1
|
Rojas-Palomino J, Gómez-Restrepo A, Salinas-Restrepo C, Segura C, Giraldo MA, Calderón JC. Electrophysiological evaluation of the effect of peptide toxins on voltage-gated ion channels: a scoping review on theoretical and methodological aspects with focus on the Central and South American experience. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230048. [PMID: 39263598 PMCID: PMC11389830 DOI: 10.1590/1678-9199-jvatitd-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/02/2024] [Indexed: 09/13/2024] Open
Abstract
The effect of peptide toxins on voltage-gated ion channels can be reliably assessed using electrophysiological assays, such as the patch-clamp technique. However, much of the toxinological research done in Central and South America aims at purifying and characterizing biochemical properties of the toxins of vegetal or animal origin, lacking electrophysiological approaches. This may happen due to technical and infrastructure limitations or because researchers are unfamiliar with the techniques and cellular models that can be used to gain information about the effect of a molecule on ion channels. Given the potential interest of many research groups in the highly biodiverse region of Central and South America, we reviewed the most relevant conceptual and methodological developments required to implement the evaluation of the effect of peptide toxins on mammalian voltage-gated ion channels using patch-clamp. For that, we searched MEDLINE/PubMed and SciELO databases with different combinations of these descriptors: "electrophysiology", "patch-clamp techniques", "Ca2+ channels", "K+ channels", "cnidarian venoms", "cone snail venoms", "scorpion venoms", "spider venoms", "snake venoms", "cardiac myocytes", "dorsal root ganglia", and summarized the literature as a scoping review. First, we present the basics and recent advances in mammalian voltage-gated ion channel's structure and function and update the most important animal sources of channel-modulating toxins (e.g. cnidarian and cone snails, scorpions, spiders, and snakes), highlighting the properties of toxins electrophysiologically characterized in Central and South America. Finally, we describe the local experience in implementing the patch-clamp technique using two models of excitable cells, as well as the participation in characterizing new modulators of ion channels derived from the venom of a local spider, a toxins' source less studied with electrophysiological techniques. Fostering the implementation of electrophysiological methods in more laboratories in the region will strengthen our capabilities in many fields, such as toxinology, toxicology, pharmacology, natural products, biophysics, biomedicine, and bioengineering.
Collapse
Affiliation(s)
| | - Alejandro Gómez-Restrepo
- Physiology and Biochemistry Research Group -PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Cristian Salinas-Restrepo
- Toxinology, Therapeutic and Food Alternatives Research Group, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín, Colombia
| | - César Segura
- Malaria Group, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Marco A Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia, Medellín, Colombia
| | - Juan C Calderón
- Physiology and Biochemistry Research Group -PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| |
Collapse
|
2
|
Hazzi NA, Hormiga G. Molecular phylogeny of the tropical wandering spiders (Araneae, Ctenidae) and the evolution of eye conformation in the RTA clade. Cladistics 2023; 39:18-42. [PMID: 36200603 DOI: 10.1111/cla.12518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 01/13/2023] Open
Abstract
Tropical wandering spiders (Ctenidae) are a diverse group of cursorial predators with its greatest species richness in the tropics. Traditionally, Ctenidae are diagnosed based on the presence of eight eyes arranged in three rows (a 2-4-2 pattern). We present a molecular phylogeny of Ctenidae, including for the first time representatives of all of its subfamilies. The molecular phylogeny was inferred using five nuclear (histone H3, 28S, 18S, Actin and ITS-2) and four mitochondrial (NADH, COI, 12S and 16S) markers. The final matrix includes 259 terminals, 103 of which belong to Ctenidae and represent 28 of the current 49 described genera. We estimated divergence times by including fossils as calibration points and biogeographic events, and used the phylogenetic hypothesis obtained to reconstruct the evolution of the eye conformation in the retrolateral tibial apophysis (RTA) clade. Ctenidae and its main lineages originated during the Paleocene-Eocene and have diversified in the tropics since then. However, in some analyses Ctenidae was recovered as polyphyletic as the genus Ancylometes Bertkau, 1880 was placed as sister to Oxyopidae. Except for Acantheinae, in which the type genus Acantheis Thorell, 1891 is placed inside Cteninae, the four recognized subfamilies of Ctenidae are monophyletic in most analyses. The ancestral reconstruction of the ocular conformation in the retrolateral tibial apophysis clade suggests that the ocular pattern of Ctenidae has evolved convergently seven times and that it has originated from ocular conformations of two rows of four eyes (4-4) and the ocular pattern of lycosids (4-2-2). We also synonymize the monotypic genus Parabatinga Polotov & Brescovit, 2009 with Centroctenus Mello-Leitão, 1929. We discuss some of the putative morphological synapomorphies of the main ctenid lineages within the phylogenetic framework offered by the molecular phylogenetic results of the study.
Collapse
Affiliation(s)
- Nicolas A Hazzi
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC, 20052, USA.,Fundación Ecotonos, Cra 72 No. 13ª-56, Cali, Colombia
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC, 20052, USA
| |
Collapse
|
3
|
Complete mitochondrial genome of Phoneutria depilata (Araneae, Ctenidae): New Insights into the Phylogeny and Evolution of Spiders. Gene 2022; 850:146925. [PMID: 36191823 DOI: 10.1016/j.gene.2022.146925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/25/2022] [Indexed: 11/20/2022]
Abstract
Spiders (Araneae) are the most abundant terrestrial predators and megadiverse on earth. In recent years, the mitochondrial genome of a great diversity of species has been sequenced, mainly for ecological and commercial purposes. These studies have uncovered the existence of a variety of mitochondrial genome rearrangements. However, there is poor genetic information in several taxonomic families of spiders. We have sequenced the complete genome of Phoneutria depilata (Ctenidae) and, based on this, extract the mitogenomes of other ctenid species from published transcriptomes to perform a comparative study among spider species to determine the relationship between the level of mitochondrial rearrangements and its possible relationship with molecular variability in spiders. Complete mitochondrial genomes of eighteen spiders (including eight Ctenidae species) were obtained by two different methodologies (sequencing and transcriptome extraction). Fifty-eight spider mitochondrial genomes were downloaded from the NCBI database for gene order analysis. After verifying the annotation of each mitochondrial gene, a phylogenetic and a gene order analysis from 76 spider mitochondrial genomes were carried out. Our results show a high rate of annotation error in the published spider mitochondrial genomes, which could lead to errors in phylogenetic inference. Moreover, to provide new mitochondrial genomes in spiders by two different methodologies to obtain them, our analysis identifies six different mitochondrial architectures among all spiders. Translocation or tandem duplication random loss (TDRL) events in tRNA genes were identified to explain the evolution of the spider mitochondrial genome. In addition, our findings provide new insights into spider mitochondrial evolution.
Collapse
|
4
|
Vásquez-Escobar J, Romero-Gutiérrez T, Morales JA, Clement HC, Corzo GA, Benjumea DM, Corrales-García LL. Transcriptomic Analysis of the Venom Gland and Enzymatic Characterization of the Venom of Phoneutria depilata (Ctenidae) from Colombia. Toxins (Basel) 2022; 14:toxins14050295. [PMID: 35622542 PMCID: PMC9144723 DOI: 10.3390/toxins14050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/27/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
The transcriptome of the venom glands of the Phoneutria depilata spider was analyzed using RNA-seq with an Illumina protocol, which yielded 86,424 assembled transcripts. A total of 682 transcripts were identified as potentially coding for venom components. Most of the transcripts found were neurotoxins (156) that commonly act on sodium and calcium channels. Nevertheless, transcripts coding for some enzymes (239), growth factors (48), clotting factors (6), and a diuretic hormone (1) were found, which have not been described in this spider genus. Furthermore, an enzymatic characterization of the venom of P. depilata was performed, and the proteomic analysis showed a correlation between active protein bands and protein sequences found in the transcriptome. The transcriptomic analysis of P. depilata venom glands show a deeper description of its protein components, allowing the identification of novel molecules that could lead to the treatment of human diseases, or could be models for developing bioinsecticides.
Collapse
Affiliation(s)
- Julieta Vásquez-Escobar
- Grupo de Toxinología y Alternativas Farmacéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 1226, Colombia;
- Correspondence: (J.V.-E.); (L.L.C.-G.)
| | - Teresa Romero-Gutiérrez
- Traslational Bioengineering Department, Exact Sciences and Engineering University Center, Universidad de Guadalajara, Guadalajara 44430, Mexico; (T.R.-G.); (J.A.M.)
| | - José Alejandro Morales
- Traslational Bioengineering Department, Exact Sciences and Engineering University Center, Universidad de Guadalajara, Guadalajara 44430, Mexico; (T.R.-G.); (J.A.M.)
| | - Herlinda C. Clement
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (H.C.C.); (G.A.C.)
| | - Gerardo A. Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (H.C.C.); (G.A.C.)
| | - Dora M. Benjumea
- Grupo de Toxinología y Alternativas Farmacéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 1226, Colombia;
| | - Ligia Luz Corrales-García
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (H.C.C.); (G.A.C.)
- Departamento de Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 1226, Colombia
- Correspondence: (J.V.-E.); (L.L.C.-G.)
| |
Collapse
|
5
|
do Nascimento SM, de Oliveira UC, Nishiyama-Jr MY, Tashima AK, Silva Junior PID. Presence of a neprilysin on Avicularia juruensis (Mygalomorphae: Theraphosidae) venom. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.1878226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Soraia Maria do Nascimento
- Laboratory of Applied Toxinology – Center of Toxins, Immune-Response and Cell Signaling (CeTICS/CEPID), Butantan Institute, São Paulo, Brazil
- Postgraduate Program Interunits in Biotechnology, USP/IBu/IPT, São Paulo, Brazil
| | - Ursula Castro de Oliveira
- Laboratory of Applied Toxinology – Center of Toxins, Immune-Response and Cell Signaling (CeTICS/CEPID), Butantan Institute, São Paulo, Brazil
| | - Milton Yutaka Nishiyama-Jr
- Laboratory of Applied Toxinology – Center of Toxins, Immune-Response and Cell Signaling (CeTICS/CEPID), Butantan Institute, São Paulo, Brazil
| | | | - Pedro Ismael da Silva Junior
- Laboratory of Applied Toxinology – Center of Toxins, Immune-Response and Cell Signaling (CeTICS/CEPID), Butantan Institute, São Paulo, Brazil
- Postgraduate Program Interunits in Biotechnology, USP/IBu/IPT, São Paulo, Brazil
| |
Collapse
|
6
|
Khamtorn P, Peigneur S, Amorim FG, Quinton L, Tytgat J, Daduang S. De Novo Transcriptome Analysis of the Venom of Latrodectus geometricus with the Discovery of an Insect-Selective Na Channel Modulator. Molecules 2021; 27:molecules27010047. [PMID: 35011282 PMCID: PMC8746590 DOI: 10.3390/molecules27010047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/04/2022] Open
Abstract
The brown widow spider, Latrodectus geometricus, is a predator of a variety of agricultural insects and is also hazardous for humans. Its venom is a true pharmacopeia representing neurotoxic peptides targeting the ion channels and/or receptors of both vertebrates and invertebrates. The lack of transcriptomic information, however, limits our knowledge of the diversity of components present in its venom. The purpose of this study was two-fold: (1) carry out a transcriptomic analysis of the venom, and (2) investigate the bioactivity of the venom using an electrophysiological bioassay. From 32,505 assembled transcripts, 8 toxin families were classified, and the ankyrin repeats (ANK), agatoxin, centipede toxin, ctenitoxin, lycotoxin, scorpion toxin-like, and SCP families were reported in the L. geometricus venom gland. The diversity of L. geometricus venom was also uncovered by the transcriptomics approach with the presence of defensins, chitinases, translationally controlled tumor proteins (TCTPs), leucine-rich proteins, serine proteases, and other important venom components. The venom was also chromatographically purified, and the activity contained in the fractions was investigated using an electrophysiological bioassay with the use of a voltage clamp on ion channels in order to find if the neurotoxic effects of the spider venom could be linked to a particular molecular target. The findings show that U24-ctenitoxin-Pn1a involves the inhibition of the insect sodium (Nav) channels, BgNav and DmNav. This study provides an overview of the molecular diversity of L. geometricus venom, which can be used as a reference for the venom of other spider species. The venom composition profile also increases our knowledge for the development of novel insecticides targeting voltage-gated sodium channels.
Collapse
Affiliation(s)
- Pornsawan Khamtorn
- Program in Research and Development in Pharmaceuticals, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Steve Peigneur
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (S.P.); (J.T.)
| | - Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, MolSys Research Unit, Department of Chemistry, University of Liège, 4000 Liège, Belgium; (F.G.A.); (L.Q.)
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, Department of Chemistry, University of Liège, 4000 Liège, Belgium; (F.G.A.); (L.Q.)
| | - Jan Tytgat
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (S.P.); (J.T.)
| | - Sakda Daduang
- Center for Research and Development of Herbal Health Products (CDR-HHP), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence:
| |
Collapse
|
7
|
Lopez SMM, Aguilar JS, Fernandez JBB, Lao AGJ, Estrella MRR, Devanadera MKP, Ramones CMV, Villaraza AJL, Guevarra LA, Santiago-Bautista MR, Santiago LA. Neuroactive venom compounds obtained from Phlogiellus bundokalbo as potential leads for neurodegenerative diseases: insights on their acetylcholinesterase and beta-secretase inhibitory activities in vitro. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210009. [PMID: 34249120 PMCID: PMC8237997 DOI: 10.1590/1678-9199-jvatitd-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/31/2021] [Indexed: 11/22/2022] Open
Abstract
Background Spider venom is a rich cocktail of neuroactive compounds designed to prey capture and defense against predators that act on neuronal membrane proteins, in particular, acetylcholinesterases (AChE) that regulate synaptic transmission through acetylcholine (ACh) hydrolysis - an excitatory neurotransmitter - and beta-secretases (BACE) that primarily cleave amyloid precursor proteins (APP), which are, in turn, relevant in the structural integrity of neurons. The present study provides preliminary evidence on the therapeutic potential of Phlogiellus bundokalbo venom against neurodegenerative diseases. Methods Spider venom was extracted by electrostimulation and fractionated by reverse-phase high-performance liquid chromatography (RP-HPLC) and characterized by matrix-assisted laser desorption ionization-time flight mass spectrometry (MALDI-TOF-MS). Neuroactivity of the whole venom was observed by a neurobehavioral response from Terebrio molitor larvae in vivo and fractions were screened for their inhibitory activities against AChE and BACE in vitro. Results The whole venom from P. bundokalbo demonstrated neuroactivity by inducing excitatory movements from T. molitor for 15 min. Sixteen fractions collected produced diverse mass fragments from MALDI-TOF-MS ranging from 900-4500 Da. Eleven of sixteen fractions demonstrated AChE inhibitory activities with 14.34% (± 2.60e-4) to 62.05% (± 6.40e-5) compared with donepezil which has 86.34% (± 3.90e-5) inhibition (p > 0.05), while none of the fractions were observed to exhibit BACE inhibition. Furthermore, three potent fractions against AChE, F1, F3, and F16 displayed competitive and uncompetitive inhibitions compared to donepezil as the positive control. Conclusion The venom of P. bundokalbo contains compounds that demonstrate neuroactivity and anti-AChE activities in vitro, which could comprise possible therapeutic leads for the development of cholinergic compounds against neurological diseases.
Collapse
Affiliation(s)
- Simon Miguel M Lopez
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008.,Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines, 1101
| | - Jeremey S Aguilar
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008
| | - Jerene Bashia B Fernandez
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008
| | - Angelic Gayle J Lao
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines, 1015.,The Graduate School, University of Santo Tomas, Manila, Philippines, 1015.,Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines, 1101
| | - Mitzi Rain R Estrella
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008
| | - Mark Kevin P Devanadera
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines, 1015.,The Graduate School, University of Santo Tomas, Manila, Philippines, 1015
| | - Cydee Marie V Ramones
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines, 1101
| | - Aaron Joseph L Villaraza
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines, 1101
| | - Leonardo A Guevarra
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines, 1015
| | - Myla R Santiago-Bautista
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines, 1015.,The Graduate School, University of Santo Tomas, Manila, Philippines, 1015
| | - Librado A Santiago
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines, 1015.,The Graduate School, University of Santo Tomas, Manila, Philippines, 1015
| |
Collapse
|
8
|
Sierra Ramírez D, Guevara G, Franco Pérez LM, van der Meijden A, González‐Gómez JC, Carlos Valenzuela‐Rojas J, Prada Quiroga CF. Deciphering the diet of a wandering spider ( Phoneutria boliviensis; Araneae: Ctenidae) by DNA metabarcoding of gut contents. Ecol Evol 2021; 11:5950-5965. [PMID: 34141195 PMCID: PMC8207164 DOI: 10.1002/ece3.7320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022] Open
Abstract
Arachnids are the most abundant land predators. Despite the importance of their functional roles as predators and the necessity to understand their diet for conservation, the trophic ecology of many arachnid species has not been sufficiently studied. In the case of the wandering spider, Phoneutria boliviensis F. O. Pickard-Cambridge, 1897, only field and laboratory observational studies on their diet exist. By using a DNA metabarcoding approach, we compared the prey found in the gut content of males and females from three distant Colombian populations of P. boliviensis. By DNA metabarcoding of the cytochrome c oxidase subunit I (COI), we detected and identified 234 prey items (individual captured by the spider) belonging to 96 operational taxonomic units (OTUs), as prey for this wandering predator. Our results broaden the known diet of P. boliviensis with at least 75 prey taxa not previously registered in fieldwork or laboratory experimental trials. These results suggest that P. boliviensis feeds predominantly on invertebrates (Diptera, Lepidoptera, Coleoptera, and Orthoptera) and opportunistically on small squamates. Intersex and interpopulation differences were also observed. Assuming that prey preference does not vary between populations, these differences are likely associated with a higher local prey availability. Finally, we suggest that DNA metabarcoding can be used for evaluating subtle differences in the diet of distinct populations of P. boliviensis, particularly when predation records in the field cannot be established or quantified using direct observation.
Collapse
Affiliation(s)
- Diego Sierra Ramírez
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA)Corporación HuilturNeiva, Facultad de CienciasUniversidad del TolimaIbaguéColombia
| | - Giovany Guevara
- Grupo de Investigación en Zoología (GIZ)Facultad de CienciasUniversidad del TolimaIbaguéColombia
| | | | - Arie van der Meijden
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA)Corporación HuilturNeiva, Facultad de CienciasUniversidad del TolimaIbaguéColombia
- CIBIO Research Centre in Biodiversity and Genetic ResourcesInBIOUniversidade do PortoVairãoVila do CondePortugal
| | - Julio César González‐Gómez
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA)Corporación HuilturNeiva, Facultad de CienciasUniversidad del TolimaIbaguéColombia
- Facultad de Ciencias Naturales y MatemáticasUniversidad de IbaguéIbaguéColombia
| | - Juan Carlos Valenzuela‐Rojas
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA)Corporación HuilturNeiva, Facultad de CienciasUniversidad del TolimaIbaguéColombia
- Programa de Licenciatura en Ciencias Naturales y Educación AmbientalFacultad de EducaciónUniversidad SurcolombianaNeivaColombia
| | - Carlos Fernando Prada Quiroga
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA)Corporación HuilturNeiva, Facultad de CienciasUniversidad del TolimaIbaguéColombia
| |
Collapse
|
9
|
Lopes PH, Fukushima CS, Shoji R, Bertani R, Tambourgi DV. Sphingomyelinase D Activity in Sicarius tropicus Venom: Toxic Potential and Clues to the Evolution of SMases D in the Sicariidae Family. Toxins (Basel) 2021; 13:256. [PMID: 33916208 PMCID: PMC8066738 DOI: 10.3390/toxins13040256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022] Open
Abstract
The spider family Sicariidae includes three genera, Hexophthalma, Sicarius and Loxosceles. The three genera share a common characteristic in their venoms: the presence of Sphingomyelinases D (SMase D). SMases D are considered the toxins that cause the main pathological effects of the Loxosceles venom, that is, those responsible for the development of loxoscelism. Some studies have shown that Sicarius spiders have less or undetectable SMase D activity in their venoms, when compared to Hexophthalma. In contrast, our group has shown that Sicarius ornatus, a Brazilian species, has active SMase D and toxic potential to envenomation. However, few species of Sicarius have been characterized for their toxic potential. In order to contribute to a better understanding about the toxicity of Sicarius venoms, the aim of this study was to characterize the toxic properties of male and female venoms from Sicarius tropicus and compare them with that from Loxosceles laeta, one of the most toxic Loxosceles venoms. We show here that S. tropicus venom presents active SMases D. However, regarding hemolysis development, it seems that these toxins in this species present different molecular mechanisms of action than that described for Loxosceles venoms, whereas it is similar to those present in bacteria containing SMase D. Besides, our results also suggest that, in addition to the interspecific differences, intraspecific variations in the venoms' composition may play a role in the toxic potential of venoms from Sicarius species.
Collapse
Affiliation(s)
- Priscila Hess Lopes
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (P.H.L.); (R.S.)
| | - Caroline Sayuri Fukushima
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo 05503-900, Brazil; (C.S.F.); (R.B.)
- Finnish Museum of Natural History, University of Helsinki, 00014 Helsinki, Finland
| | - Rosana Shoji
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (P.H.L.); (R.S.)
| | - Rogério Bertani
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo 05503-900, Brazil; (C.S.F.); (R.B.)
| | - Denise V. Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (P.H.L.); (R.S.)
| |
Collapse
|
10
|
Hazzi NA, Hormiga G. Morphological and molecular evidence support the taxonomic separation of the medically important Neotropical spiders Phoneutria depilata (Strand, 1909) and P. boliviensis (F.O. Pickard-Cambridge, 1897) (Araneae, Ctenidae). Zookeys 2021; 1022:13-50. [PMID: 33762866 PMCID: PMC7960689 DOI: 10.3897/zookeys.1022.60571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
The species of the genus Phoneutria (Ctenidae), also called banana spiders, are considered amongst the most venomous spiders in the world. In this study we revalidate P. depilata (Strand, 1909), which had been synonymized with P. boliviensisis (F.O. Pickard-Cambridge, 1897), using morphological and nucleotide sequence data (COI and ITS-2) together with species delimitation methods. We synonymized Ctenus peregrinoides, Strand, 1910 and Phoneutria colombiana Schmidt, 1956 with P. depilata. Furthermore, we designated Ctenus signativenter Strand, 1910 as a nomen dubium because the exact identity of this species cannot be ascertained with immature specimens, but we note that the type locality suggests that the C. signativenter syntypes belong to P. depilata. We also provide species distribution models for both species of Phoneutria and test hypotheses of niche conservatism under an allopatric speciation model. Our phylogenetic analyses support the monophyly of the genus Phoneutria and recover P. boliviensis and P. depilata as sister species, although with low nodal support. In addition, the tree-based species delimitation methods also supported the separate identities of these two species. Phoneutria boliviensis and P. depilata present allopatric distributions separated by the Andean mountain system. Species distribution models indicate lowland tropical rain forest ecosystems as the most suitable habitat for these two Phoneutria species. In addition, we demonstrate the value of citizen science platforms like iNaturalist in improving species distribution knowledge based on occurrence records. Phoneutria depilata and P. boliviensis present niche conservatism following the expected neutral model of allopatric speciation. The compiled occurrence records and distribution maps for these two species, together with the morphological diagnosis of both species, will help to identify risk areas of accidental bites and assist health professionals to determine the identity of the species involved in bites, especially for P. depilata.
Collapse
Affiliation(s)
- Nicolas A. Hazzi
- The George Washington University, Department of Biological Sciences, Washington, D.C. 20052, USAThe George Washington UniversityWashington, D.CUnited States of America
- Fundación Ecotonos, Cra 72 No. 13ª-56, Cali, ColombiaFundación EcotonosCaliColombia
| | - Gustavo Hormiga
- The George Washington University, Department of Biological Sciences, Washington, D.C. 20052, USAThe George Washington UniversityWashington, D.CUnited States of America
| |
Collapse
|
11
|
Mayor ABR, Guevarra LA, Santiago-Bautista MR, Santiago LA. Phlogiellus bundokalbo spider venom: cytotoxic fractions against human lung adenocarcinoma (A549) cells. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190104. [PMID: 32788916 PMCID: PMC7401667 DOI: 10.1590/1678-9199-jvatitd-2019-0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Spider venom is a potential source of pharmacologically important compounds. Previous studies on spider venoms reported the presence of bioactive molecules that possess cell-modulating activities. Despite these claims, sparse scientific evidence is available on the cytotoxic mechanisms in relation to the components of the spider venom. In this study, we aimed to determine the cytotoxic fractions of the spider venom extracted from Phlogiellus bundokalbo and to ascertain the possible mechanism of toxicity towards human lung adenocarcinoma (A549) cells. Methods Spider venom was extracted by electrostimulation. Components of the extracted venom were separated by reversed-phase high performance liquid chromatography (RP-HPLC) using a linear gradient of 0.1% trifluoroacetic acid (TFA) in water and 0.1% TFA in 95% acetonitrile (ACN). Cytotoxic activity was evaluated by the MTT assay. Apoptotic or necrotic cell death was assessed by microscopic evaluation in the presence of Hoechst 33342 and Annexin V, Alexa FluorTM 488 conjugate fluorescent stains, and caspase activation assay. Phospholipase A2 (PLA2) activity of the cytotoxic fractions were also measured. Results We observed and isolated six fractions from the venom of P. bundokalbo collected from Aurora, Zamboanga del Sur. Four of these fractions displayed cytotoxic activities. Fractions AT5-1, AT5-3, and AT5-4 were found to be apoptotic while AT5-6, the least polar among the cytotoxic components, was observed to induce necrosis. PLA2 activity also showed cytotoxicity in all fractions but presented no relationship between specific activity of PLA2 and cytotoxicity. Conclusion The venom of P. bundokalbo spider, an endemic tarantula species in the Philippines, contains components that were able to induce either apoptosis or necrosis in A549 cells.
Collapse
Affiliation(s)
- Anna Beatriz R Mayor
- The Graduate School, University of Santo Tomas, Manila, Philippines.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Leonardo A Guevarra
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines.,Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Myla R Santiago-Bautista
- The Graduate School, University of Santo Tomas, Manila, Philippines.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines.,Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Librado A Santiago
- The Graduate School, University of Santo Tomas, Manila, Philippines.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines.,Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
12
|
Lopez SMM, Aguilar JS, Fernandez JBB, Lao AGJ, Estrella MRR, Devanadera MKP, Mayor ABR, Guevarra LA, Santiago-Bautista MR, Nuneza OM, Santiago L. The Venom of Philippine Tarantula (Theraphosidae) Contains Peptides with Pro-Oxidative and Nitrosative-Dependent Cytotoxic Activities against Breast Cancer Cells (MCF-7) In Vitro. Asian Pac J Cancer Prev 2020; 21:2423-2430. [PMID: 32856874 PMCID: PMC7771950 DOI: 10.31557/apjcp.2020.21.8.2423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Breast cancer is a multifactorial disease that affects women worldwide. Its progression is likely to be executed by oxidative stress wherein elevated levels of reactive oxygen and nitrogen species drive several breast cancer pathologies. Spider venom contains various pharmacological peptides which exhibit selective activity to abnormal expression of ion channels on cancer cell surface which can confer potent anti-cancer activities against this disease. Methods: Venom was extracted from a Philippine tarantula by electrostimulation and fractionated by reverse phase-high performance liquid chromatography (RP-HPLC). Venom fractions were collected and used for in vitro analyses such as cellular toxicity, morphological assessment, and oxidative stress levels. Results: The fractionation of crude spider venom generated several peaks which were predominantly detected spectrophotometrically and colorimetrically as peptides. Treatment of MCF-7 cell line of selected spider venom peptides induced production of several endogenous radicals such as hydroxyl radicals (•OH), nitric oxide radicals (•NO), superoxide anion radicals (•O2−) and lipid peroxides via malondialdehyde (MDA) reaction, which is comparable with the scavenging effects afforded by 400 µg/mL vitamin E and L-cysteine (p<0.05). Concomitantly, the free radicals produced decrease the mitochondrial membrane potential and metabolic activity as detected by rhodamine 123 and tetrazolium dye respectively (p>0.05). This is manifested by cytotoxicity in MCF-7 cells as seen by increase in membrane blebbing, cellular detachment, caspase activity and nuclear fragmentation. Conclusion: These data suggest that the Philippine tarantula venom contains peptide constituents exhibiting pro-oxidative and nitrosative-dependent cytotoxic activities against MCF-7 cells and can indicate mechanistic insights to further explore its potential application as prooxidants in cancer therapy.
Collapse
Affiliation(s)
- Simon Miguel M Lopez
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Jeremey S Aguilar
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | | | - Angelic Gayle J Lao
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Mitzi Rain R Estrella
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Mark Kevin P Devanadera
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila Philippines
| | - Anna Beatriz R Mayor
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila Philippines.,The Graduate School, University of Santo Tomas Manila, Philippines
| | - Leonardo A Guevarra
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila Philippines
| | - Myla R Santiago-Bautista
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila Philippines.,The Graduate School, University of Santo Tomas Manila, Philippines
| | - Olga M Nuneza
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Iligan City, Philippines
| | - Librado Santiago
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila Philippines.,The Graduate School, University of Santo Tomas Manila, Philippines
| |
Collapse
|
13
|
Valenzuela-Rojas JC, González-Gómez JC, van der Meijden A, Cortés JN, Guevara G, Franco LM, Pekár S, García LF. Prey and Venom Efficacy of Male and Female Wandering Spider, Phoneutria boliviensis (Araneae: Ctenidae). Toxins (Basel) 2019; 11:E622. [PMID: 31717836 PMCID: PMC6891708 DOI: 10.3390/toxins11110622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023] Open
Abstract
Spiders rely on venom to catch prey and few species are even capable of capturing vertebrates. The majority of spiders are generalist predators, possessing complex venom, in which different toxins seem to target different types of prey. In this study, we focused on the trophic ecology and venom toxicity of Phoneutria boliviensis F. O. Pickard-Cambridge, 1897, a Central American spider of medical importance. We tested the hypothesis that its venom is adapted to catch vertebrate prey by studying its trophic ecology and venom toxicity against selected vertebrate and invertebrate prey. We compared both trophic ecology (based on acceptance experiments) and toxicity (based on bioassays) among sexes of this species. We found that P. boliviensis accepted geckos, spiders, and cockroaches as prey, but rejected frogs. There was no difference in acceptance between males and females. The venom of P. boliviensis was far more efficient against vertebrate (geckos) than invertebrate (spiders) prey in both immobilization time and LD50. Surprisingly, venom of males was more efficient than that of females. Our results suggest that P. boliviensis has adapted its venom to catch vertebrates, which may explain its toxicity to humans.
Collapse
Affiliation(s)
- Juan Carlos Valenzuela-Rojas
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur y Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (J.C.V.-R.); (J.C.G.-G.); (A.v.d.M.)
| | - Julio César González-Gómez
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur y Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (J.C.V.-R.); (J.C.G.-G.); (A.v.d.M.)
| | - Arie van der Meijden
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur y Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (J.C.V.-R.); (J.C.G.-G.); (A.v.d.M.)
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vairão, Vila do Conde, Portugal
| | - Juan Nicolás Cortés
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 calle 67, Ibagué 730001, Colombia; (J.N.C.); (L.M.F.)
| | - Giovany Guevara
- Grupo de Investigación en Zoología, Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia;
| | - Lida Marcela Franco
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 calle 67, Ibagué 730001, Colombia; (J.N.C.); (L.M.F.)
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic;
| | - Luis Fernando García
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur y Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (J.C.V.-R.); (J.C.G.-G.); (A.v.d.M.)
- Grupo Multidisciplinario en Ecología para la Agricultura, Centro Universitario Regional del Este, Treinta y Tres 33000, Uruguay
| |
Collapse
|
14
|
Diniz MRV, Paiva ALB, Guerra-Duarte C, Nishiyama MY, Mudadu MA, de Oliveira U, Borges MH, Yates JR, Junqueira-de-Azevedo IDL. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS One 2018; 13:e0200628. [PMID: 30067761 PMCID: PMC6070231 DOI: 10.1371/journal.pone.0200628] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 06/29/2018] [Indexed: 01/23/2023] Open
Abstract
Phoneutria nigriventer is one of the largest existing true spiders and one of the few considered medically relevant. Its venom contains several neurotoxic peptides that act on different ion channels and chemical receptors of vertebrates and invertebrates. Some of these venom toxins have been shown as promising models for pharmaceutical or biotechnological use. However, the large diversity and the predominance of low molecular weight toxins in this venom have hampered the identification and deep investigation of the less abundant toxins and the proteins with high molecular weight. Here, we combined conventional and next-generation cDNA sequencing with Multidimensional Protein Identification Technology (MudPIT), to obtain an in-depth panorama of the composition of P. nigriventer spider venom. The results from these three approaches showed that cysteine-rich peptide toxins are the most abundant components in this venom and most of them contain the Inhibitor Cysteine Knot (ICK) structural motif. Ninety-eight sequences corresponding to cysteine-rich peptide toxins were identified by the three methodologies and many of them were considered as putative novel toxins, due to the low similarity to previously described toxins. Furthermore, using next-generation sequencing we identified families of several other classes of toxins, including CAPs (Cysteine Rich Secretory Protein-CRiSP, antigen 5 and Pathogenesis-Related 1-PR-1), serine proteinases, TCTPs (translationally controlled tumor proteins), proteinase inhibitors, metalloproteinases and hyaluronidases, which have been poorly described for this venom. This study provides an overview of the molecular diversity of P. nigriventer venom, revealing several novel components and providing a better basis to understand its toxicity and pharmacological activities.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- High-Throughput Nucleotide Sequencing
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Peptides/metabolism
- Proteomics
- Sequence Alignment
- Sequence Analysis, DNA
- Spider Venoms/metabolism
- Spiders/genetics
- Spiders/metabolism
- Toxins, Biological/genetics
- Toxins, Biological/metabolism
- Transcriptome
- Tumor Protein, Translationally-Controlled 1
Collapse
Affiliation(s)
- Marcelo R. V. Diniz
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Ana L. B. Paiva
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Milton Y. Nishiyama
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | | | - Ursula de Oliveira
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - Márcia H. Borges
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - John R. Yates
- Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | | |
Collapse
|
15
|
Perez-Riverol A, Dos Santos-Pinto JRA, Lasa AM, Palma MS, Brochetto-Braga MR. Wasp venomic: Unravelling the toxins arsenal of Polybia paulista venom and its potential pharmaceutical applications. J Proteomics 2017; 161:88-103. [PMID: 28435107 DOI: 10.1016/j.jprot.2017.04.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/06/2017] [Accepted: 04/17/2017] [Indexed: 02/08/2023]
Abstract
Polybia paulista (Hymenoptera: Vespidae) is a neotropical social wasp from southeast Brazil. As most social Hymenoptera, venom from P. paulista comprises a complex mixture of bioactive toxins ranging from low molecular weight compounds to peptides and proteins. Several efforts have been made to elucidate the molecular composition of the P. paulista venom. Data derived from proteomic, peptidomic and allergomic analyses has enhanced our understanding of the whole envenoming process caused by the insect sting. The combined use of bioinformatics, -omics- and molecular biology tools have allowed the identification, characterization, in vitro synthesis and recombinant expression of several wasp venom toxins. Some of these P. paulista - derived bioactive compounds have been evaluated for the rational design of antivenoms and the improvement of allergy specific diagnosis and immunotherapy. Molecular characterization of crude venom extract has enabled the description and isolation of novel toxins with potential biotechnological applications. Here, we review the different approaches that have been used to unravel the venom composition of P. paulista. We also describe the main groups of P. paulista - venom toxins currently identified and analyze their potential in the development of component-resolved diagnosis of allergy, and in the rational design of antivenoms and novel bioactive drugs.
Collapse
Affiliation(s)
- Amilcar Perez-Riverol
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, n° 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil.
| | | | - Alexis Musacchio Lasa
- Center for Genetic Engineering and Biotechnology, Biomedical Research Division, System Biology Department, Ave. 31, e/158 and 190, P.O. Box 6162, Cubanacan, Playa, Havana 10600, Cuba.
| | - Mario Sergio Palma
- Centro de Estudos de Insetos Sociais-CEIS-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, n° 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil.
| | - Márcia Regina Brochetto-Braga
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, n° 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil; Centro de Estudos de Venenos e Animais Peçonhentos-CEVAP (Univ Estadual Paulista), Rua José Barbosa de Barros, 1780, Fazenda Experimental Lageado, Botucatu 18610-307, SP, Brazil.
| |
Collapse
|
16
|
Estrada-Gómez S, Gomez-Rave L, Vargas-Muñoz LJ, van der Meijden A. Characterizing the biological and biochemical profile of six different scorpion venoms from the Buthidae and Scorpionidae family. Toxicon 2017; 130:104-115. [PMID: 28209477 DOI: 10.1016/j.toxicon.2017.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/08/2017] [Accepted: 02/11/2017] [Indexed: 11/25/2022]
Abstract
The objective of this study was to characterize six different scorpion venoms using biological and biochemical methods, including a preliminary MS/MS and a post-translational modifications analysis. Despite the diversity of scorpion species of medical importance in Africa and Colombia, the venoms of these arachnids have been poorly studied in these two regions. We report the biochemical, electrophoretic, chromatographic profile, internal peptide sequences with a post-translational modification report, and a preliminary antitumor activity of five different scorpions of the Buthidae family, Androctonus amoreuxi, Babycurus jacksoni, Grosphus grandidieri, Hottentotta gentili and Tityus fuhrmanni, and one of the Scorpionidae family Pandinus imperator. No L-amino oxidase activity was detected in the evaluated venoms. Proteolytic activity using azocasein was detected only in G. grandidieri and P. imperator, indicating the possible presence of metalloproteinases in these two venoms. Proteolytic activity using NOBA was detected in all venoms indicating the possible presence of serine-proteinases. Phospholipase A2 activity was detected in the venoms of P. imperator, G. grandidieri, H. gentili and A. amoreuxi, with P. imperator venom being the most active. All venoms analyzed contained defensin-like proteins, alpha toxins, metalloproteinases, neuropeptides, DBP affecting ion channels, DBP with antimicrobial activity, among others. Venoms from P. imperator, G. grandidieri and T. fuhrmanni showed a dose-dependent cytotoxic activity over MCF-7 cells. Only two isolated RP-HPLC fractions from P. imperator and T. fuhrmanni showed cytotoxic activity over MCF-7. No cytotoxic activity was found in the venoms from A. amoreuxi, B. jacksoni, and H. gentili.
Collapse
Affiliation(s)
- Sebastian Estrada-Gómez
- Programa de Ofidismo/Escorpionismo - Serpentario, Universidad de Antioquia UdeA, Carrera 53 No 61-30, Medellín, 050010, Antioquia, Colombia; Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, 050010, Antioquia, Colombia.
| | - Lyz Gomez-Rave
- Programa de Ofidismo/Escorpionismo - Serpentario, Universidad de Antioquia UdeA, Carrera 53 No 61-30, Medellín, 050010, Antioquia, Colombia; Maestría Bioquímica Clínica, Facultad de Ciencias de la Salud, Colegio Mayor de Antioquia, Medellín, 050040, Antioquia, Colombia.
| | - Leidy Johana Vargas-Muñoz
- Facultad de Medicina, Universidad Cooperativa de Colombia, Calle 50 A No 41-20, Medellín, 050012, Antioquia, Colombia.
| | - Arie van der Meijden
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, P-4485-661 Vila do Conde, Portugal.
| |
Collapse
|
17
|
Evaluation of antimicrobial, cytotoxic, and hemolytic activities from venom of the spider Lasiodora sp. Toxicon 2016; 122:119-126. [DOI: 10.1016/j.toxicon.2016.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/07/2016] [Accepted: 09/28/2016] [Indexed: 01/06/2023]
|
18
|
Laustsen AH, Solà M, Jappe EC, Oscoz S, Lauridsen LP, Engmark M. Biotechnological Trends in Spider and Scorpion Antivenom Development. Toxins (Basel) 2016; 8:E226. [PMID: 27455327 PMCID: PMC4999844 DOI: 10.3390/toxins8080226] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/19/2016] [Accepted: 07/13/2016] [Indexed: 12/28/2022] Open
Abstract
Spiders and scorpions are notorious for their fearful dispositions and their ability to inject venom into prey and predators, causing symptoms such as necrosis, paralysis, and excruciating pain. Information on venom composition and the toxins present in these species is growing due to an interest in using bioactive toxins from spiders and scorpions for drug discovery purposes and for solving crystal structures of membrane-embedded receptors. Additionally, the identification and isolation of a myriad of spider and scorpion toxins has allowed research within next generation antivenoms to progress at an increasingly faster pace. In this review, the current knowledge of spider and scorpion venoms is presented, followed by a discussion of all published biotechnological efforts within development of spider and scorpion antitoxins based on small molecules, antibodies and fragments thereof, and next generation immunization strategies. The increasing number of discovery and development efforts within this field may point towards an upcoming transition from serum-based antivenoms towards therapeutic solutions based on modern biotechnology.
Collapse
Affiliation(s)
- Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen East, Denmark.
| | - Mireia Solà
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Emma Christine Jappe
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Saioa Oscoz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Line Præst Lauridsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Mikael Engmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Bio and Health Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|