1
|
Parise C, Galetto L, Abbà S, Bodino N, Marzachì C, Bosco D. RNA interference protocols for gene silencing in the spittlebug Philaenus spumarius, vector of Xylella fastidiosa. Sci Rep 2024; 14:25812. [PMID: 39468170 PMCID: PMC11519865 DOI: 10.1038/s41598-024-73889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
RNA interference (RNAi) is double stranded RNA (dsRNA)-based gene silencing mechanism. Exogenous dsRNAs application to crops has raised as a powerful tool to control agricultural pests. In particular, several sap-feeder are important plant pathogens vectors, such as Philaenus spumarius, known as main vector of Xylella fastidiosa (Xf), causal agent of olive quick decline syndrome (OQDS) in southern Italy. Here, dsATP synthase beta (dsATP), dsLaccase (dsLacc) and dsGreen Fluorescent Protein (dsGFP) as control, were provided to spittlebug adults by microinjection or to nymphs fed on dsRNA-treated plant shoots. Treated insects were collected at different time points to monitor silencing efficiency over time, describing significant reduction of transcript levels from 8 to 24 days post treatment. Downregulation of target genes ranged from 2- to 16-fold compared to the corresponding dsGFP controls, where highest silencing effects were generally noticed for ATP synthase beta. Sequencing of libraries obtained from total smallRNA (sRNA) showed the generation of dsRNA-derived sRNAs by RNAi pathway, with majority of reads mapping exclusively on the correspondent dsRNA. Also, we characterized components of a functional RNAi machinery in P. spumarius. Further research is needed to clarify such mechanism, screen effective target lethal genes to reduce vector population and improve delivery strategies.
Collapse
Affiliation(s)
- Cecilia Parise
- Università degli Studi di Torino, DISAFA, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - Luciana Galetto
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135, Torino, Italy.
| | - Simona Abbà
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - Nicola Bodino
- Università degli Studi di Torino, DISAFA, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Cristina Marzachì
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - Domenico Bosco
- Università degli Studi di Torino, DISAFA, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| |
Collapse
|
2
|
Wang Y, Li X, Zhu C, Yi S, Zhang Y, Hong Z. Plant-derived artificial miRNA effectively reduced the proliferation of aphid (Aphidoidea) through spray-induced gene silencing. PEST MANAGEMENT SCIENCE 2024; 80:4322-4332. [PMID: 38647144 DOI: 10.1002/ps.8138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Aphids (Hemiptera: Aphididae) are notorious sap-sucking insects that rampantly threaten agricultural production worldwide. Current management against aphids in the field heavily relies on chemical pesticides, which makes economical and eco-friendly methods urgently needed. Spray-induced gene silencing (SIGS) offers a powerful and precise approach to pest management. However, the high costs and instability of double-stranded RNA (dsRNA) regulators applied for downstream RNA interference (RNAi) still limit this strategy. It remains uncertain if RNAi regulators applied in SIGS could extend to small RNA (sRNA), especially miRNA. RESULTS We chose two sRNA sequences, miR-9b and miR-VgR, whose corresponding targets ABCG4 and VgR are both essential for aphid growth and development. The efficacy of these sequences was initially verified by chemically synthetic single-stranded RNA (syn-ssRNA). Through spray treatment, we observed a significantly decreased survival number and increased abnormality rate of green peach aphids fed on the host under laboratory conditions. Based on our previous study, we generated transgenic plants expressing artificial miR-9b (amiR-9b) and miR-VgR (amiR-VgR). Remarkably, plant-derived amiRNA exerted potent and long-lasting inhibitory efficacy with merely one percent concentration of chemical synthetics. Notably, the simultaneous application of amiR-9b and amiR-VgR exhibited superior inhibitory efficacy. CONCLUSION We explored the potential use of sRNA-based biopesticide through SIGS while investigating the dosage requirements. To optimize this strategy, the utilization of plant-derived amiRNA was proposed. The results suggested that attributed to stability and durability, deploying amiRNA in pest management is a potential and promising solution for the field application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Xuanlin Li
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry, and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Shijie Yi
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry, and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zhi Hong
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Dong Y, Zhang Q, Mao Y, Wu M, Wang Z, Chang L, Zhang J. Control of two insect pests by expression of a mismatch corrected double-stranded RNA in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2010-2019. [PMID: 38426894 PMCID: PMC11182576 DOI: 10.1111/pbi.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
RNA interference (RNAi) has emerged as an efficient technology for pest control by silencing the essential genes of targeted insects. Owing to its nucleotide sequence-guided working mechanism, RNAi has a high degree of species-specificity without impacts on non-target organisms. However, as plants are inevitably under threat by two or more insect pests in nature, the species-specific mode of RNAi-based technology restricts its wide application for pest control. In this study, we artificially designed an intermediate dsRNA (iACT) targeting two β-Actin (ACT) genes of sap-sucking pests Bemisia tabaci and Myzus persicae by mutual correction of their mismatches. When expressing hairpin iACT (hpiACT) from tobacco nuclear genome, transgenic plants are well protected from both B. tabaci and M. persicae, either individually or simultaneously, as evidenced by reduced fecundity and suppressed ACT gene expression, whereas expression of hpRNA targeting BtACT or MpACT in transgenic tobacco plants could only confer specific resistance to either B. tabaci or M. persicae, respectively. In sum, our data provide a novel proof-of-concept that two different insect species could be simultaneously controlled by artificial synthesis of dsRNA with sequence optimization, which expands the range of transgenic RNAi methods for crop protection.
Collapse
Affiliation(s)
- Yi Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life SciencesHubei UniversityWuhanChina
| | - Qi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life SciencesHubei UniversityWuhanChina
| | - Yarou Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life SciencesHubei UniversityWuhanChina
| | - Mengting Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life SciencesHubei UniversityWuhanChina
| | - Zican Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life SciencesHubei UniversityWuhanChina
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life SciencesHubei UniversityWuhanChina
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life SciencesHubei UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
4
|
de Lima AK, Soares JJ, Soares MA, Zanuncio JC, Bicho CDL, da Silva CAD. Development, Survival and Reproduction of Nezara viridula (Hemiptera: Pentatomidae) in Sesame Cultivars and Implications for the Management. PLANTS (BASEL, SWITZERLAND) 2024; 13:1060. [PMID: 38674469 PMCID: PMC11054687 DOI: 10.3390/plants13081060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Sesame, an oilseed plant with multiple applications, is susceptible to infestations by the stink bug Nezara viridula (Linnaeus, 1758) (Hemiptera: Pentatomidae). This pest suctions the seeds of this plant and injects toxins into them. Possible sources of resistance on sesame cultivars are important to manage this bug. The objective of this study was to evaluate the biological aspects of N. viridula fed on three sesame cultivars aiming to select possible resistance sources for integrated pest management (IPM) programs of this stinkbug. The experimental design used randomized blocks with three treatments and four replications, each with newly emerged N. viridula nymphs fed with sesame capsules of the cultivars BRS Anahí (T1), BRS Morena (T2) and BRS Seda (T3). Two to three green sesame capsules were supplied every two days per group of ten N. viridula nymphs as one replication until the beginning of the adult stage. Adults of this stinkbug were fed in the same manner as its nymphs but with mature sesame capsules until the end of the observations. Survival during each of the five instars and of the nymph stage of N. viridula with green sesame capsules was similar between cultivars, but the duration of the nymph stage was shorter with green capsules of the BRS Morena than with those of the BRS Anahí. The oviposition period, number of egg masses and eggs per female, and the percentage of nymphs hatched were higher with mature capsules of the sesame cultivar BRS Anahí and lower with the others. Nymphs did not hatch from eggs deposited by females fed mature seed capsules of the sesame cultivar BRS Morena, which may indicate a source of resistance against this stinkbug in this cultivar. The worldwide importance of N. viridula to sesame cultivation makes these results useful for breeding programs of this plant aiming to develop genotypes resistant to this bug. In addition, the BRS Morena is a cultivar already commercially available and can be recommended in places where there is a history of incidence of N. viridula, aiming to manage the populations of this pest.
Collapse
Affiliation(s)
- Adrielly Karoliny de Lima
- Departamento de Ciências Biológicas, Universidade Estadual da Paraíba, Avenida das Baraúnas, 351, Campina Grande 58429-500, PB, Brazil; (A.K.d.L.); (C.d.L.B.)
| | - José Janduí Soares
- Embrapa Algodão, Rua Oswaldo Cruz, 1143, Campina Grande 58428-095, PB, Brazil;
| | - Marcus Alvarenga Soares
- Departamento de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil;
| | - José Cola Zanuncio
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil;
| | - Carla de Lima Bicho
- Departamento de Ciências Biológicas, Universidade Estadual da Paraíba, Avenida das Baraúnas, 351, Campina Grande 58429-500, PB, Brazil; (A.K.d.L.); (C.d.L.B.)
| | - Carlos Alberto Domingues da Silva
- Departamento de Ciências Biológicas, Universidade Estadual da Paraíba, Avenida das Baraúnas, 351, Campina Grande 58429-500, PB, Brazil; (A.K.d.L.); (C.d.L.B.)
- Embrapa Algodão, Rua Oswaldo Cruz, 1143, Campina Grande 58428-095, PB, Brazil;
| |
Collapse
|
5
|
Kishk A, Dos Santos Tavares C, Mishra R, Bonning BC, Killiny N. Influence of 'Candidatus Liberibacter asiaticus' infection on the susceptibility of Asian citrus psyllid, Diaphorina citri to Bacillus thuringiensis pesticidal proteins, Mpp51Aa1 and Cry1Ba1. J Invertebr Pathol 2023; 200:107972. [PMID: 37460056 DOI: 10.1016/j.jip.2023.107972] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae) transmits the Gram-negative bacterium 'Candidatus Liberibacter asiaticus' that causes citrus greening disease. While chemical control has been the main management strategy for limiting D. citri, the widespread usage of chemical sprays has decreased the susceptibility of D. citri to most insecticides. Pesticidal proteins produced by the bacterium Bacillus thuringiensis (Bt) are active against a wide variety of insects and provide a more sustainable approach to insect control. Herein, we investigated the impact of 'Ca. L. asiaticus' infection of D. citri on the toxicity of two Bt proteins (Mpp51Aa1 and Cry1Ba1). Proteins were delivered to healthy and 'Ca. L. asiaticus'-infected D. citri via topical feeding application. The LC50 values of Mpp51Aa1 and Cry1Ba1 were calculated for both nymphs and adults. Additionally, we evaluated the effect of each protein on the survival probability and life span of healthy and 'Ca. L. asiaticus'-infected D. citri. The LC50 values indicated that adults and nymphs were more susceptible to Mpp51Aa1 than to Cry1Ba1 in both healthy and 'Ca. L. asiaticus'-infected D. citri. 'Ca. L. asiaticus'-infected adults and nymphs were more susceptible to Mpp51Aa1 and Cry1Ba1 than healthy insects, and nymphs were more susceptible to Mpp51Aa1 and Cry1Ba1 than adults. Moreover, we found that Mpp51Aa1 had a greater impact than Cry1Ba1 on the survival and lifespan of adults, and 'Ca. L. asiaticus'-infected insects were more affected by these pesticidal proteins than healthy adults. These results have important implications for the use of pesticidal proteins in D. citri management in Florida and elsewhere given the widespread presence of 'Ca. L. asiaticus' in the D. citri population. In this era of eco-friendly control strategies, Bt-derived pesticidal proteins provide a promising avenue to reducing the application of chemical insecticides for D. citri management.
Collapse
Affiliation(s)
- Abdelaziz Kishk
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, 33850, USA; Department of Plant Protection, Faculty of Agriculture, Tanta University, 31527, Egypt
| | | | - Ruchir Mishra
- Department of Entomology and Nematology, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - Bryony C Bonning
- Department of Entomology and Nematology, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
6
|
Yang J, Zhang Y, Zhao J, Gao Y, Liu Z, Zhang P, Fan R, Xing S, Zhou X. Target gene selection for RNAi-based biopesticides against the hawthorn spider mite, Amphitetranychus viennensis (Acari: Tetranychidae). PEST MANAGEMENT SCIENCE 2023; 79:2482-2492. [PMID: 36866409 DOI: 10.1002/ps.7437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/27/2023] [Accepted: 03/02/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Recently, RNA interference (RNAi)-based biopesticide, a species-specific pest control alternative, has been deregulated and commercialized in the US and Canada. The hawthorn spider mite, Amphitetranychus viennensis Zacher, is a major pest for rosaceous plants, which has been controlled primarily by synthetic pesticides. To address the emerging resistance issues in A. viennensis, we initiated a project to develop RNAi-based biopesticides. RESULTS In this study, we (i) developed a dietary RNAi system for A. viennensis using leaf disc, (ii) assessed the suitability of multiple control genes to distinguish sequence-specific silencing from non-specific effects within this RNAi system, and (iii) screened for the target gene candidates. As a result, β-Glucuronidase (GUS), an enzyme derived from E. coli and a broadly used reporter for plants is the appropriate control for A. viennensis RNAi, while green fluorescent protein (GFP), is not suitable due to its significantly higher mortality than the other controls. For target gene screening, suppression was confirmed for all the candidates, including two housekeeping genes (Vacuolar-type H + -ATPase subunit A (V-ATPase A) and Glyceraldehyde 3-phosphate dehydrogenase, (GAPDH)), and three genes associated with development (ATP-dependent RNA Helicase DDX3Y (Belle), CREB-binding protein (CBP), and Farnesoic acid O-methyltransferase (FaMet)). Knocking down of V-ATPase A resulted in the highest mortality (~ 90%) and reduced fecundity (over 90%) than other candidates. As for the genes associated with development, suppression of Belle and CBP, led to approximately 65% mortality, as well as 86% and 40% reduction in fecundity, respectively. Silencing of FaMet, however, had negligible biological impacts on A. viennensis. CONCLUSION The combined efforts not only establish an effective dsRNA delivery method, but also provide potential target genes for RNAi-based biopesticides against A. viennensis, a devastating invasive pest for fruit trees and woody ornamental plants throughout Asia and Europe. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Yang
- College of Plant Protection, Shanxi Agricultural University/Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Yuying Zhang
- College of Plant Protection, Shanxi Agricultural University/Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Jin Zhao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Yue Gao
- College of Plant Protection, Shanxi Agricultural University/Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Zhongfang Liu
- College of Plant Protection, Shanxi Agricultural University/Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Pengjiu Zhang
- College of Plant Protection, Shanxi Agricultural University/Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Renjun Fan
- College of Plant Protection, Shanxi Agricultural University/Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Shuping Xing
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
7
|
Shelby EA, McKinney EC, Cunningham CB, Simmons AM, Moore AJ, Moore PJ. The role of Dnmt1 in oocyte development. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104507. [PMID: 37011857 DOI: 10.1016/j.jinsphys.2023.104507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/02/2023]
Abstract
The whitefly Bemisia tabaci is a globally important crop pest that is difficult to manage through current commercially available methods. While RNA interference (RNAi) is a promising strategy for managing this pest, effective target genes remain unclear. We suggest DNA methyltransferase 1 (Dnmt1) as a potential target gene due to its effect on fecundity in females in other taxa of insects. We investigated the role of Dnmt1 in B. tabaci using RNAi and immunohistochemistry to confirm its potential conserved function in insect reproduction, which will define its usefulness as a target gene. Using RNAi to downregulate Dnmt1 in female B. tabaci, we show that Dnmt1 indeed has a conserved role in reproduction, as knockdown interfered with oocyte development. Females in which Dnmt1 was knocked down had greatly reduced fecundity and fertility; this supports Dnmt1 as a suitable target gene for RNAi-mediated pest management of B. tabaci.
Collapse
Affiliation(s)
- Emily A Shelby
- Department of Entomology, University of Georgia, 120 Cedar Street, Athens, GA 30602, United States
| | - Elizabeth C McKinney
- Department of Entomology, University of Georgia, 120 Cedar Street, Athens, GA 30602, United States
| | - Christopher B Cunningham
- Department of Entomology, University of Georgia, 120 Cedar Street, Athens, GA 30602, United States
| | - Alvin M Simmons
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC 29414, United States
| | - Allen J Moore
- Department of Entomology, University of Georgia, 120 Cedar Street, Athens, GA 30602, United States
| | - Patricia J Moore
- Department of Entomology, University of Georgia, 120 Cedar Street, Athens, GA 30602, United States.
| |
Collapse
|
8
|
Jin L, Zhang BW, Lu JW, Liao JA, Zhu QJ, Lin Y, Yu XQ. The mechanism of Cry41-related toxin against Myzus persicae based on its interaction with Buchnera-derived ATP-dependent 6-phosphofructokinase. PEST MANAGEMENT SCIENCE 2023; 79:1684-1691. [PMID: 36602054 DOI: 10.1002/ps.7340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/29/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Myzus persicae (Hemiptera: Aphididae) is one of the most notorious pests of many crops worldwide. Most Cry toxins produced by Bacillus thuringiensis show very low toxicity to M. persicae; however, a study showed that Cry41-related toxin had moderate toxic activity against M. persicae. In our previous work, potential Cry41-related toxin-binding proteins in M. persicae were identified, including cathepsin B, calcium-transporting ATPase, and Buchnera-derived ATP-dependent 6-phosphofructokinase (PFKA). Buchnera is an endosymbiont present in almost all aphids and it provides necessary nutrients for aphid growth. This study investigated the role of Buchnera-derived PFKA in Cry41-related toxicity against M. persicae. RESULTS In this study, recombinant PFKA was expressed and purified, and in vitro assays revealed that PFKA bound to Cry41-related toxin, and Cry41-related toxin at 25 μg ml-1 significantly inhibited the activity of PFKA. In addition, when M. persicae was treated with 30 μg ml-1 of Cry41-related toxin for 24 h, the expression of dnak, a single-copy gene in Buchnera, was significantly decreased, indicating a decrease in the number of Buchnera. CONCLUSION Our results suggest that Cry41-related toxin interacts with Buchnera-derived PFKA to inhibit its enzymatic activity and likely impair cell viability, resulting in a decrease in the number of Buchnera, and finally leading to M. persicae death. These findings open up new perspectives in our understanding of the mode of action of Cry toxins and are useful in helping improve Cry toxicity for aphid control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liang Jin
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Bin-Wu Zhang
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Jing-Wen Lu
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Jun-Ao Liao
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Qi-Jun Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yi Lin
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
9
|
Feng H, Chen W, Hussain S, Shakir S, Tzin V, Adegbayi F, Ugine T, Fei Z, Jander G. Horizontally transferred genes as RNA interference targets for aphid and whitefly control. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:754-768. [PMID: 36577653 PMCID: PMC10037149 DOI: 10.1111/pbi.13992] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
RNA interference (RNAi)-based technologies are starting to be commercialized as a new approach for agricultural pest control. Horizontally transferred genes (HTGs), which have been transferred into insect genomes from viruses, bacteria, fungi or plants, are attractive targets for RNAi-mediated pest control. HTGs are often unique to a specific insect family or even genus, making it unlikely that RNAi constructs targeting such genes will have negative effects on ladybugs, lacewings and other beneficial predatory insect species. In this study, we sequenced the genome of a red, tobacco-adapted isolate of Myzus persicae (green peach aphid) and bioinformatically identified 30 HTGs. We then used plant-mediated virus-induced gene silencing (VIGS) to show that several HTGs of bacterial and plant origin are important for aphid growth and/or survival. Silencing the expression of fungal-origin HTGs did not affect aphid survivorship but decreased aphid reproduction. Importantly, although there was uptake of plant-expressed RNA by Coccinella septempunctata (seven-spotted ladybugs) via the aphids that they consumed, we did not observe negative effects on ladybugs from aphid-targeted VIGS constructs. To demonstrate that this approach is more broadly applicable, we also targeted five Bemisia tabaci (whitefly) HTGs using VIGS and demonstrated that knockdown of some of these genes affected whitefly survival. As functional HTGs have been identified in the genomes of numerous pest species, we propose that these HTGs should be explored further as efficient and safe targets for control of insect pests using plant-mediated RNA interference.
Collapse
Affiliation(s)
| | - Wenbo Chen
- Boyce Thompson InstituteIthacaNYUSA
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
| | - Sonia Hussain
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
National Institute for Biotechnology and Genetic Engineering CollegePakistan Institute of Engineering and Applied SciencesFaisalabadPakistan
| | - Sara Shakir
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
Gembloux Agro‐Bio Tech InstituteThe University of LiegeGemblouxBelgium
| | - Vered Tzin
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevSede BoqerIsrael
| | - Femi Adegbayi
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
Drexel University College of MedicinePhiladelphiaPAUSA
| | - Todd Ugine
- Department of EntomologyCornell UniversityIthacaNYUSA
| | | | | |
Collapse
|
10
|
Tavares CS, Bonning BC. Mpp51Aa1 toxicity to Diaphorina citri nymphs demonstrated using a new, long-term bioassay method. J Invertebr Pathol 2022; 195:107845. [DOI: 10.1016/j.jip.2022.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
|
11
|
Bacteria-derived pesticidal proteins active against hemipteran pests. J Invertebr Pathol 2022; 195:107834. [DOI: 10.1016/j.jip.2022.107834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 02/05/2023]
|
12
|
Banerjee R, Flores‐Escobar B, Chougule NP, Cantón PE, Dumitru R, Bonning BC. Peptide mediated, enhanced toxicity of a bacterial pesticidal protein against southern green stink bug. Microb Biotechnol 2022; 15:2071-2082. [PMID: 35315236 PMCID: PMC9249324 DOI: 10.1111/1751-7915.14030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/23/2023] Open
Abstract
The damage caused by stink bugs that feed on agricultural crops accounts for such significant losses that transgenic plant resistance to stink bugs would be highly desirable. As the level of toxicity of the Bacillus thuringiensis-derived, ETX/Mtx2 pesticidal protein Mpp83Aa1 is insufficient for practical use against the southern green stink bug Nezara viridula, we employed two disparate approaches to isolate peptides NvBP1 and ABP5 that bind to specific proteins (alpha amylase and aminopeptidase N respectively) on the surface of the N. viridula gut. Incorporation of these peptides into Mpp83Aa1 provided artificial anchors resulting in increased gut binding, and enhanced toxicity. These peptide-modified pesticidal proteins with increased toxicity provide a key advance for potential future use against N. viridula when delivered by transgenic plants to mitigate economic loss associated with this important pest.
Collapse
Affiliation(s)
- Rahul Banerjee
- Department of Entomology and NematologyUniversity of FloridaPO Box 110620GainesvilleFL32611USA
| | - Biviana Flores‐Escobar
- Department of Entomology and NematologyUniversity of FloridaPO Box 110620GainesvilleFL32611USA
| | | | - Pablo Emiliano Cantón
- Department of Entomology and NematologyUniversity of FloridaPO Box 110620GainesvilleFL32611USA
| | - Razvan Dumitru
- Innovation CenterBASF Corporation3500 Paramount ParkwayMorrisvilleNC27560USA
| | - Bryony C. Bonning
- Department of Entomology and NematologyUniversity of FloridaPO Box 110620GainesvilleFL32611USA
| |
Collapse
|
13
|
Murtaza S, Tabassum B, Tariq M, Riaz S, Yousaf I, Jabbar B, Khan A, Samuel AO, Zameer M, Nasir IA. Silencing a Myzus persicae Macrophage Inhibitory Factor by Plant-Mediated RNAi Induces Enhanced Aphid Mortality Coupled with Boosted RNAi Efficacy in Transgenic Potato Lines. Mol Biotechnol 2022; 64:1152-1163. [PMID: 35460447 DOI: 10.1007/s12033-022-00498-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
Myzus persicae causes considerable losses to crops as a major pest. The damage is direct by feeding and also partly indirect because it vectors plant viruses. The currently available control strategies rely on unsafe and nonecofriendly chemical pesticide applications. Plant-mediated RNA interference (RNAi) has emerged as a powerful tool in crop protection from insect pests. Aphid salivary proteins are essential for phloem feeding and act as mediators of the complex interactions between aphids and their host plants. We documented the efficacy of dsRNA directed against macrophage inhibitory factor (MIF1) of M. persicae to induce aphid mortality and gene silencing through the generation of transgenic potato lines. A binary construct harbouring dsMIF1 driven by the CaMV35S promoter was introduced into the local potato variety 'AGB-white' by Agrobacterium-mediated transformation. PCR and Southern blotting validated the transgene presence and genomic integration in seven transgenic potato lines. An in vitro detached leaf assay revealed a significantly high aphid mortality of 65% in the transgenic potato line sDW-2, while the aphid mortality was 77% in the sDW-2 transgenic line during the in planta bioassay in comparison with 19% aphid mortality in the control nontransgenic potato line. A significantly high silencing effect was observed in the mRNA expression of MIF1, which was reduced to 21% in aphids fed on the transgenic potato line sDW-2. However, variable knockdown effects were found among six other transgenic potato lines, ranging from 30 to 62%. The study concluded that plant-mediated silencing of aphid RNA induces significant RNAi in M. persicae, along with enhanced aphid mortality.
Collapse
Affiliation(s)
- Shahid Murtaza
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Bushra Tabassum
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan. .,School of Biological Sciences, University of the Punjab Quaid-I-Azam Campus, Lahore, 54590, Pakistan.
| | - Muhammad Tariq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Saman Riaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Iqra Yousaf
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Basit Jabbar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Anwar Khan
- Department of Microbiology, BUITEMS, Quetta, Pakistan
| | | | - Mariam Zameer
- Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
| | - Idrees Ahmad Nasir
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
14
|
Characterization of insecticidal Cry protein from Bacillus thuringiensis toxic to Myzus persicae (Sulzer). J Invertebr Pathol 2022; 189:107731. [PMID: 35202622 DOI: 10.1016/j.jip.2022.107731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022]
Abstract
The toxins produced by Bacillus thuringiensis (Bt) are well known for their insecticidal activity against Lepidoptera, Diptera and Coleoptera; however, the sap-sucking insects (Hemiptera) are not particularly susceptible to Bt toxins. We describe the aphicidal effect of Cry toxin from Bt strain GP919 against one of the most pernicious hemipterans in the agricultural environment, Myzus persicae. The mortality bioassay shows that the strain cause mortality rates above 80% at concentration of 10 ng/µl with a LC50 of 9.01 ng/µl; whereas it showed no lethal toxicity against the lepidopteran Spodoptera frugiperda. The mayor protein (∼130 kDa) expressed by this strain was subjected to purification, solubilization and trypsin digestion, the band of ∼65 kDa which was obtained from trypsin digestion was purified by ion-exchange chromatography and was used to feed the aphid. The bioassay shows mortality rates above 85% at concentration of 10 ng/µl and the LC50 was 6.58 ng/µl. The resulting fragment from the digestion was identified by mass spectrometry and the candidate protein showed an overall 100% amino acid sequence identity to the reported Cry1Cb2 (WP 033698561.1) protein from Bt. Koch's postulated also was carried out with the GP919 strain and also, we document the signs of infection caused by this strain. This is the first report of a Cry1Cb2 protein that is toxic to a sucking insect and this protein may become a promising environmentally friendly tool for the control of M. persicae and possible also for other sap sucking insect pests.
Collapse
|
15
|
Ravanfar SA, Achor DS, Killiny N, Shilts T, Chen Y, El-Mohtar C, Stelinski LL, Bonning BC, Orbović V. Genetic Modification of Bergera koenigii for Expression of the Bacterial Pesticidal Protein Cry1Ba1. FRONTIERS IN PLANT SCIENCE 2022; 13:899624. [PMID: 35685021 PMCID: PMC9171844 DOI: 10.3389/fpls.2022.899624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/20/2022] [Indexed: 05/09/2023]
Abstract
The curry leaf tree, Bergera koenigii, is highly attractive to the Asian citrus psyllid, Diaphorina citri, which vectors the bacterial causative agent of citrus greening or huanglongbing disease. This disease has decimated citrus production in Florida and in other citrus-producing countries. As D. citri exhibits high affinity for feeding on young leaves of B. koenigii, transgenic B. koenigii expressing bacteria-derived pesticidal proteins such as Cry1Ba1 have potential for D. citri management when planted in or adjacent to citrus groves. Importantly, the plant pathogenic bacterium that causes citrus greening does not replicate in B. koenigii. Transgenic plants of B. koenigii were produced by insertion of the gene encoding the active core of the pesticidal protein Cry1Ba1 derived from Bacillus thuringiensis. The transformation success rate was low relative to that of other citrus, at 0.89%. T-DNA integration into the genome and cry1ba1 transcription in transgenic plants were confirmed. Transgenic plants expressing Cry1Ba1 differed from wild-type plants, differed in photosynthesis parameters and hormone levels in some instances, and a marked delay in wilting of detached leaves. The gut epithelium of D. citri fed on transgenic plants was severely damaged, consistent with Cry1Ba1-mediated pore formation, confirming expression of the pesticidal protein by transgenic B. koenigii. These results demonstrate that transgenic B. koenigii expressing bacteria-derived pesticidal proteins can be produced for potential use as trap plants for suppression of D. citri populations toward protection of citrus groves from citrus greening.
Collapse
Affiliation(s)
- Seyed Ali Ravanfar
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, United States
| | - Diann S. Achor
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, United States
| | - Nabil Killiny
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, United States
| | - Turksen Shilts
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, United States
| | - Yuting Chen
- Department of Entomology, Iowa State University, Ames, IA, United States
| | - Choaa El-Mohtar
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, United States
| | - Lukasz L. Stelinski
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, United States
| | - Bryony C. Bonning
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States
- *Correspondence: Bryony C. Bonning,
| | - Vladimir Orbović
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, United States
| |
Collapse
|
16
|
Suhag A, Yadav H, Chaudhary D, Subramanian S, Jaiwal R, Jaiwal PK. Biotechnological interventions for the sustainable management of a global pest, whitefly (Bemisia tabaci). INSECT SCIENCE 2021; 28:1228-1252. [PMID: 32696581 DOI: 10.1111/1744-7917.12853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/18/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Whiteflies (Bemisia tabaci) are polyphagous invasive hemipteran insects that cause serious losses of important crops by directly feeding on phloem sap and transmitting pathogenic viruses. These insects have emerged as a major threat to global agriculture and food security. Chemically synthesized insecticides are currently the only option to control whiteflies, but the ability of whiteflies to evolve resistance against insecticides has made the management of these insects very difficult. Natural host-plant resistance against whiteflies identified in some crop plants has not been exploited to a great extent. Genetic engineering approaches, such as transgenics and RNA interference (RNAi), are potentially useful for the control of whiteflies. Transgenic plants harboring insecticidal toxins/lectins developed via nuclear or chloroplast transformation are a promising vehicle for whitefly control. Double-stranded RNAs (dsRNAs) of several insect genes, delivered either through microinjection into the insect body cavity or orally via an artificial diet and transiently or stably expressed in transgenic plants, have controlled whiteflies in model plants and in some crops at the laboratory level, but not at the field level. In this review, we highlight the merits and demerits of each delivery method along with strategies for sustained delivery of dsRNAs via fungal entomopathogen/endosymbiont or nontransgenic RNAi approaches, foliar sprays, root absorption or nanocarriers as well as the factors affecting efficient RNAi and their biosafety issues. Genome sequencing and transcriptome studies of whitefly species are facilitating the selection of appropriate genes for RNAi and gene-editing technology for the efficient and resilient management of whiteflies and their transmitted viruses.
Collapse
Affiliation(s)
- Archna Suhag
- Department of Zoology, M.D. University, Rohtak, India
| | - Honey Yadav
- Centre for Biotechnology, M.D. University, Rohtak, India
| | | | - S Subramanian
- Division of Entomology, Indian Agriculture Research Institute, New Delhi, India
| | | | - Pawan K Jaiwal
- Centre for Biotechnology, M.D. University, Rohtak, India
| |
Collapse
|
17
|
Barros RDEA, Vital CE, Júnior NRS, Vargas MAS, Monteiro LP, Faustino VA, Auad AM, Pereira JF, Oliveira EEDE, Ramos HJO, Oliveira MGDEA. Differential defense responses of tropical grasses to Mahanarva spectabilis (Hemiptera: Cercopidae) infestation. AN ACAD BRAS CIENC 2021; 93:e20191456. [PMID: 34378641 DOI: 10.1590/0001-3765202120191456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/16/2020] [Indexed: 11/22/2022] Open
Abstract
The spittlebugs Mahanarva spectabilis economically challenges cattle production of neotropical regions, due to its voracious feeding on tropical grasses. Here, we evaluated biochemical responses of the interaction between M. spectabilis and the widely cultivated tropical grasses Brachiaria spp. (i.e., brizantha and decumbens) and elephant grasses (cvs. Roxo de Botucatu and Pioneiro), regarding lipoxygenases, protease inhibitors, phytohormones, and proteolytic activities in the midgut of M. spectabilis. The M. spectabilis-infested grasses increased lipoxygenases activity, except for cv. Pioneiro. The levels of the phytohormones jasmonic and abscisic acids were similarly low in all genotypes and increased under herbivory. Furthermore, salicylic acid concentration was constitutively higher in Brachiaria sp., increasing only in spittlebug-infested B. decumbens. M. spectabilis infestations did not induce increases of protease inhibitors in any forage grass type. The trypsin activity remained unaltered, and the total proteolytic activity increased only in B. decumbens-fed insects. Our findings revealed that most forage grasses exposed to spittlebugs activate the lipoxygenases pathway, resulting in increased abscisic and jasmonic acids. However, greater amounts of these hormones do not induce protease inhibitory activity in response to spittlebug attack. This knowledge certainly helps to guide future projects aiming at reducing the impact of spittlebugs on forage production.
Collapse
Affiliation(s)
- Rafael DE A Barros
- Universidade Federal de Viçosa (UFV), Laboratório de Enzimologia e Bioquímica de Proteínas e Peptídeos, Departamento de Bioquímica e Biologia Molecular, BIOAGRO/INCT-IPP, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Camilo E Vital
- Universidade Federal de Viçosa (UFV), Laboratório de Enzimologia e Bioquímica de Proteínas e Peptídeos, Departamento de Bioquímica e Biologia Molecular, BIOAGRO/INCT-IPP, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Neilier R S Júnior
- Universidade Federal de Viçosa (UFV), Laboratório de Enzimologia e Bioquímica de Proteínas e Peptídeos, Departamento de Bioquímica e Biologia Molecular, BIOAGRO/INCT-IPP, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Manuel A S Vargas
- Universidade Federal de Viçosa (UFV), Departamento de Entomologia/BIOAGRO, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Luana P Monteiro
- Universidade Federal de Viçosa (UFV), Laboratório de Enzimologia e Bioquímica de Proteínas e Peptídeos, Departamento de Bioquímica e Biologia Molecular, BIOAGRO/INCT-IPP, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Verônica A Faustino
- Universidade Federal de Viçosa (UFV), Laboratório de Enzimologia e Bioquímica de Proteínas e Peptídeos, Departamento de Bioquímica e Biologia Molecular, BIOAGRO/INCT-IPP, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Alexander M Auad
- Embrapa Gado de Leite, Dom Bosco, 610, Aeroporto, 36038-330 Juiz de Fora, MG, Brazil
| | - Jorge F Pereira
- Embrapa Gado de Leite, Dom Bosco, 610, Aeroporto, 36038-330 Juiz de Fora, MG, Brazil
| | - Eugênio E DE Oliveira
- Universidade Federal de Viçosa (UFV), Departamento de Entomologia/BIOAGRO, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Humberto J O Ramos
- Universidade Federal de Viçosa (UFV), Laboratório de Enzimologia e Bioquímica de Proteínas e Peptídeos, Departamento de Bioquímica e Biologia Molecular, BIOAGRO/INCT-IPP, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Maria Goreti DE A Oliveira
- Universidade Federal de Viçosa (UFV), Laboratório de Enzimologia e Bioquímica de Proteínas e Peptídeos, Departamento de Bioquímica e Biologia Molecular, BIOAGRO/INCT-IPP, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
18
|
|
19
|
Jain RG, Robinson KE, Asgari S, Mitter N. Current scenario of RNAi-based hemipteran control. PEST MANAGEMENT SCIENCE 2021; 77:2188-2196. [PMID: 33099867 DOI: 10.1002/ps.6153] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) is an homology-dependent gene silencing mechanism that is a feasible and sustainable avenue for the management of hemipteran pests. Commercial implementation of RNAi-based control strategies is impeded by limited knowledge about the mechanism of double-stranded RNA (dsRNA) uptake, the function of core RNAi genes and systemic RNAi mechanisms in hemipteran insects. This review briefly summarizes recent progress in RNAi-based studies aimed to reduce insect populations, viral transmission and insecticide resistance focusing on hemipteran pests. This review explores RNAi-mediated management of hemipteran insects and offers potential solutions, including in silico approaches coupled with laboratory-based toxicity assays to circumvent potential off-target effects against beneficial organisms. We further explore ways to mitigate degradation of dsRNA in the environment and the insect such as stacking and formulation of dsRNA effectors. Finally, we conclude by considering nontransformative RNAi approaches, concatomerization of RNAi sequences and pyramiding RNAi with active constituents to reduce dsRNA production and application cost, and to improve broad-spectrum hemipteran pest control. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ritesh G Jain
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Sciences, The University of Queensland, Brisbane, Australia
| | - Karl E Robinson
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Sciences, The University of Queensland, Brisbane, Australia
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
20
|
Das A, Roy A, Mandal A, Mondal HA, Hess D, Kundu P, Das S. Inhibition of Bemisia tabaci vectored, GroEL mediated transmission of tomato leaf curl New Delhi virus by garlic leaf lectin (Allium sativum leaf agglutinin). Virus Res 2021; 300:198443. [PMID: 33940005 DOI: 10.1016/j.virusres.2021.198443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
GroEL or symbionin synthesized by the endosymbionts of whitefly (Bemisia tabaci)/ aphids play a cardinal role in the persistent, circulative transmission of plant viruses by binding to viral coat protein/ read-through protein. Allium sativum leaf agglutinin (ASAL), a Galanthus nivalis agglutinin (GNA)- related mannose-binding lectin from garlic leaf has been reported as a potent controlling agent against hemipteran insects including whitefly and aphids. GroEL related chaperonin- symbionin was previously identified as a receptor of ASAL by the present group in the brush border membrane vesicle (BBMV) of mustard aphid. In the present study similar GroEL receptor of ASAL has been identified through LC-MS/MS in the BBMV of B. tabaci which serves as a vector for several plant viruses including tomato leaf curl New Delhi virus (ToLCNDV). Ligand blot analysis of ASAL-fed B. tabaci showed that when GroEL is pre-occupied by ASAL, it completely blocks its further binding to ToLCNDV coat protein (ToLCNDV-CP). Prior feeding of ASAL hindered the co-localization of ToLCNDV-CP and GroEL in the midgut of B. tabaci. Immunoprecipitation followed by western blot with ASAL-fed B. tabaci yielded similar result. Moreover, ASAL feeding inhibited viral transmission by B. tabaci. Together, these results confirmed that the interaction of ASAL with GroEL interferes with the binding of ToLCNDV-CP and inhibits further B. tabaci mediated viral transmission.
Collapse
Affiliation(s)
- Ayan Das
- Division of Plant Biology, Bose Institute, P1/12, C. I. T Scheme VIIM, Kolkata, 700054, West Bengal, India; Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India(1).
| | - Amit Roy
- Division of Plant Biology, Bose Institute, P1/12, C. I. T Scheme VIIM, Kolkata, 700054, West Bengal, India; Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Excellent Team for Mitigation (ETM), Kamýcká 129, CZ - 165 00 Praha 6 - Suchdol, Czech Republic(1).
| | - Arunava Mandal
- Division of Plant Biology, Bose Institute, P1/12, C. I. T Scheme VIIM, Kolkata, 700054, West Bengal, India; Department of Genetics, University of Calcutta, Tarknath Palit Siksha Prangan, UCSTA, 35, Ballygunge Circular Road, Kolkata, 700019, India(1).
| | - Hossian Ali Mondal
- Division of Plant Biology, Bose Institute, P1/12, C. I. T Scheme VIIM, Kolkata, 700054, West Bengal, India; School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Umiam, Meghalaya, 793103, India(1).
| | - Daniel Hess
- The Protein Analysis Facility, Friedrich Miescher Institute for Biomedical Research Maulbeerstr. 66, 4058, Basel, Switzerland.
| | - Pallob Kundu
- Division of Plant Biology, Bose Institute, P1/12, C. I. T Scheme VIIM, Kolkata, 700054, West Bengal, India.
| | - Sampa Das
- Division of Plant Biology, Bose Institute, P1/12, C. I. T Scheme VIIM, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
21
|
Almeida MF, Tavares CS, Araújo EO, Picanço MC, Oliveira EE, Pereira EJG. Plant Resistance in Some Modern Soybean Varieties May Favor Population Growth and Modify the Stylet Penetration of Bemisia tabaci (Hemiptera: Aleyrodidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:970-978. [PMID: 33625491 DOI: 10.1093/jee/toab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Indexed: 06/12/2023]
Abstract
Complaints of severe damage by whiteflies in soybean fields containing genetically engineered (GE) varieties led us to investigate the role of transgenic soybean varieties expressing resistance to some insects (Cry1Ac Bt toxin) and to herbicide (glyphosate) on the population growth and feeding behavior of Bemisia tabaci (Gennadius) MEAM1 (Hemiptera: Aleyrodidae). In the laboratory, the whiteflies reared on the GE Bt soybeans had a net reproductive rate (R0) 100% higher and intrinsic rate of population increase (rm) 15% higher than those reared on non-GE soybeans. The increased demographic performance was associated with a higher lifetime fecundity. In electrical penetration graphs, the whiteflies reared on the GE soybeans had fewer probes and spent 50% less time before reaching the phloem phase from the beginning of the first successful probe, indicating a higher risk of transmission of whitefly-borne viruses. Data from Neotropical fields showed a higher population density of B. tabaci on two soybean varieties expressing glyphosate resistance and Cry1Ac Bt toxin. These results indicate that some GE soybean varieties expressing insect and herbicide resistances can be more susceptible to whiteflies than non-GE ones or those only expressing herbicide resistance. Most likely, these differences are related to varietal features that increase host-plant susceptibility to whiteflies. Appropriate pest management may be needed to deal with whiteflies in soybean fields, especially in warm regions, and breeders may want to consider the issue when developing new soybean varieties.
Collapse
Affiliation(s)
- Mauricélia F Almeida
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Center for Agricultural Sciences, Universidade Estadual da Região Tocantina do Maranhão, Imperatriz, MA, Brazil
| | - Clébson S Tavares
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Euires O Araújo
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marcelo C Picanço
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Eugênio E Oliveira
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Eliseu José G Pereira
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
22
|
Grahl MVC, Lopes FC, Martinelli AHS, Carlini CR, Fruttero LL. Structure-Function Insights of Jaburetox and Soyuretox: Novel Intrinsically Disordered Polypeptides Derived from Plant Ureases. Molecules 2020; 25:molecules25225338. [PMID: 33207637 PMCID: PMC7696265 DOI: 10.3390/molecules25225338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/24/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) do not have a stable 3D structure but still have important biological activities. Jaburetox is a recombinant peptide derived from the jack bean (Canavalia ensiformis) urease and presents entomotoxic and antimicrobial actions. The structure of Jaburetox was elucidated using nuclear magnetic resonance which reveals it is an IDP with small amounts of secondary structure. Different approaches have demonstrated that Jaburetox acquires certain folding upon interaction with lipid membranes, a characteristic commonly found in other IDPs and usually important for their biological functions. Soyuretox, a recombinant peptide derived from the soybean (Glycine max) ubiquitous urease and homologous to Jaburetox, was also characterized for its biological activities and structural properties. Soyuretox is also an IDP, presenting more secondary structure in comparison with Jaburetox and similar entomotoxic and fungitoxic effects. Moreover, Soyuretox was found to be nontoxic to zebra fish, while Jaburetox was innocuous to mice and rats. This profile of toxicity affecting detrimental species without damaging mammals or the environment qualified them to be used in biotechnological applications. Both peptides were employed to develop transgenic crops and these plants were active against insects and nematodes, unveiling their immense potentiality for field applications.
Collapse
Affiliation(s)
- Matheus V. Coste Grahl
- Graduate Program in Medicine and Health Sciences, Brain Institute of Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, Brazil;
| | - Fernanda Cortez Lopes
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Building 43431, Porto Alegre CEP 91501-970, RS, Brazil;
| | - Anne H. Souza Martinelli
- Department of Biophysics & Deparment of Molecular Biology and Biotechnology-Biosciences Institute (IB), Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil;
| | - Celia R. Carlini
- Graduate Program in Medicine and Health Sciences, Brain Institute of Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, Brazil;
- Brain Institute and School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
- Correspondence: (C.R.C.); (L.L.F.); Tel.: +55-51-3320-3485 (C.R.C.); +54-351-535-3850 (L.L.F.)
| | - Leonardo L. Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba CP 5000, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba CP 5000, Argentina
- Correspondence: (C.R.C.); (L.L.F.); Tel.: +55-51-3320-3485 (C.R.C.); +54-351-535-3850 (L.L.F.)
| |
Collapse
|
23
|
Jekayinoluwa T, Tripathi L, Tripathi JN, Ntui VO, Obiero G, Muge E, Dale J. RNAi technology for management of banana bunchy top disease. Food Energy Secur 2020; 9:e247. [PMID: 33381301 PMCID: PMC7757248 DOI: 10.1002/fes3.247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
Banana bunchy top disease (BBTD) is one of the world's most destructive viral diseases of banana and plantain, causing up to 100% yield loss in severe cases. The disease is vectored by banana aphids (Pentalonia nigronervosa) and carried long distances through the movement of infected plant materials. The banana aphids harboring banana bunchy top virus (BBTV) present in banana producing regions are the sole vector and the most efficient method of transmitting the virus to the healthy plants. Controlling the spread of BBTD has been very challenging since no known banana germplasm is immune to BBTV. The disease can be managed with the use of virus-free planting material and roguing. However, once BBTD is established in the field, it is very difficult to eradicate or manage it. Therefore, a more sustainable way of controlling the disease is developing host plant resistance against the virus and the vector. Biotechnological strategies via RNA interference (RNAi) could be used to target the banana aphid as well as BBTV to reduce virus-associated yield losses of banana and plantain, which feed over 500 million people around the world. This review discusses the status of BBTD and perspectives on effective RNAi technologies for controlling BBTV and the vector, banana aphid, transmitting the virus as sustainable management of the disease.
Collapse
Affiliation(s)
- Temitope Jekayinoluwa
- International Institute of Tropical AgricultureNairobiKenya
- Center for Biotechnology and BioinformaticsUniversity of NairobiNairobiKenya
| | - Leena Tripathi
- International Institute of Tropical AgricultureNairobiKenya
| | | | | | - George Obiero
- Center for Biotechnology and BioinformaticsUniversity of NairobiNairobiKenya
| | - Edward Muge
- Department of BiochemistryUniversity of NairobiNairobiKenya
| | - James Dale
- Queensland University of TechnologyBrisbaneQldAustralia
| |
Collapse
|
24
|
Shelby EA, Moss JB, Andreason SA, Simmons AM, Moore AJ, Moore PJ. Debugging: Strategies and Considerations for Efficient RNAi-Mediated Control of the Whitefly Bemisia tabaci. INSECTS 2020; 11:E723. [PMID: 33105847 PMCID: PMC7690610 DOI: 10.3390/insects11110723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/26/2023]
Abstract
The whitefly Bemisia tabaci is a globally important pest that is difficult to control through insecticides, transgenic crops, and natural enemies. Post-transcriptional gene silencing through RNA interference (RNAi) has shown potential as a pest management strategy against B. tabaci. While genomic data and other resources are available to create highly effective customizable pest management strategies with RNAi, current applications do not capitalize on species-specific biology. This lack of specificity has the potential to have substantial ecological impacts. Here, we discuss both short- and long-term considerations for sustainable RNAi pest management strategies for B. tabaci, focusing on the need for species specificity incorporating both life history and population genetic considerations. We provide a conceptual framework for selecting sublethal target genes based on their involvement in physiological pathways, which has the greatest potential to ameliorate unintended negative consequences. We suggest that these considerations allow an integrated pest management approach, with fewer negative ecological impacts and reduced likelihood of the evolution of resistant populations.
Collapse
Affiliation(s)
- Emily A. Shelby
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| | - Jeanette B. Moss
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| | - Sharon A. Andreason
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable laboratory, Charleston, SC 29414, USA; (S.A.A.); (A.M.S.)
| | - Alvin M. Simmons
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable laboratory, Charleston, SC 29414, USA; (S.A.A.); (A.M.S.)
| | - Allen J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| | - Patricia J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| |
Collapse
|
25
|
Ramasamy A, Suresh M, Mallesh MSH. Toxicity evaluation of Aphidicidal crystalliferous toxins from Bacillus thuringiensis strains: a molecular study. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01594-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Aphis gossypii and A. punicae are the most damaging pests. The emergence of large populations has created concern among farmers because this pest complex is considered critical as it has a significant effect on major crops around the globe. The lack of new technologies for the control of A. gossypii and A. punicae is also worrying due to the indiscriminate use of chemical insecticides. Besides, this leads to the rapid development of resistance, which strangles their control in the field. Hence, there is a dire need to find the effective biocontrol agent for the management of Aphis gossypii and A. punicae.
Methods
The present investigation emphasizes the isolation and characterization of Aphidicidal Bacillus thuringiensis from the Andaman and Nicobar Islands, Karnataka, Assam, Arunachal Pradesh, and Sikkim soil samples. Phase contrast and scanning electron microscopy analysis used to characterize and identify the crystal morphology. Molecular profiling of Bt cry genes was determined by PCR using aphidicidal cry gene-specific primers, and molecular cloning and sequencing were carried out. Protein profiling by SDS–PAGE analysis was further studied. Finally, a qualitative bioassay of insecticidal activity was carried out against A. gossypii and A. punicae.
Results
A total of 65 Bacillus-like colonies were screened; 15 putative Aphidicidal B. thuringiensis isolates were identified based on morphological as well as through microbiological studies. Spherical and amorphous crystal inclusion was predominantly present in 34.28% of the Bt isolates. Crystal protein profiling of Bt isolates by SDS–PAGE analysis showed the presence 130, 73, 34, 25, and 13 kDa bands, among which 50−66 kDa bands were present abundantly. The detection of the cry gene of these isolates was done by PCR analysis, which indicated that cry1, cry2A, cry3A, and cry11A were on plasmid DNA. All cry genes were 80–100% homologous when aligned on alignment tool NCBI-BLASTn and BLASTp. All isolates of Bt were tested for their insecticidal activity against aphids. Three of the 15 isolates are Aphidicidal toxin specific by PCR analysis which were observed to be toxic to Aphis gossypii and A. punicae at a concentration of 35 μg/mL. The observed physical changes were induced by B. thuringiensis infection; these strains had been re-isolated from the dead aphids, and the presented results fulfilled Koch’s postulates.
Conclusion
The present study brought promising Bt isolates, primarily capable of creating an efficient biocontrol agent for Aphis gossypii and A. punicae and various sucking pests soon.
Collapse
|
26
|
Niu L, Liu F, Zhang S, Luo J, Zhang L, Ji J, Gao X, Ma W, Cui J. Transgenic insect-resistant Bt cotton expressing Cry1Ac/CpTI does not affect the mirid bug Apolygus lucorum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114762. [PMID: 32408077 DOI: 10.1016/j.envpol.2020.114762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/26/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Common varieties of genetically modified (GM) cotton increasingly display insect-resistant properties via expression of bacterial-derived toxins from Bacillus thuringiensis (Bt). This necessitates a deeper understanding of the possible effects of these crops on non-target insects. The mirid bug Apolygus lucorum is a major pest in cotton production in China, however, the effect of GM cotton on this non-target species is currently virtually unknown. This insect is exposed to these transgenic plants by consuming genetically modified (GM) leaves. In this study, laboratory experiments were conducted to assess the toxicity of CCRI41 and CCRI45, (genetically modified cotton varieties which express the toxins Cry1Ac and CpTI (Cowpea Trypsin Inhibitor)) on nymphs and adults of A. lucorum. There was no detectable increase in mortality after A. lucorum fed on GM cotton leaves for 20 days. While we detected trace amounts of Cry1Ac proteins in both A. lucorum nymphs and adults (<10 ng/g fresh weight), the expression of genes related to detoxification did not detectably differ from those feeding on non-GM cotton. Our binding assays did not show Cry1Ac binding to receptors on the midgut brush border membrane from either A. lucorum nymphs or adults. Our findings collectively indicate that feeding on leaves of the GM cotton varieties CCRI41 and CCRI45 have few toxic effects on A. lucorum.
Collapse
Affiliation(s)
- Lin Niu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Fang Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Shuai Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Lijuan Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Weihua Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
| |
Collapse
|
27
|
Dong Y, Yang Y, Wang Z, Wu M, Fu J, Guo J, Chang L, Zhang J. Inaccessibility to double-stranded RNAs in plastids restricts RNA interference in Bemisia tabaci (whitefly). PEST MANAGEMENT SCIENCE 2020; 76:3168-3176. [PMID: 32333833 DOI: 10.1002/ps.5871] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/24/2020] [Accepted: 04/25/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND RNA interference (RNAi) has emerged as a promising technology for insect pest control. Because of the accumulation of high levels of long double-stranded RNAs (dsRNAs) in plastids, it was previously shown that expression of dsRNAs from plastid genome led to higher mortality of some insect pests with chewing mouthparts than dsRNAs expression from nuclear genome. However, whether plastid-expressed dsRNAs have effects on phloem sap-sucking pests is unknown. In this study, we compared the RNAi effects of nuclear transgenic and transplastomic plants on the whitefly Bemisia tabaci, a serious sap-sucking pest. RESULTS Nuclear transgenic and transplastomic tobacco plants were developed for the expression of dsRNA against BtACTB gene of Bemisia tabaci, respectively. Feeding nuclear transgenic plants to Bemisia tabaci resulted in reduced gene expression of BtACTB and survival rate, and impaired fecundity of Bemisia tabaci. We did not observe any effects of transplastomic plants on Bemisia tabaci fitness. Furthermore, we found that the inability of B. tabaci to obtain dsRNAs from plastids might restrict its RNAi responses. CONCLUSION Our study indicated that the expression of dsRNAs in nuclear transgenic plants was more effective than that in transplastomic plants for the control of Bemisia tabaci. The inaccessibility of Bemisia tabaci to plastids contributes to the inefficiency of plastid-mediated RNAi. Our findings are of great significance to future optimization of transgenically delivered RNAi approaches for efficient controlling of sap-sucking pests. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi Dong
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Yong Yang
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Zican Wang
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Mengting Wu
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Jinqiu Fu
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Chang
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Jiang Zhang
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| |
Collapse
|
28
|
Dorta SDO, Balbinotte J, Monnerat R, Lopes JRS, da Cunha T, Zanardi OZ, de Miranda MP, Machado MA, de Freitas-Astúa J. Selection of Bacillus thuringiensis strains in citrus and their pathogenicity to Diaphorina citri (Hemiptera: Liviidae) nymphs. INSECT SCIENCE 2020; 27:519-530. [PMID: 30548193 DOI: 10.1111/1744-7917.12654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/16/2018] [Accepted: 11/26/2018] [Indexed: 05/24/2023]
Abstract
Bacillus thuringiensis (Bt) toxins are effective in controlling insect pests either through the spraying of products or when expressed in transgenic crops. The discovery of endophytic Bt strains opened new perspectives for studies aimed at the control of sap-sucking insects, such as the Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae), a vector of "Candidatus Liberibacter spp.," associated with citrus huanglongbing (HLB). In this study, translocation of endophytic Bt strains in citrus seedlings inoculated with Bt suspension delivered by soil-drench, and their systemic pathogenicity to D. citri nymphs were investigated. The pathogenicity of three wild-type Bt strains against D. citri third-instar nymphs was demonstrated. Among the 10 recombinant strains tested (each of them harboring a single cry or cyt gene), 3 can be highlighted, causing 42%-77% and 66%-90% nymphal mortality at 2 and 5 d after inoculation, respectively. The isolation of Bt cells from young citrus shoots and dead nymphs, and PCR performed with specific primers, confirmed the involvement of the Bt strains in the psyllid mortality. This is the first report showing the translocation of Bt strains from citrus seedling roots to shoots and their potential to control D. citri nymphs that fed on these soil-drench inoculated seedlings. The Bt strains that caused the highest mortality rates have the potential to be used as bioinsecticides to control D. citri and the identified genes can be used for the production of transgenic Bt citrus.
Collapse
Affiliation(s)
- Sílvia de Oliveira Dorta
- Programa de Pós-Graduação em Microbiologia Agrícola, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil
| | - Juliana Balbinotte
- Laboratório de Insetos Vetores de Fitopatógenos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Rose Monnerat
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - João Roberto Spotti Lopes
- Laboratório de Insetos Vetores de Fitopatógenos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Tatiane da Cunha
- Programa de Pós-Graduação em Microbiologia Agrícola, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil
| | | | | | - Marcos Antonio Machado
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil
| | - Juliana de Freitas-Astúa
- Embrapa Mandioca e Fruticultura, Cruz das Almas, BA, Brazil
- Laboratório de Bioquímica Fitopatológica, Instituto Biológico, São Paulo, SP, Brazil
| |
Collapse
|
29
|
Zhao XD, Zhang BW, Fu LJ, Li QL, Lin Y, Yu XQ. Possible Insecticidal Mechanism of Cry41-Related Toxin against Myzus persicae by Enhancing Cathepsin B Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4607-4615. [PMID: 32227950 DOI: 10.1021/acs.jafc.0c01020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cry toxins produced by Bacillus thuringiensis are well known for their high insecticidal activities against Lepidoptera, Diptera, and Coleoptera; however, their activities against Aphididae are very low. Recently, it has been reported that a Cry41-related toxin exhibited moderate activity against the aphid Myzus persicae, and thus, it is highly desirable to uncover its unique mechanism. In this paper, we report that Cathepsin B, calcium-transporting ATPase, and symbiotic bacterial-associated protein ATP-dependent-6-phosphofructokinase were pulled down from the homogenate of M. persicae as unique proteins that possibly bound to Cry41-related toxin. Cathepsin B has been reported to cleave and inactivate antiapoptotic proteins and plays a role in caspase-initiated apoptotic cascades. In this study, Cathepsin B was expressed in Escherichia coli and purified, and in vitro interaction between recombinant Cathepsin B and Cry41-related toxin was demonstrated. Interestingly, we found that addition of Cry41-related toxin obviously enhanced Cathepsin B activity. We propose a model for the mechanism of Cry41-related toxin as follows: Cry41-related toxin enters the aphid cells and enhances Cathepsin B activity, resulting in acceleration of apoptosis of aphid cells.
Collapse
Affiliation(s)
- Xiao-Di Zhao
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Bin-Wu Zhang
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Li-Jun Fu
- Fujian Key Laboratory of Ecology-toxicological Effects & Control for Emerging Contaminants, Putian University, Putian, Fujian 351100, PR China
| | - Qi-Lin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yi Lin
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
30
|
Concanavalin A Toxicity Towards Potato Psyllid and Apoptosis Induction in Midgut Cells. INSECTS 2020; 11:insects11040243. [PMID: 32295261 PMCID: PMC7240484 DOI: 10.3390/insects11040243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 01/03/2023]
Abstract
Concanavalin A (ConA), a legume lectin, has been drawing increasing attention in recent years concerning its toxicity against insects and its potential application in pest management. In an attempt to evaluate the effect of ConA on potato psyllid (Bactericera cockerelli), an economically important pest of solanaceous crops, the effect of ConA on potato psyllid survival, psyllid gut nuclear morphology, and expression of psyllid caspase genes were evaluated. Our results determined that artificial diet-feeding assays using ConA had deleterious effects on potato psyllids, resulting in significant psyllid mortality following ingestion. We also found that an apoptotic response was induced by ConA in psyllid midgut cells, which was demonstrated by the DNA fragmentation and abnormal nuclear architecture in the midgut cells. Following ConA ingestion, there was also upregulation of caspase genes in the psyllid midguts. Therefore, a key mechanism behind ConA toxicity towards potato psyllid probably involves the induction of apoptosis in midgut cells. This study could provide a better understanding of the mechanisms underlying ConA toxicity in insects and be a stepping stone towards the development of new psyllid control strategies based on plant lectins.
Collapse
|
31
|
Cantón PE, Bonning BC. Proteases and nucleases across midgut tissues of Nezara viridula (Hemiptera:Pentatomidae) display distinct activity profiles that are conserved through life stages. JOURNAL OF INSECT PHYSIOLOGY 2019; 119:103965. [PMID: 31610185 DOI: 10.1016/j.jinsphys.2019.103965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
The southern green stink bug, Nezara viridula is a polyphagous pest of commercially important crops during both nymph and adult stages. This insect has recently transitioned from a secondary agricultural pest to one of primary concern. Novel management solutions are needed due to the limited effectiveness of current control strategies. We performed biochemical and transcriptomic analyses to characterize digestive enzymes in the salivary glands and along midgut tissues of N. viridula nymphs and adults fed on sweet corn. The digestive profiles were more distinct between midgut regions (M1 to M3) than between life stages. Aminopeptidase and chymotrypsin activities declined from the M1 (anterior) toward the M3 midgut region. Cysteine protease activity was higher in the M2 and M3 regions than in M1. Differences in sensitivity to chymotrypsin inhibitors between midgut regions suggest that distinct genes or isoforms are expressed in different regions of the gut. In nymphs, DNA and RNA degradation was higher in M1 than in M3. Adult nuclease activity was low across all midgut regions, but high in salivary glands. The differences in protease activities are reflected by transcriptomic data and functional enrichment of GO terms. Together, our results show that different regions of the digestive tract of N. viridula have specific and distinct digestive properties, and increase our understanding of the physiology of this organism.
Collapse
Affiliation(s)
- Pablo Emiliano Cantón
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA.
| |
Collapse
|
32
|
Pers D, Hansen AK. The Effects of Different Diets and Transgenerational Stress on Acyrthosiphon pisum Development. INSECTS 2019; 10:E260. [PMID: 31438654 PMCID: PMC6780513 DOI: 10.3390/insects10090260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/29/2022]
Abstract
Despite the fact that sap-feeding hemipterans are major agricultural pests, little is known about the pea aphid's (Acyrthosiphon pisum) nymphal development, compared to other insect models. Given our limited understanding of A. pisum nymphal development and variability in the naming/timing of its developmental events between different environmental conditions and studies, here, we address developmental knowledge gaps by elucidating how diet impacts A. pisum nymphal development for the LSR1 strain when it develops on its universal host plant (Vicia faba), isolated leaves, and artificial diet. Moreover, we test how plant age and transgenerational stressors, such as overcrowding and low plant vigor, can affect nymphal development. We also validate a morphological method to quickly confirm the life stage of each nymphal instar within a mixed population. Overall, we found extremely high variation in the timing of developmental events and a significant delay in nymphal (~5-25-h/instar) and pre-reproductive adult (~40-h) development when reared on isolated leaves and artificial diets, compared to intact host plants. Also, delays in development were observed when reared on older host plants (~9-17-h/event, post 2nd instar) or when previous generations were exposed to overcrowding on host plants (~20-h delay in nymph laying) compared to controls.
Collapse
Affiliation(s)
- Daniel Pers
- Department of Entomology, University of California, Riverside, CA 92507, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, CA 92507, USA.
| |
Collapse
|
33
|
Veselova SV, Burkhanova GF, Rumyantsev SD, Blagova DK, Maksimov IV. Strains of Bacillus spp. Regulate Wheat Resistance to Greenbug Aphid Schizaphis graminum Rond. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819010186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Fernandez-Luna MT, Kumar P, Hall DG, Mitchell AD, Blackburn MB, Bonning BC. Toxicity of Bacillus thuringiensis-Derived Pesticidal Proteins Cry1Ab and Cry1Ba against Asian Citrus Psyllid, Diaphorina citri (Hemiptera). Toxins (Basel) 2019; 11:toxins11030173. [PMID: 30909400 PMCID: PMC6468527 DOI: 10.3390/toxins11030173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 11/25/2022] Open
Abstract
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera), is an important pest of citriculture. The ACP vectors a bacterium that causes huanglongbing (HLB), a devastating and incurable disease of citrus. The bacterium Bacillus thuringiensis (Bt) produces multiple toxins with activity against a diverse range of insects. In efforts to provide additional control methods for the ACP vector of HLB, we identified pesticidal proteins derived from Bt for toxicity against ACP. The trypsin proteolytic profiles of strain-derived toxins were characterized. Strain IBL-00200, one of six strains with toxins shown to have basal activity against ACP was selected for liquid chromatography-mass spectrometry (LC-MS/MS) identification of the individual Cry toxins expressed. Toxicity assays with individual toxins derived from IBL-00200 were then performed. The activated form of the Cry toxins Cry1Ab and Cry1Ba were toxic to ACP with LC50 values of approximately 120 µg/mL. Disruption of the midgut epithelium was associated with the toxicity of both the IBL-00200-derived toxin mixture, and with Cry1Ba. With further optimization of the efficacy of Cry1Ab and Cry1Ba, these toxins may have practical utility against ACP. Bt toxins with activity against ACP may provide an additional tool for management of ACP and the associated HLB disease, thereby providing a more sustainable and environmentally benign approach than repeated application of broad-spectrum insecticides.
Collapse
Affiliation(s)
| | - Pavan Kumar
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA.
| | - David G Hall
- U.S. Horticultural Research Laboratory, USDA ARS, Fort Pierce, FL 34945, USA.
| | - Ashaki D Mitchell
- Invasive Insect Biocontrol and Behavior Laboratory, USDA ARS, Beltsville, MD 20705, USA.
| | - Michael B Blackburn
- Invasive Insect Biocontrol and Behavior Laboratory, USDA ARS, Beltsville, MD 20705, USA.
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
35
|
Reduced caterpillar damage can benefit plant bugs in Bt cotton. Sci Rep 2019; 9:2727. [PMID: 30804420 PMCID: PMC6390097 DOI: 10.1038/s41598-019-38917-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
Bt cotton was genetically modified to produce insecticidal proteins targeting Lepidopteran pests and is therefore only minimally affected by caterpillar damage. This could lead to reduced levels of inherent, systemically inducible defensive compounds in Bt cotton which might benefit other important cotton herbivores such as plant bugs. We studied the effects of plant defense induction on the performance of the plant bug Lygus hesperus by caging nymphs on different food sources (bolls/squares) of Bt and non-Bt cotton which were either undamaged, damaged by Bt tolerant caterpillars, or treated with jasmonic acid (JA). Terpenoid induction patterns of JA-treated and L. hesperus-damaged plants were characterized for different plant structures and artificial diet assays using purified terpenoids (gossypol/heliocide H1/4) were conducted. Nymphs were negatively affected if kept on plants damaged by caterpillars or sprayed with JA. Performance of nymphs was increased if they fed on squares and by the Bt-trait which had a positive effect on boll quality as food. In general, JA-sprayed plants (but not L. hesperus infested plants) showed increased levels of terpenoids in the plant structures analyzed, which was especially pronounced in Bt cotton. Nymphs were not negatively affected by terpenoids in artificial diet assays indicating that other inducible cotton responses are responsible for the found negative effects on L. hesperus. Overall, genetically engineered plant defenses can benefit plant bugs by releasing them from plant-mediated indirect competition with lepidopterans which might contribute to increasing numbers of hemipterans in Bt cotton.
Collapse
|
36
|
Nalam V, Louis J, Shah J. Plant defense against aphids, the pest extraordinaire. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:96-107. [PMID: 30709498 DOI: 10.1016/j.plantsci.2018.04.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/02/2018] [Accepted: 04/30/2018] [Indexed: 05/20/2023]
Abstract
Aphids are amongst the most damaging pests of plants that use their stylets to penetrate the plant tissue to consume large amounts of phloem sap and thus deprive the plant of photoassimilates. In addition, some aphids vector important viral diseases of plants. Plant defenses targeting aphids are broadly classified as antibiosis, which interferes with aphid growth, survival and fecundity, and antixenosis, which influences aphid behavior, including plant choice and feeding from the sieve elements. Here we review the multitude of steps in the infestation process where these defenses can be exerted and highlight the progress made on identifying molecular factors and mechanisms that contribute to host defense, including plant resistance genes and signaling components, as well as aphid-derived effectors that elicit or attenuate host defenses. Also discussed is the impact of aphid-vectored plant viruses on plant-aphid interaction and the concept of tolerance, which allows plant to withstand or recover from damage resulting from the infestation.
Collapse
Affiliation(s)
- Vamsi Nalam
- Department of Biology, Indiana University-Purdue University, Fort Wayne, Indiana, 46805, USA.
| | - Joe Louis
- Department of Entomology and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| | - Jyoti Shah
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
| |
Collapse
|
37
|
Castellanos NL, Smagghe G, Sharma R, Oliveira EE, Christiaens O. Liposome encapsulation and EDTA formulation of dsRNA targeting essential genes increase oral RNAi-caused mortality in the Neotropical stink bug Euschistus heros. PEST MANAGEMENT SCIENCE 2019; 75:537-548. [PMID: 30094917 DOI: 10.1002/ps.5167] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND The Neotropical stink bug Euschistus heros is a major pest in soybean fields. Development of highly species-specific pesticides based on RNA interference (RNAi) could provide a new sustainable and environmentally friendly control strategy. RESULTS Here, the potential of RNAi as a pest control tool against E. heros was assessed. First, target gene selection using a microinjection approach was performed. Seven of the 15 candidate genes tested exhibited > 95% mortality after hemolymph injection of 27.5 ng dsRNA. Subsequently, dsRNA was administered orally using different formulations: naked dsRNA, liposome-encapsulated-dsRNA and dsRNA formulated with EDTA. Liposome-encapsulated dsRNA targeting vATPase A and muscle actin led to significant mortality after 14 days (45% and 42%, respectively), whereas EDTA-formulated dsRNA did so for only one of the target genes. Ex vivo analysis of the dsRNA stability in collected saliva indicated a strong dsRNA-degrading capacity by E. heros saliva, which could explain the need for dsRNA formulations. CONCLUSION The results demonstrate that continuous ingestion of dsRNA with EDTA or liposome-encapsulated dsRNA can prevent dsRNA from being degraded enzymatically and suggest great potential for using these formulations in dsRNA delivery to use RNAi as a functional genomics tool or for pest management of stink bugs. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nathaly L Castellanos
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Rohit Sharma
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Eugênio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Olivier Christiaens
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
38
|
Vanti GL, Katageri IS, Inamdar SR, Hiremathada V, Swamy BM. Potent insect gut binding lectin from Sclerotium rolfsii impart resistance to sucking and chewing type insects in cotton. J Biotechnol 2018; 278:20-27. [DOI: 10.1016/j.jbiotec.2018.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
|
39
|
Goto K, Horikoshi R, Mitomi M, Oyama K, Hirose T, Sunazuka T, Ōmura S. Synthesis and insecticidal efficacy of pyripyropene derivatives focusing on the C-1, C-7, and C-11 positions’ substituent groups. J Antibiot (Tokyo) 2018; 71:785-797. [DOI: 10.1038/s41429-018-0064-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 11/09/2022]
|
40
|
Abstract
Insect pests are responsible for substantial crop losses worldwide through direct damage and transmission of plant diseases, and novel approaches that complement or replace broad-spectrum chemical insecticides will facilitate the sustainable intensification of food production in the coming decades. Multiple strategies for improved crop resistance to insect pests, especially strategies relating to plant secondary metabolism and immunity and microbiome science, are becoming available. Recent advances in metabolic engineering of plant secondary chemistry offer the promise of specific toxicity or deterrence to insect pests; improved understanding of plant immunity against insects provides routes to optimize plant defenses against insects; and the microbiomes of insect pests can be exploited, either as a target or as a vehicle for delivery of insecticidal agents. Implementation of these advances will be facilitated by ongoing advances in plant breeding and genetic technologies.
Collapse
Affiliation(s)
- Angela E Douglas
- Department of Entomology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA;
| |
Collapse
|
41
|
Recent advancement on chemical arsenal of Bt toxin and its application in pest management system in agricultural field. 3 Biotech 2018; 8:201. [PMID: 29607282 DOI: 10.1007/s13205-018-1223-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 03/22/2018] [Indexed: 10/17/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a Gram-positive, spore-forming, soil bacterium, which is very popular bio-control agent in agricultural and forestry. In general, B. thuringiensis secretes an array of insecticidal proteins including toxins produced during vegetative growth phase (such as secreted insecticidal protein, Sip; vegetative insecticidal proteins, Vip), parasporal crystalline δ-endotoxins produced during vegetative stationary phase (such as cytolytic toxin, Cyt; and crystal toxin, Cry), and β-exotoxins. Till date, a wide spectrum of Cry proteins has been reported and most of them belong to three-domain-Cry toxins, Bin-like toxin, and Etx_Mtx2-like toxins. To the best of our knowledge, neither Bt insecticidal toxins are exclusive to Bt nor all the strains of Bt are capable of producing insecticidal Bt toxins. The lacuna in their latest classification has also been discussed. In this review, the updated information regarding the insecticidal Bt toxins and their different mode of actions were summarized. Before applying the Bt toxins on agricultural field, the non-specific effects of toxins should be investigated. We also have summarized the problem of insect resistance and the strategies to combat with this problem. We strongly believe that this information will help a lot to the budding researchers in the field of modern pest control biotechnology.
Collapse
|
42
|
Expression of Pinellia pedatisecta Lectin Gene in Transgenic Wheat Enhances Resistance to Wheat Aphids. Molecules 2018; 23:molecules23040748. [PMID: 29587341 PMCID: PMC6017037 DOI: 10.3390/molecules23040748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/18/2018] [Accepted: 03/22/2018] [Indexed: 11/23/2022] Open
Abstract
Wheat aphids are major pests during the seed filling stage of wheat. Plant lectins are toxic to sap-sucking pests such as wheat aphids. In this study, Pinellia pedatisecta agglutinin (ppa), a gene encoding mannose binding lectin, was cloned, and it shared 92.69% nucleotide similarity and 94% amino acid similarity with Pinellia ternata agglutinin (pta). The ppa gene, driven by the constitutive and phloem-specific ribulose bisphosphate carboxylase small subunit gene (rbcs) promoter in pBAC-rbcs-ppa expression vector, was transferred into the wheat cultivar Baofeng104 (BF104) by particle bombardment transformation. Fifty-four T0 transgenic plants were generated. The inheritance and expression of the ppa gene were confirmed by PCR and RT-PCR analysis respectively, and seven homozygous transgenic lines were obtained. An aphid bioassay on detached leaf segments revealed that seven ppa transgenic wheat lines had lower aphid growth rates and higher inhibition rates than BF104. Furthermore, two-year aphid bioassays in isolated fields showed that aphid numbers per tiller of transgenic lines were significantly decreased, compared with wild type BF104. Therefore, ppa could be a strong biotechnological candidate to produce aphid-resistant wheat.
Collapse
|
43
|
Niu L, Tian Z, Liu H, Zhou H, Ma W, Lei C, Chen L. Transgenic Bt cotton expressing Cry1Ac/Cry2Ab or Cry1Ac/EPSPS does not affect the plant bug Adelphocoris suturalis or the pollinating beetle Haptoncus luteolus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:788-793. [PMID: 29247941 DOI: 10.1016/j.envpol.2017.11.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/23/2017] [Accepted: 11/12/2017] [Indexed: 05/25/2023]
Abstract
The widespread cultivation of transgenic Bt cotton makes assessing the potential effects of this recombinant crop on non-target organisms a priority. However, the effect of Bt cotton on many insects is currently virtually unknown. The plant bug Adelphocoris suturalis is now a major pest of cotton in southern China and the beetle Haptoncus luteolus is one of the most ancient cotton pollinators. We conducted laboratory experiments to evaluate the toxicity of the Bt cotton varieties ZMSJ, which expresses the toxins Cry1Ac and Cry2Ab, and ZMKCKC, which expresses Cry1Ac and EPSPS, on adult A. suturalis and H. luteolus. No significant increase in the mortality of either species was detected after feeding on Bt cotton leaves or pollen for 7 days. Trace amounts of Cry1Ac and Cry2Ab proteins could be detected in both species but in vitro binding experiments found no evidence of Cry1Ac and Cry2Ab binding proteins. These results demonstrate that feeding on the leaves or pollen of these two Bt cotton varieties has no toxic effects on adult A. suturalis or H. luteolus.
Collapse
Affiliation(s)
- Lin Niu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhenya Tian
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hui Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hao Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
44
|
Shao E, Lin L, Liu S, Zhang J, Chen X, Sha L, Huang Z, Huang B, Guan X. Analysis of Homologs of Cry-toxin Receptor-Related Proteins in the Midgut of a Non-Bt Target, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:4839024. [PMID: 29415259 PMCID: PMC5804751 DOI: 10.1093/jisesa/iex102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 05/13/2023]
Abstract
The brown planthopper (BPH) Nilaparvata lugens is one of the most destructive insect pests in the rice fields of Asia. Like other hemipteran insects, BPH is not susceptible to Cry toxins of Bacillus thuringiensis (Bt) or transgenic rice carrying Bt cry genes. Lack of Cry receptors in the midgut is one of the main reasons that BPH is not susceptible to the Cry toxins. The main Cry-binding proteins (CBPs) of the susceptible insects are cadherin, aminopeptidase N (APN), and alkaline phosphatase (ALP). In this study, we analyzed and validated de novo assembled transcripts from transcriptome sequencing data of BPH to identify and characterize homologs of cadherin, APN, and ALP. We then compared the cadherin-, APN-, and ALP-like proteins of BPH to previously reported CBPs to identify their homologs in BPH. The sequence analysis revealed that at least one cadherin, one APN, and two ALPs of BPH contained homologous functional domains identified from the Cry-binding cadherin, APN, and ALP, respectively. Quantitative real-time polymerase chain reaction used to verify the expression level of each putative Cry receptor homolog in the BPH midgut indicated that the CBPs homologous APN and ALP were expressed at high or medium-high levels while the cadherin was expressed at a low level. These results suggest that homologs of CBPs exist in the midgut of BPH. However, differences in key motifs of CBPs, which are functional in interacting with Cry toxins, may be responsible for insusceptibility of BPH to Cry toxins.
Collapse
Affiliation(s)
- Ensi Shao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Li Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Sijun Liu
- Department of Entomology, Iowa State University, Ames, IA, 50011
| | - Jiao Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Xuelin Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Li Sha
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Zhipeng Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Biwang Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| |
Collapse
|
45
|
Smee MR, Baltrus DA, Hendry TA. Entomopathogenicity to Two Hemipteran Insects Is Common but Variable across Epiphytic Pseudomonas syringae Strains. FRONTIERS IN PLANT SCIENCE 2017; 8:2149. [PMID: 29312398 PMCID: PMC5742162 DOI: 10.3389/fpls.2017.02149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
Strains of the well-studied plant pathogen Pseudomonas syringae show large differences in their ability to colonize plants epiphytically and to inflict damage to hosts. Additionally, P. syringae can infect some sap-sucking insects and at least one P. syringae strain is highly virulent to insects, causing death to most individuals within as few as 4 days and growing to high population densities within insect hosts. The likelihood of agricultural pest insects coming into contact with transient populations of P. syringae while feeding on plants is high, yet the ecological implications of these interactions are currently not well understood as virulence has not been tested across a wide range of strains. To investigate virulence differences across strains we exposed the sweet potato whitefly, Bemisia tabaci, and the pea aphid, Acyrthosiphon pisum, both of which are cosmopolitan agricultural pests, to 12 P. syringae strains. We used oral inoculations with bacteria suspended in artificial diet in order to assay virulence while controlling for other variables such as differences in epiphytic growth ability. Generally, patterns of pathogenicity remain consistent across the two species of hemipteran insects, with bacterial strains from phylogroup II, or genomospecies 1, causing the highest rate of mortality with up to 86% of individuals dead after 72 h post infection. The rate of mortality is highly variable across strains, some significantly different from negative control treatments and others showing no discernable difference. Interestingly, one of the most pathogenic strains to both aphids and whiteflies (Cit7) is thought to be non-pathogenic on plants. We also found Cit7 to establish the highest epiphytic population after 48 h on fava beans. Between the nine P. syringae strains tested for epiphytic ability there is also much variation, but epiphytic ability was positively correlated with pathogenicity to insects, suggesting that the two traits may be linked and that strains likely to be found on plants may often be entomopathogenic. Our study highlights that there may be a use for epiphytic bacteria in the biological control of insect crop pests. It also suggests that interactions with epiphytic bacteria could be evolutionary and ecological drivers for hemipteran insects.
Collapse
Affiliation(s)
- Melanie R. Smee
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - David A. Baltrus
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Tory A. Hendry
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
46
|
Labreuche Y, Chenivesse S, Jeudy A, Le Panse S, Boulo V, Ansquer D, Pagès S, Givaudan A, Czjzek M, Le Roux F. Nigritoxin is a bacterial toxin for crustaceans and insects. Nat Commun 2017; 8:1248. [PMID: 29093459 PMCID: PMC5665878 DOI: 10.1038/s41467-017-01445-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 09/14/2017] [Indexed: 11/29/2022] Open
Abstract
The Tetraconata (Pancrustacea) concept proposes that insects are more closely related to aquatic crustaceans than to terrestrial centipedes or millipedes. The question therefore arises whether insects have kept crustacean-specific genetic traits that could be targeted by specific toxins. Here we show that a toxin (nigritoxin), originally identified in a bacterial pathogen of shrimp, is lethal for organisms within the Tetraconata and non-toxic to other animals. X-ray crystallography reveals that nigritoxin possesses a new protein fold of the α/β type. The nigritoxin N-terminal domain is essential for cellular translocation and likely encodes specificity for Tetraconata. Once internalized by eukaryotic cells, nigritoxin induces apoptotic cell death through structural features that are localized in the C-terminal domain of the protein. We propose that nigritoxin will be an effective means to identify a Tetraconata evolutionarily conserved pathway and speculate that nigritoxin holds promise as an insecticidal protein. The Tetraconata concept suggests that insects and crustaceans may share evolutionarily conserved pathways. Here, the authors describe the animal tropism and structure-function relationship of nigritoxin, showing that this protein is lethal for insects and crustaceans but harmless to other animals.
Collapse
Affiliation(s)
- Yannick Labreuche
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280, Plouzané, France.,Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Sabine Chenivesse
- Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Alexandra Jeudy
- Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Sophie Le Panse
- CNRS, FR 2424, Plateforme Merimage, Station Biologique de Roscoff, Place Georges Teissier, CS 90074, F-29688, Roscoff cedex, France
| | - Viviane Boulo
- Département Lagons, Ecosystèmes et Aquaculture Durables en Nouvelle-Calédonie, IFREMER, BP 2059, 98846, Nouméa cedex, New Caledonia
| | - Dominique Ansquer
- Département Lagons, Ecosystèmes et Aquaculture Durables en Nouvelle-Calédonie, IFREMER, BP 2059, 98846, Nouméa cedex, New Caledonia
| | - Sylvie Pagès
- UMR 1333 "Diversité, Génomes & Interactions Microorganismes - Insectes" Université Montpellier 2 - Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Alain Givaudan
- UMR 1333 "Diversité, Génomes & Interactions Microorganismes - Insectes" Université Montpellier 2 - Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Mirjam Czjzek
- Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Frédérique Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280, Plouzané, France. .,Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France.
| |
Collapse
|
47
|
Bachman PM, Ahmad A, Ahrens JE, Akbar W, Baum JA, Brown S, Clark TL, Fridley JM, Gowda A, Greenplate JT, Jensen PD, Mueller GM, Odegaard ML, Tan J, Uffman JP, Levine SL. Characterization of the Activity Spectrum of MON 88702 and the Plant-Incorporated Protectant Cry51Aa2.834_16. PLoS One 2017; 12:e0169409. [PMID: 28072875 PMCID: PMC5224830 DOI: 10.1371/journal.pone.0169409] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/16/2016] [Indexed: 11/19/2022] Open
Abstract
The spectrum of insecticidal activity of Cry51Aa2.834_16 protein targeting hemipteran and thysanopteran insect pests in cotton was characterized by selecting and screening multiple pest and non-pest species, based on representation of ecological functional groups, taxonomic relatedness (e.g. relationship to species where activity was observed), and availability for effective testing. Seven invertebrate orders, comprising 12 families and 17 representative species were screened for susceptibility to Cry51Aa2.834_16 protein and/or the ability of the protein to protect against feeding damage in laboratory, controlled environments (e.g. greenhouse/growth chamber), and/or field studies when present in cotton plants. The screening results presented for Cry51Aa2.834_16 demonstrate selective and limited activity within three insect orders. Other than Orius insidiosus, no activity was observed for Cry51Aa2.834_16 against several groups of arthropods that perform key ecological roles in some agricultural ecosystems (e.g. pollinators, decomposers, and natural enemies).
Collapse
Affiliation(s)
- Pamela M. Bachman
- Monsanto Company, St. Louis, Missouri, United States of America
- * E-mail: (PMB); (AA)
| | - Aqeel Ahmad
- Monsanto Company, St. Louis, Missouri, United States of America
- * E-mail: (PMB); (AA)
| | | | - Waseem Akbar
- Monsanto Company, Chesterfield, Missouri, United States of America
| | - James A. Baum
- Monsanto Company, Chesterfield, Missouri, United States of America
| | - Scott Brown
- Monsanto Company, Chesterfield, Missouri, United States of America
| | - Thomas L. Clark
- Monsanto Company, Chesterfield, Missouri, United States of America
| | | | - Anilkumar Gowda
- Monsanto Company, Chesterfield, Missouri, United States of America
| | | | - Peter D. Jensen
- Monsanto Company, St. Louis, Missouri, United States of America
| | | | | | - Jianguo Tan
- Monsanto Company, St. Louis, Missouri, United States of America
| | | | | |
Collapse
|
48
|
Malik HJ, Raza A, Amin I, Scheffler JA, Scheffler BE, Brown JK, Mansoor S. RNAi-mediated mortality of the whitefly through transgenic expression of double-stranded RNA homologous to acetylcholinesterase and ecdysone receptor in tobacco plants. Sci Rep 2016; 6:38469. [PMID: 27929123 PMCID: PMC5143975 DOI: 10.1038/srep38469] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/10/2016] [Indexed: 01/09/2023] Open
Abstract
The whitefly Bemisia tabaci (Genn.) is a pest and vector of plant viruses to crop and ornamental plants worldwide. Using RNA interference (RNAi) to down regulate whitefly genes by expressing their homologous double stranded RNAs in plants has great potential for management of whiteflies to reduce plant virus disease spread. Using a Tobacco rattle virus-derived plasmid for in planta transient expression of double stranded RNA (dsRNA) homologous to the acetylcholinesterase (AChE) and ecdysone receptor (EcR) genes of B. tabaci, resulted in significant adult whitefly mortality. Nicotiana tabacum L. plants expressing dsRNA homologous to B. tabaci AChE and EcR were constructed by fusing sequences derived from both genes. Mortality of adult whiteflies exposed to dsRNA by feeding on N. tabacum plants, compared to non-dsRNA expressing plants, recorded at 24-hr intervals post-ingestion for three days, was >90% and 10%, respectively. Analysis of gene expression by real time quantitative PCR indicated that whitefly mortality was attributable to the down-regulation of both target genes by RNAi. Results indicated that knock down of whitefly genes involved in neuronal transmission and transcriptional activation of developmental genes, has potential as a bio-pesticide to reduce whitefly population size and thereby decrease virus spread.
Collapse
Affiliation(s)
- Hassan Jamil Malik
- Molecular Virology and Gene Silencing Laboratory, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, PO Box #577, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Amir Raza
- Molecular Virology and Gene Silencing Laboratory, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, PO Box #577, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Imran Amin
- Molecular Virology and Gene Silencing Laboratory, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, PO Box #577, Faisalabad, Pakistan
| | - Jodi A. Scheffler
- USDA-ARS, Crop Genetics Research Unit, 141 Experiment Station Rd, Stoneville, MS 38776, USA
| | - Brian E. Scheffler
- USDA-ARS, Genomics and Bioinformatics Research Unit, 141 Experiment Station Rd, Stoneville, MS 38776, USA
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Shahid Mansoor
- Molecular Virology and Gene Silencing Laboratory, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, PO Box #577, Faisalabad, Pakistan
| |
Collapse
|
49
|
Parameters influencing Agrobacterium-mediated transformation system in safflower genotypes AKS-207 and PKV Pink. 3 Biotech 2016; 6:181. [PMID: 28330253 PMCID: PMC5001957 DOI: 10.1007/s13205-016-0497-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 08/16/2016] [Indexed: 10/30/2022] Open
Abstract
Shoot regeneration in safflower (Carthamus tinctorius 'AKS 207' and 'PKV Pink') genetically transformed using Agrobacterium was used for assessing various constraints to the efficiency of transformation including infection period, virulence induction medium, co-cultivation period, bacterial titre, selection regime, and the natural phenolic compound acetosyringone. Transformation frequency was promising with 8-10-day-old cotyledonary leaf explants. Therefore, explants of that age cultured on Agrobacterium minimal medium (AB) containing 100 µM acetosyringone were infected with Agrobacterium (cell titre 0.5 OD600nm) for 15 min followed by 48 h of co-cultivation on kanamycin-enriched medium (50 mg/L). Transformation of the shoots was confirmed using β-glucuronidase (GUS) histochemical assay and polymerase chain reaction (PCR). With the transformation protocol thus optimized, the transformation frequency as determined using GUS assays was 54.0 % for AKS 207 and 47.6 % for PKV Pink. The corresponding figures using PCR were 27.0 and 33.3 %. The transformed shoots required 10-14 weeks of culture initiation but produced very few roots.
Collapse
|
50
|
Shao ES, Lin GF, Liu S, Ma XL, Chen MF, Lin L, Wu SQ, Sha L, Liu ZX, Hu XH, Guan X, Zhang LL. Identification of transcripts involved in digestion, detoxification and immune response from transcriptome of Empoasca vitis (Hemiptera: Cicadellidae) nymphs. Genomics 2016; 109:58-66. [PMID: 27867104 DOI: 10.1016/j.ygeno.2016.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/31/2023]
Abstract
Tea production has been significantly impacted by the false-eye leafhopper, Empoasca vitis (Göthe), around Asia. To identify the key genes which are responsible for nutrition absorption, xenobiotic metabolism and immune response, the transcriptome of either alimentary tracts or bodies minus alimentary tract of E. vitis was sequenced and analyzed. Over 31 million reads were obtained from Illumina sequencing. De novo sequence assembly resulted in 52,182 unigenes with a mean size of 848nt. The assembled unigenes were then annotated using various databases. Transcripts of at least 566 digestion-, 224 detoxification-, and 288 immune-related putative genes in E. vitis were identified. In addition, relative expression of highly abundant transcripts was verified through quantitative real-time PCR. Results from this investigation provide genomic information about E. vitis, which will be helpful in further study of E. vitis biology and in the development of novel strategies to control this devastating pest.
Collapse
Affiliation(s)
- En-Si Shao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China; China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Gui-Fang Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Sijun Liu
- Department of Entomology, Iowa State University, Ames, Iowa, United States.
| | - Xiao-Li Ma
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Ming-Feng Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Li Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Song-Qing Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Li Sha
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Zhao-Xia Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Xiao-Hua Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Ling-Ling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China.
| |
Collapse
|