inference using three different datasets and two different algorithms, we were able to observe chain number transitions displayed in a 3-to-1 fashion. Our results imply that the ancestral state for ureases is the three-chained organization, with single-chained ureases deriving from them. The two-chained variants are not evolutionary intermediates. A fusion process, different from those already studied, may explain this structural transition.
Collapse
Affiliation(s)
- Rodrigo Ligabue-Braun
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | | | | | | |
Collapse
|
28
|
Postal M, Martinelli AHS, Becker-Ritt AB, Ligabue-Braun R, Demartini DR, Ribeiro SFF, Pasquali G, Gomes VM, Carlini CR. Antifungal properties of Canavalia ensiformis urease and derived peptides. Peptides 2012; 38:22-32. [PMID: 22922160 DOI: 10.1016/j.peptides.2012.08.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/12/2012] [Accepted: 08/13/2012] [Indexed: 12/23/2022]
Abstract
Ureases (EC 3.5.1.5) are metalloenzymes that hydrolyze urea into ammonia and CO(2). These proteins have insecticidal and fungicidal effects not related to their enzymatic activity. The insecticidal activity of urease is mostly dependent on the release of internal peptides after hydrolysis by insect digestive cathepsins. Jaburetox is a recombinant version of one of these peptides, expressed in Escherichia coli. The antifungal activity of ureases in filamentous fungi occurs at submicromolar doses, with damage to the cell membranes. Here we evaluated the toxic effect of Canavalia ensiformis urease (JBU) on different yeast species and carried out studies aiming to identify antifungal domain(s) of JBU. Data showed that toxicity of JBU varied according to the genus and species of yeasts, causing inhibition of proliferation, induction of morphological alterations with formation of pseudohyphae, changes in the transport of H(+) and carbohydrate metabolism, and permeabilization of membranes, which eventually lead to cell death. Hydrolysis of JBU with papain resulted in fungitoxic peptides (~10 kDa), which analyzed by mass spectrometry, revealed the presence of a fragment containing the N-terminal sequence of the entomotoxic peptide Jaburetox. Tests with Jaburetox on yeasts and filamentous fungi indicated a fungitoxic activity similar to ureases. Plant ureases, such as JBU, and its derived peptides, may represent a new alternative to control medically important mycoses as well as phytopathogenic fungi, especially considering their potent activity in the range of 10(-6)-10(-7)M.
Collapse
Affiliation(s)
- Melissa Postal
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|