1
|
Meng R, Du X, Ge K, Wu C, Zhang Z, Liang X, Yang J, Zhang H. Does climate change increase the risk of marine toxins? Insights from changing seawater conditions. Arch Toxicol 2024; 98:2743-2762. [PMID: 38795135 DOI: 10.1007/s00204-024-03784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
Marine toxins produced by marine organisms threaten human health and impose a heavy public health burden on coastal countries. Lately, there has been an emergence of marine toxins in regions that were previously unaffected, and it is believed that climate change may be a significant factor. This paper systematically summarizes the impact of climate change on the risk of marine toxins in terms of changes in seawater conditions. From our findings, climate change can cause ocean warming, acidification, stratification, and sea-level rise. These climatic events can alter the surface temperature, salinity, pH, and nutrient conditions of seawater, which may promote the growth of various algae and bacteria, facilitating the production of marine toxins. On the other hand, climate change may expand the living ranges of marine organisms (such as algae, bacteria, and fish), thereby exacerbating the production and spread of marine toxins. In addition, the sources, distribution, and toxicity of ciguatoxin, tetrodotoxin, cyclic imines, and microcystin were described to improve public awareness of these emerging marine toxins. Looking ahead, developing interdisciplinary cooperation, strengthening monitoring of emerging marine toxins, and exploring more novel approaches are essential to better address the risks of marine toxins posed by climate change. Altogether, the interrelationships between climate, marine ecology, and marine toxins were analyzed in this study, providing a theoretical basis for preventing and managing future health risks from marine toxins.
Collapse
Affiliation(s)
- Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Richlen ML, Horn K, Uva V, Fachon E, Heidmann SL, Smith TB, Parsons ML, Anderson DM. Gambierdiscus species diversity and community structure in St. Thomas, USVI and the Florida Keys, USA. HARMFUL ALGAE 2024; 131:102562. [PMID: 38212087 PMCID: PMC11137678 DOI: 10.1016/j.hal.2023.102562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/13/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Ciguatera Poisoning (CP) is a widespread and complex poisoning syndrome caused by the consumption of fish or invertebrates contaminated with a suite of potent neurotoxins collectively known as ciguatoxins (CTXs), which are produced by certain benthic dinoflagellates species in the genera Gambierdiscus and Fukuyoa. Due to the complex nature of this HAB problem, along with a poor understanding of toxin production and entry in the coral reef food web, the development of monitoring, management, and forecasting approaches for CP has lagged behind those available for other HAB syndromes. Over the past two decades, renewed research on the taxonomy, physiology, and toxicology of CP-causing dinoflagellates has advanced our understanding of the species diversity that exists within these genera, including identification of highly toxic species (so called "superbugs") that likely contribute disproportionately to ciguatoxins entering coral reef food webs. The recent development of approaches for molecular analysis of field samples now provide the means to investigate in situ community composition, enabling characterization of spatio-temporal species dynamics, linkages between toxic species abundance and toxin flux, and the risk of ciguatoxin prevalence in fish. In this study we used species-specific fluorescent in situ hybridization (FISH) probes to investigate Gambierdiscus species composition and dynamics in St. Thomas (USVI) and the Florida Keys (USA) over multiple years (2018-2020). Within each location, samples were collected seasonally from several sites comprising varying depths, habitats, and algal substrates to characterize community structure over small spatial scales and across different host macrophytes. This approach enabled the quantitative determination of communities over spatiotemporal gradients, as well as the selective enumeration of species known to exhibit high toxicity, such as Gambierdiscus silvae. The investigation found differing community structure between St. Thomas and Florida Keys sites, driven in part by differences in the distribution of toxin-producing species G. silvae and G. belizeanus, which were present throughout sampling sites in St. Thomas but scarce or absent in the Florida Keys. This finding is significant given the high toxicity of G. silvae, and may help explain differences in fish toxicity and CP incidence between St. Thomas and Florida. Intrasite comparisons along a depth gradient found higher concentrations of Gambierdiscus spp. at deeper locations. Among the macrophytes sampled, Dictyota may be a likely vector for toxin transfer based on their widespread distribution, apparent colonization by G. silvae, and palatability to at least some herbivore grazers. Given its ubiquity throughout both study regions and sites, this taxa may also serve as a refuge, accumulating high concentrations of Gambierdiscus and other benthic dinoflagellates, which in turn can serve as source populations for highly palatable and ephemeral habitats nearby, such as turf algae. These studies further demonstrate the successful application of FISH probes in examining biogeographic structuring of Gambierdiscus communities, targeting individual toxin-producing species, and characterizing species-level dynamics that are needed to describe and model ecological drivers of species abundance and toxicity.
Collapse
Affiliation(s)
- Mindy L Richlen
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - Kali Horn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Victoria Uva
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Evangeline Fachon
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Boston, MA, 02139, USA
| | - Sarah L Heidmann
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, U.S. Virgin Islands 00802, USA
| | - Tyler B Smith
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, U.S. Virgin Islands 00802, USA
| | - Michael L Parsons
- The Water School, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Donald M Anderson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
3
|
Chinain M, Gatti Howell C, Roué M, Ung A, Henry K, Revel T, Cruchet P, Viallon J, Darius HT. Ciguatera poisoning in French Polynesia: A review of the distribution and toxicity of Gambierdiscus spp., and related impacts on food web components and human health. HARMFUL ALGAE 2023; 129:102525. [PMID: 37951623 DOI: 10.1016/j.hal.2023.102525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 11/14/2023]
Abstract
Ciguatera Poisoning (CP) is a seafood poisoning highly prevalent in French Polynesia. This illness results from the consumption of seafood contaminated with ciguatoxins (CTXs) produced by Gambierdiscus, a benthic dinoflagellate. Ciguatera significantly degrades the health and economic well-being of local communities largely dependent on reef fisheries for their subsistence. French Polynesia has been the site of rich and active CP research since the 1960's. The environmental, toxicological, and epidemiological data obtained in the frame of large-scale field surveys and a country-wide CP case reporting program conducted over the past three decades in the five island groups of French Polynesia are reviewed. Results show toxin production in Gambierdiscus in the natural environment may vary considerably at a temporal and spatial scale, and that several locales clearly represent Gambierdiscus spp. "biodiversity hotspots". Current data also suggest the "hot" species G. polynesiensis could be the primary source of CTXs in local ciguateric biotopes, pending formal confirmation. The prevalence of ciguatoxic fish and the CTX levels observed in several locales were remarkably high, with herbivores and omnivores often as toxic as carnivores. Results also confirm the strong local influence of Gambierdiscus spp. on the CTX toxin profiles characterized across multiple food web components including in CP-prone marine invertebrates. The statistics, obtained in the frame of a long-term epidemiological surveillance program established in 2007, point towards an apparent decline in the number of CP cases in French Polynesia as a whole; however, incidence rates remain dangerously high in some islands. Several of the challenges and opportunities, most notably those linked to the strong cultural ramifications of CP among local communities, that need to be considered to define effective risk management strategies are addressed.
Collapse
Affiliation(s)
- M Chinain
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia.
| | - C Gatti Howell
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - M Roué
- Institut de Recherche pour le Développement (IRD), UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 6570, Faa'a, Tahiti 98702, French Polynesia
| | - A Ung
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - K Henry
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - T Revel
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - P Cruchet
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - J Viallon
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - H T Darius
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| |
Collapse
|
4
|
Costa PR, Churro C, Rodrigues SM, Frazão B, Barbosa M, Godinho L, Soliño L, Timóteo V, Gouveia N. A 15-Year Retrospective Review of Ciguatera in the Madeira Islands (North-East Atlantic, Portugal). Toxins (Basel) 2023; 15:630. [PMID: 37999493 PMCID: PMC10674775 DOI: 10.3390/toxins15110630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
The first ciguatera fish poisoning (CFP) in Portugal dates from 2008 when 11 people reported CFP symptoms after consuming a 30 kg amberjack caught around the Selvagens Islands (Madeira Archipelago). Since then, 49 human poisonings have been reported. The emergence of a new threat challenged scientists and regulators, as methods for toxic microalgae analyses and ciguatoxin (CTX) detection were not implemented. To minimise the risk of ciguatera, the Madeira Archipelago authorities interdicted fisheries in Selvagens Islands and banned the capture of amberjacks weighing more than 10 kg in the entire region of Madeira Archipelago. The accurate identification and quantification of the benthic toxin-producing algae species spreading to new areas require efforts in terms of both microscopy and molecular techniques. Two ciguatera-causing dinoflagellates, Gambierdiscus excentricus and Gambierdiscus australes, were identified in the Madeira Island and Selvagens sub-archipelago, respectively. Regarding the CTX analysis (N2a cell-based assay and LC-MS) in fish, the results indicate that the Selvagens Islands are a ciguatera risk area and that fish vectoring CTX are not limited to top predator species. Nevertheless, advances and improvements in screening methods for the fast detection of toxicity in seafood along with certified reference material and sensitive and selective targeted analytical methods for the determination of CTX content are still pending. This study aims to revise the occurrence of ciguatera cases in the Madeira Archipelago since its first detection in 2008, to discuss the risk management strategy that was implemented, and to provide a summary of the available data on the bioaccumulation of CTX in marine fish throughout the marine food web, taking into consideration their ecological significance, ecosystem dynamics, and fisheries relevance.
Collapse
Affiliation(s)
- Pedro Reis Costa
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Catarina Churro
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal
| | - Susana Margarida Rodrigues
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Bárbara Frazão
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Miguel Barbosa
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Lia Godinho
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Lucía Soliño
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Viriato Timóteo
- Laboratório Regional de Veterinária e Segurança Alimentar, Caminho das Quebradas de Baixo nº 79, S. Martinho, 9000-254 Funchal, Portugal; (V.T.); (N.G.)
| | - Neide Gouveia
- Laboratório Regional de Veterinária e Segurança Alimentar, Caminho das Quebradas de Baixo nº 79, S. Martinho, 9000-254 Funchal, Portugal; (V.T.); (N.G.)
| |
Collapse
|
5
|
Pottier I, Lewis RJ, Vernoux JP. Ciguatera Fish Poisoning in the Caribbean Sea and Atlantic Ocean: Reconciling the Multiplicity of Ciguatoxins and Analytical Chemistry Approach for Public Health Safety. Toxins (Basel) 2023; 15:453. [PMID: 37505722 PMCID: PMC10467118 DOI: 10.3390/toxins15070453] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
Ciguatera is a major circumtropical poisoning caused by the consumption of marine fish and invertebrates contaminated with ciguatoxins (CTXs): neurotoxins produced by endemic and benthic dinoflagellates which are biotransformed in the fish food-web. We provide a history of ciguatera research conducted over the past 70 years on ciguatoxins from the Pacific Ocean (P-CTXs) and Caribbean Sea (C-CTXs) and describe their main chemical, biochemical, and toxicological properties. Currently, there is no official method for the extraction and quantification of ciguatoxins, regardless their origin, mainly due to limited CTX-certified reference materials. In this review, the extraction and purification procedures of C-CTXs are investigated, considering specific objectives such as isolating reference materials, analysing fish toxin profiles, or ensuring food safety control. Certain in vitro assays may provide sufficient sensitivity to detect C-CTXs at sub-ppb levels in fish, but they do not allow for individual identification of CTXs. Recent advances in analysis using liquid chromatography coupled with low- or high-resolution mass spectrometry provide new opportunities to identify known C-CTXs, to gain structural insights into new analogues, and to quantify C-CTXs. Together, these methods reveal that ciguatera arises from a multiplicity of CTXs, although one major form (C-CTX-1) seems to dominate. However, questions arise regarding the abundance and instability of certain C-CTXs, which are further complicated by the wide array of CTX-producing dinoflagellates and fish vectors. Further research is needed to assess the toxic potential of the new C-CTX and their role in ciguatera fish poisoning. With the identification of C-CTXs in the coastal USA and Eastern Atlantic Ocean, the investigation of ciguatera fish poisoning is now a truly global effort.
Collapse
Affiliation(s)
- Ivannah Pottier
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France;
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | | |
Collapse
|
6
|
Murray JS, Finch SC, Mudge EM, Wilkins AL, Puddick J, Harwood DT, Rhodes LL, van Ginkel R, Rise F, Prinsep MR. Structural Characterization of Maitotoxins Produced by Toxic Gambierdiscus Species. Mar Drugs 2022; 20:md20070453. [PMID: 35877746 PMCID: PMC9324523 DOI: 10.3390/md20070453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 01/27/2023] Open
Abstract
Identifying compounds responsible for the observed toxicity of the Gambierdiscus species is a critical step to ascertaining whether they contribute to ciguatera poisoning. Macroalgae samples were collected during research expeditions to Rarotonga (Cook Islands) and North Meyer Island (Kermadec Islands), from which two new Gambierdiscus species were characterized, G. cheloniae CAWD232 and G. honu CAWD242. Previous chemical and toxicological investigations of these species demonstrated that they did not produce the routinely monitored Pacific ciguatoxins nor maitotoxin-1 (MTX-1), yet were highly toxic to mice via intraperitoneal (i.p.) injection. Bioassay-guided fractionation of methanolic extracts, incorporating wet chemistry and chromatographic techniques, was used to isolate two new MTX analogs; MTX-6 from G. cheloniae CAWD232 and MTX-7 from G. honu CAWD242. Structural characterization of the new MTX analogs used a combination of analytical chemistry techniques, including LC–MS, LC–MS/MS, HR–MS, oxidative cleavage and reduction, and NMR spectroscopy. A substantial portion of the MTX-7 structure was elucidated, and (to a lesser extent) that of MTX-6. Key differences from MTX-1 included monosulfation, additional hydroxyl groups, an extra double bond, and in the case of MTX-7, an additional methyl group. To date, this is the most extensive structural characterization performed on an MTX analog since the complete structure of MTX-1 was published in 1993. MTX-7 was extremely toxic to mice via i.p. injection (LD50 of 0.235 µg/kg), although no toxicity was observed at the highest dose rate via oral administration (155.8 µg/kg). Future research is required to investigate the bioaccumulation and likely biotransformation of the MTX analogs in the marine food web.
Collapse
Affiliation(s)
- J. Sam Murray
- Cawthron Institute, Private Bag 2, Nelson 7040, New Zealand; (J.P.); (D.T.H.); (L.L.R.); (R.v.G.)
- New Zealand Food Safety Science and Research Centre, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand; (A.L.W.); (M.R.P.)
- Correspondence: ; Tel.: +64-3-548-2319
| | - Sarah C. Finch
- AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand;
| | - Elizabeth M. Mudge
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada;
| | - Alistair L. Wilkins
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand; (A.L.W.); (M.R.P.)
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, NO-0315 Oslo, Norway;
| | - Jonathan Puddick
- Cawthron Institute, Private Bag 2, Nelson 7040, New Zealand; (J.P.); (D.T.H.); (L.L.R.); (R.v.G.)
| | - D. Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson 7040, New Zealand; (J.P.); (D.T.H.); (L.L.R.); (R.v.G.)
- New Zealand Food Safety Science and Research Centre, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Lesley L. Rhodes
- Cawthron Institute, Private Bag 2, Nelson 7040, New Zealand; (J.P.); (D.T.H.); (L.L.R.); (R.v.G.)
| | - Roel van Ginkel
- Cawthron Institute, Private Bag 2, Nelson 7040, New Zealand; (J.P.); (D.T.H.); (L.L.R.); (R.v.G.)
| | - Frode Rise
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, NO-0315 Oslo, Norway;
| | - Michèle R. Prinsep
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand; (A.L.W.); (M.R.P.)
| |
Collapse
|
7
|
Tudó À, Rambla-Alegre M, Flores C, Sagristà N, Aguayo P, Reverté L, Campàs M, Gouveia N, Santos C, Andree KB, Marques A, Caixach J, Diogène J. Identification of New CTX Analogues in Fish from the Madeira and Selvagens Archipelagos by Neuro-2a CBA and LC-HRMS. Mar Drugs 2022; 20:md20040236. [PMID: 35447910 PMCID: PMC9031360 DOI: 10.3390/md20040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/10/2022] Open
Abstract
Ciguatera Poisoning (CP) is caused by consumption of fish or invertebrates contaminated with ciguatoxins (CTXs). Presently CP is a public concern in some temperate regions, such as Macaronesia (North-Eastern Atlantic Ocean). Toxicity analysis was performed to characterize the fish species that can accumulate CTXs and improve understanding of the ciguatera risk in this area. For that, seventeen fish specimens comprising nine species were captured from coastal waters inMadeira and Selvagens Archipelagos. Toxicity was analysed by screening CTX-like toxicity with the neuroblastoma cell-based assay (neuro-2a CBA). Afterwards, the four most toxic samples were analysed with liquid chromatography-high resolution mass spectrometry (LC-HRMS). Thirteen fish specimens presented CTX-like toxicity in their liver, but only four of these in their muscle. The liver of one specimen of Muraena augusti presented the highest CTX-like toxicity (0.270 ± 0.121 µg of CTX1B equiv·kg−1). Moreover, CTX analogues were detected with LC-HRMS, for M. augusti and Gymnothorax unicolor. The presence of three CTX analogues was identified: C-CTX1, which had been previously described in the area; dihydro-CTX2, which is reported in the area for the first time; a putative new CTX m/z 1127.6023 ([M+NH4]+) named as putative C-CTX-1109, and gambieric acid A.
Collapse
Affiliation(s)
- Àngels Tudó
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Maria Rambla-Alegre
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
- Correspondence: ; Tel.: +34-977-74-54-27 (ext. 1824)
| | - Cintia Flores
- Mass Spectrometry Laboratory, Organic Pollutants, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain; (C.F.); (J.C.)
| | - Núria Sagristà
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Paloma Aguayo
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Laia Reverté
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Mònica Campàs
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Neide Gouveia
- Regional Fisheries Management-Madeira Government, Direção de Serviços de Investigação das Pescas (DSI-DRP), Estrada da Pontinha, 9004-562 Funchal, Portugal;
| | - Carolina Santos
- Instituto das Florestas e Conservação da Natureza, IP-RAM, Secretaria Regional do Ambiente e Recursos Naturais, Regional Government of Madeira, IFCN IP-RAM, 9050-027 Funchal, Portugal;
| | - Karl B. Andree
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Antonio Marques
- Portuguese Institute of Sea and Atmosphere (IPMA), Division of Aquaculture, Seafood Upgrading and Bioprospection (DivAV), Avenida de Brasília, 1449-006 Lisbon, Portugal;
| | - Josep Caixach
- Mass Spectrometry Laboratory, Organic Pollutants, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain; (C.F.); (J.C.)
| | - Jorge Diogène
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| |
Collapse
|
8
|
Otero P, Silva M. Emerging Marine Biotoxins in European Waters: Potential Risks and Analytical Challenges. Mar Drugs 2022; 20:199. [PMID: 35323498 PMCID: PMC8955394 DOI: 10.3390/md20030199] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 01/21/2023] Open
Abstract
Harmful algal blooms pose a challenge regarding food safety due to their erratic nature and forming circumstances which are yet to be disclosed. The best strategy to protect human consumers is through legislation and monitoring strategies. Global warming and anthropological intervention aided the migration and establishment of emerging toxin producers into Europe's temperate waters, creating a new threat to human public health. The lack of information, standards, and reference materials delay effective solutions, being a matter of urgent resolution. In this work, the recent findings of the presence of emerging azaspiracids, spirolildes, pinnatoxins, gymnodimines, palitoxins, ciguatoxins, brevetoxins, and tetrodotoxins on European Coasts are addressed. The information concerning emerging toxins such as new matrices, locations, and toxicity assays is paramount to set the risk assessment guidelines, regulatory levels, and analytical methodology that would protect the consumers.
Collapse
Affiliation(s)
- Paz Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
- Department of Plant Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
9
|
Gaiani G, Cucchi F, Toldrà A, Andree KB, Rey M, Tsumuraya T, O'Sullivan CK, Diogène J, Campàs M. Electrochemical biosensor for the dual detection of Gambierdiscus australes and Gambierdiscus excentricus in field samples. First report of G. excentricus in the Balearic Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150915. [PMID: 34653452 DOI: 10.1016/j.scitotenv.2021.150915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Several genera of marine dinoflagellates are known to produce bioactive compounds that affect human health. Among them, Gambierdiscus and Fukuyoa stand out for their ability to produce several toxins, including the potent neurotoxic ciguatoxins (CTXs), which accumulate through the food web. Once fishes contaminated with CTXs are ingested by humans, it can result in an intoxication named ciguatera. Within the two genera, only some species are able to produce toxins, and G. australes and G. excentricus have been highlighted to be the most abundant and toxic. Although the genera Gambierdiscus and Fukuyoa are endemic to tropical areas, their presence in subtropical and temperate regions has been recently recorded. In this work, the combined use of species-specific PCR primers for G. australes and G. excentricus modified with short oligonucleotide tails allowed the development of a multiplex detection system for these two toxin-producing species. Simultaneous detection was achieved using capture probes specific for G. australes and G. excentricus immobilized on maleimide-coated magnetic beads (MBs), separately placed on the working electrodes of a dual electrode array. Additionally, a rapid DNA extraction technique based on a portable bead beater system and MBs was developed, significantly reducing the extraction time (from several hours to 30 min). The developed technique was able to detect as low as 10 cells of both Gambierdiscus species and allowed the first detection of G. excentricus in the Balearic Islands in 8 out of the 12 samples analyzed. Finally, field samples were screened for CTXs with an immunosensor, successfully reporting 13.35 ± 0.5 pg CTX1B equiv. cell-1 in one sample and traces of toxins in 3 out of the 9 samples analyzed. These developments provide rapid and cost-effective strategies for ciguatera risk assessment, with the aim of guaranteeing seafood safety.
Collapse
Affiliation(s)
- Greta Gaiani
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Francesca Cucchi
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain; Dipartimento di Scienze della Vita,UNITS, Via Giorgieri, 5, 34127 Trieste, Italy
| | - Anna Toldrà
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Karl B Andree
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - María Rey
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Takeshi Tsumuraya
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan
| | - Ciara K O'Sullivan
- Departament d'Enginyeria Química, URV, Països Catalans 26, 43007 Tarragona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Jorge Diogène
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Mònica Campàs
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| |
Collapse
|
10
|
Raposo-Garcia S, Louzao MC, Fuwa H, Sasaki M, Vale C, Botana LM. Determination of the toxicity equivalency factors for ciguatoxins using human sodium channels. Food Chem Toxicol 2022; 160:112812. [PMID: 35026329 DOI: 10.1016/j.fct.2022.112812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
Ciguatoxins (CTXs) which are produced by dinoflagellates of the genus Gambierdiscus and Fukuyoa and share a ladder-shaped polyether structure, are causative compounds of one of the most frequent foodborne illness disease known as ciguatera fish poisoning (CFP). CFP was initially found in tropical and subtropical areas but nowadays the dinoflagellates producers of ciguatoxins had spread to European coasts. Therefore, this raises the need of establishing toxicity equivalency factors for the different compounds that can contribute to ciguatera fish poisoning, since biological methods have been replaced by analytical techniques. Thus, in this work, the effects of six compounds causative of ciguatera, on their main target, the human voltage-gated sodium channels have been analyzed for the first time. The results presented here led to the conclusion that the order of potency was CTX1B, CTX3B, CTX4A, gambierol, gambierone and MTX3. Furthermore, the data indicate that the activation voltage of sodium channels is more sensitive to detect ciguatoxins than their effect on the peak sodium current amplitude.
Collapse
Affiliation(s)
- Sandra Raposo-Garcia
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain.
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
| | - Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan.
| | - Carmen Vale
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain.
| | - Luis M Botana
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain.
| |
Collapse
|
11
|
Dao HV, Uesugi A, Uchida H, Watanabe R, Matsushima R, Lim ZF, Jipanin SJ, Pham KX, Phan MT, Leaw CP, Lim PT, Suzuki T. Identification of Fish Species and Toxins Implicated in a Snapper Food Poisoning Event in Sabah, Malaysia, 2017. Toxins (Basel) 2021; 13:toxins13090657. [PMID: 34564661 PMCID: PMC8470750 DOI: 10.3390/toxins13090657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
In the coastal countries of Southeast Asia, fish is a staple diet and certain fish species are food delicacies to local populations or commercially important to individual communities. Although there have been several suspected cases of ciguatera fish poisoning (CFP) in Southeast Asian countries, few have been confirmed by ciguatoxins identification, resulting in limited information for the correct diagnosis of this food-borne disease. In the present study, ciguatoxin-1B (CTX-1B) in red snapper (Lutjanus bohar) implicated in a CFP case in Sabah, Malaysia, in December 2017 was determined by single-quadrupole selected ion monitoring (SIM) liquid chromatography/mass spectrometry (LC/MS). Continuous consumption of the toxic fish likely resulted in CFP, even when the toxin concentration in the fish consumed was low. The identification of the fish species was performed using the molecular characterization of the mitochondrial cytochrome c oxidase subunit I gene marker, with a phylogenetic analysis of the genus Lutjanus. This is the first report identifying the causative toxin in fish-implicated CFP in Malaysia.
Collapse
Affiliation(s)
- Ha Viet Dao
- Institute of Oceanography, Vietnam Academy of Science and Technology, 01 Cau Da, Nha Trang 650000, Vietnam; (K.X.P.); (M.-T.P.)
- Faculty of Marine Science and Technology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi 100000, Vietnam
- Correspondence:
| | - Aya Uesugi
- Environment and Fisheries Applied Techniques Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama 236-8648, Japan; (A.U.); (H.U.); (R.W.); (R.M.); (T.S.)
| | - Hajime Uchida
- Environment and Fisheries Applied Techniques Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama 236-8648, Japan; (A.U.); (H.U.); (R.W.); (R.M.); (T.S.)
| | - Ryuichi Watanabe
- Environment and Fisheries Applied Techniques Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama 236-8648, Japan; (A.U.); (H.U.); (R.W.); (R.M.); (T.S.)
| | - Ryoji Matsushima
- Environment and Fisheries Applied Techniques Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama 236-8648, Japan; (A.U.); (H.U.); (R.W.); (R.M.); (T.S.)
| | - Zhen Fei Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok 16310, Kelantan, Malaysia; (Z.F.L.); (C.P.L.); (P.T.L.)
| | - Steffiana J. Jipanin
- Likas Fisheries Complex, Department of Fisheries Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Ky Xuan Pham
- Institute of Oceanography, Vietnam Academy of Science and Technology, 01 Cau Da, Nha Trang 650000, Vietnam; (K.X.P.); (M.-T.P.)
| | - Minh-Thu Phan
- Institute of Oceanography, Vietnam Academy of Science and Technology, 01 Cau Da, Nha Trang 650000, Vietnam; (K.X.P.); (M.-T.P.)
- Faculty of Marine Science and Technology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi 100000, Vietnam
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok 16310, Kelantan, Malaysia; (Z.F.L.); (C.P.L.); (P.T.L.)
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok 16310, Kelantan, Malaysia; (Z.F.L.); (C.P.L.); (P.T.L.)
| | - Toshiyuki Suzuki
- Environment and Fisheries Applied Techniques Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama 236-8648, Japan; (A.U.); (H.U.); (R.W.); (R.M.); (T.S.)
| |
Collapse
|
12
|
Holmes MJ, Venables B, Lewis RJ. Critical Review and Conceptual and Quantitative Models for the Transfer and Depuration of Ciguatoxins in Fishes. Toxins (Basel) 2021; 13:toxins13080515. [PMID: 34437386 PMCID: PMC8402393 DOI: 10.3390/toxins13080515] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 02/08/2023] Open
Abstract
We review and develop conceptual models for the bio-transfer of ciguatoxins in food chains for Platypus Bay and the Great Barrier Reef on the east coast of Australia. Platypus Bay is unique in repeatedly producing ciguateric fishes in Australia, with ciguatoxins produced by benthic dinoflagellates (Gambierdiscus spp.) growing epiphytically on free-living, benthic macroalgae. The Gambierdiscus are consumed by invertebrates living within the macroalgae, which are preyed upon by small carnivorous fishes, which are then preyed upon by Spanish mackerel (Scomberomorus commerson). We hypothesise that Gambierdiscus and/or Fukuyoa species growing on turf algae are the main source of ciguatoxins entering marine food chains to cause ciguatera on the Great Barrier Reef. The abundance of surgeonfish that feed on turf algae may act as a feedback mechanism controlling the flow of ciguatoxins through this marine food chain. If this hypothesis is broadly applicable, then a reduction in herbivory from overharvesting of herbivores could lead to increases in ciguatera by concentrating ciguatoxins through the remaining, smaller population of herbivores. Modelling the dilution of ciguatoxins by somatic growth in Spanish mackerel and coral trout (Plectropomus leopardus) revealed that growth could not significantly reduce the toxicity of fish flesh, except in young fast-growing fishes or legal-sized fishes contaminated with low levels of ciguatoxins. If Spanish mackerel along the east coast of Australia can depurate ciguatoxins, it is most likely with a half-life of ≤1-year. Our review and conceptual models can aid management and research of ciguatera in Australia, and globally.
Collapse
Affiliation(s)
- Michael J. Holmes
- Queensland Department of Environment and Science, Brisbane 4102, Australia;
| | | | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
- Correspondence:
| |
Collapse
|
13
|
Murray JS, Finch SC, Puddick J, Rhodes LL, Harwood DT, van Ginkel R, Prinsep MR. Acute Toxicity of Gambierone and Quantitative Analysis of Gambierones Produced by Cohabitating Benthic Dinoflagellates. Toxins (Basel) 2021; 13:toxins13050333. [PMID: 34063025 PMCID: PMC8147941 DOI: 10.3390/toxins13050333] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/05/2023] Open
Abstract
Understanding the toxicity and production rates of the various secondary metabolites produced by Gambierdiscus and cohabitating benthic dinoflagellates is essential to unravelling the complexities associated with ciguatera poisoning. In the present study, a sulphated cyclic polyether, gambierone, was purified from Gambierdiscus cheloniae CAWD232 and its acute toxicity was determined using intraperitoneal injection into mice. It was shown to be of low toxicity with an LD50 of 2.4 mg/kg, 9600 times less toxic than the commonly implicated Pacific ciguatoxin-1B, indicating it is unlikely to play a role in ciguatera poisoning. In addition, the production of gambierone and 44-methylgambierone was assessed from 20 isolates of ten Gambierdiscus, two Coolia and two Fukuyoa species using quantitative liquid chromatography–tandem mass spectrometry. Gambierone was produced by seven Gambierdiscus species, ranging from 1 to 87 pg/cell, and one species from each of the genera Coolia and Fukuyoa, ranging from 2 to 17 pg/cell. The production of 44-methylgambierone ranged from 5 to 270 pg/cell and was ubiquitous to all Gambierdiscus species tested, as well as both species of Coolia and Fukuyoa. The relative production ratio of these two secondary metabolites revealed that only two species produced more gambierone, G. carpenteri CAWD237 and G. cheloniae CAWD232. This represents the first report of gambierone acute toxicity and production by these cohabitating benthic dinoflagellate species. While these results demonstrate that gambierones are unlikely to pose a risk to human health, further research is required to understand if they bioaccumulate in the marine food web.
Collapse
Affiliation(s)
- J. Sam Murray
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (J.P.); (L.L.R.); (D.T.H.); (R.v.G.)
- New Zealand Food Safety Science and Research Centre, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
- Correspondence:
| | - Sarah C. Finch
- AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand;
| | - Jonathan Puddick
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (J.P.); (L.L.R.); (D.T.H.); (R.v.G.)
| | - Lesley L. Rhodes
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (J.P.); (L.L.R.); (D.T.H.); (R.v.G.)
| | - D. Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (J.P.); (L.L.R.); (D.T.H.); (R.v.G.)
- New Zealand Food Safety Science and Research Centre, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Roel van Ginkel
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (J.P.); (L.L.R.); (D.T.H.); (R.v.G.)
| | - Michèle R. Prinsep
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| |
Collapse
|
14
|
Marine invertebrate interactions with Harmful Algal Blooms - Implications for One Health. J Invertebr Pathol 2021; 186:107555. [PMID: 33607127 DOI: 10.1016/j.jip.2021.107555] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Harmful Algal Blooms (HAB) are natural atypical proliferations of micro or macro algae in either marine or freshwater environments which have significant impacts on human, animal and ecosystem health. The causative HAB organisms are primarily dinoflagellates and diatoms in marine and cyanobacteria within freshwater ecosystems. Several hundred species of HABs, most commonly marine dinoflagellates affect animal and ecosystem health either directly through physical, chemical or biological impacts on surrounding organisms or indirectly through production of algal toxins which transfer through lower-level trophic organisms to higher level predators. Traditionally, a major focus of HABs has concerned their natural production of toxins which bioaccumulate in filter-feeding invertebrates, which with subsequent trophic transfer and biomagnification cause issues throughout the food web, including the human health of seafood consumers. Whilst in many regions of the world, regulations, monitoring and risk management strategies help mitigate against the impacts from HAB/invertebrate toxins upon human health, there is ever-expanding evidence describing enormous impacts upon invertebrate health, as well as the health of higher trophic level organisms and marine ecosystems. This paper provides an overview of HABs and their relationships with aquatic invertebrates, together with a review of their combined impacts on animal, human and ecosystem health. With HAB/invertebrate outbreaks expected in some regions at higher frequency and intensity in the coming decades, we discuss the needs for new science, multi-disciplinary assessment and communication which will be essential for ensuring a continued increasing supply of aquaculture foodstuffs for further generations.
Collapse
|
15
|
Chinain M, Gatti CMI, Darius HT, Quod JP, Tester PA. Ciguatera poisonings: A global review of occurrences and trends. HARMFUL ALGAE 2021; 102:101873. [PMID: 33875186 DOI: 10.1016/j.hal.2020.101873] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 06/12/2023]
Abstract
Ciguatera Poisoning (CP) is the most prevalent, phycotoxin related seafood poisoning across the globe, affecting between 10,000 and 50,000 people annually. This illness results from the consumption of seafood contaminated with lipid soluble toxins known as ciguatoxins (CTXs) that are produced by benthic dinoflagellates in the genera Gambierdiscus and Fukuyoa. The present work reviews the global occurrence of CP events and outbreaks, based on both scientific and gray literature. Ciguatera prevalence is significantly underestimated due to a lack of recognition of ciguatera symptoms, limited collection of epidemiological data on a global level, and reticence to report ciguatera in CP-endemic regions. Analysis of the time-series data available for a limited number of countries indicates the highest incidence rates are consistently reported from two historical CP-endemic areas i.e., the Pacific and Caribbean regions, a situation due in part to the strong reliance of local communities on marine resources. Ciguatera-related fatalities are rare (<0.1% of reported cases). The vast majority of outbreaks involve carnivorous fish including snappers, groupers, wrasses, and barracudas. Since 2000, an expansion of the geographical range of CP has been observed in several areas like Macaronesia and east and southeast Asia. In some of these locales, random surveys confirmed the presence of CTXs in locally sourced fish, consistent with the concurrent report of novel CP incidents (e.g., Canary Islands, Madeira, Selvagens Islands, New South Wales). One characteristic of outbreaks occurring in Asia is that they often present as large disease clusters due to group consumption of a single contaminated fish. Similar observations are reported from the Indian Ocean in the form of shark poisoning outbreaks which often lead to singular types of CP characterized by a high fatality rate. Other atypical forms of CP linked to the consumption of marine invertebrates also have been documented recently. Owing to the significant health, socioeconomic and socio-cultural impacts of ciguatera, there is an urgent need for increased, standardized, coordinated efforts in ciguatera education, monitoring and research programs. Several regional and international initiatives have emerged recently, that may help improve patients' care, data collection at a global scale, and risk monitoring and management capabilities in countries most vulnerable to CP's toxic threat.
Collapse
Affiliation(s)
- M Chinain
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia.
| | - C M I Gatti
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - H T Darius
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - J-P Quod
- ARVAM-Pareto, Technopole de la Réunion, 14 rue Henri Cornu, 97490 Sainte-Clotilde, La Réunion, France
| | - P A Tester
- Ocean Tester, LLC, 295 Dills Point Road, Beaufort, NC 28516, USA
| |
Collapse
|
16
|
Silva M, Rodríguez I, Barreiro A, Kaufmann M, Neto AI, Hassouani M, Sabour B, Alfonso A, Botana LM, Vasconcelos V. Lipophilic toxins occurrence in non-traditional invertebrate vectors from North Atlantic Waters (Azores, Madeira, and Morocco): Update on geographical tendencies and new challenges for monitoring routines. MARINE POLLUTION BULLETIN 2020; 161:111725. [PMID: 33080436 DOI: 10.1016/j.marpolbul.2020.111725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/15/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
In the last decades, due to monitoring programs and strict legislation poisoning incidents occurrence provoked by ingestion of naturally contaminated marine organisms has decreased. However, climate change and anthropogenic interference contributed to the expansion and establishment of toxic alien species to more temperate ecosystems. In this work, the coasts of Madeira, São Miguel islands and the northwestern Moroccan coast were surveyed for four groups of lipophilic toxins (yessotoxins, azaspiracids, pectenotoxins, and spirolides), searching for new vectors and geographical tendencies. Twenty-four species benthic organisms were screened using UHPLC-MS/MS technique. We report 19 new vectors for these toxins, six of them with commercial interest (P. aspera, P. ordinaria, C. lampas, P. pollicipes, H. tuberculata and P. lividus). Regarding toxin uptake a south-north gradient was detected. This study contributes to the update of monitoring routines and legislation policies, comprising a wider range of vectors, to better serve consumers and ecosystems preservation.
Collapse
Affiliation(s)
- Marisa Silva
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4619-007, Portugal; Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal.
| | - Inés Rodríguez
- Laboratorio CIFGA S.A., Avda. Benigno Rivera no. 56, 27003 Lugo, Spain; Department of Pharmacology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain.
| | - Aldo Barreiro
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal
| | - Manfred Kaufmann
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal; University of Madeira, Faculty of Life Sciences, Marine Biology Station of Funchal, 9000-107 Funchal, Portugal; Center of Interdisciplinary Marine and Environmental Research of Madeira-CIIMAR-Madeira, Edif. Madeira Tecnopolo, Caminho da Penteada, 9020-105 Funchal, Portugal.
| | - Ana Isabel Neto
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal; cE3c/GBA-Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group, Department of Biology, Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, São Miguel, Azores, Portugal.
| | - Meryem Hassouani
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4619-007, Portugal; Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal
| | - Brahim Sabour
- Phycology Research Unit-Biotechnology, Ecosystems Ecology and Valorization Laboratory, Faculty of Sciences El Jadida, University Chouaib Doukkali, BP20 El Jadida, Morocco.
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain.
| | - Luis M Botana
- Department of Pharmacology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain.
| | - Vitor Vasconcelos
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4619-007, Portugal; Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal.
| |
Collapse
|
17
|
Gaiani G, Leonardo S, Tudó À, Toldrà A, Rey M, Andree KB, Tsumuraya T, Hirama M, Diogène J, O'Sullivan CK, Alcaraz C, Campàs M. Rapid detection of ciguatoxins in Gambierdiscus and Fukuyoa with immunosensing tools. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111004. [PMID: 32768745 DOI: 10.1016/j.ecoenv.2020.111004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Consumption of seafood contaminated with ciguatoxins (CTXs) leads to a foodborne disease known as ciguatera. Primary producers of CTXs are epibenthic dinoflagellates of the genera Gambierdiscus and Fukuyoa. In this study, thirteen Gambierdiscus and Fukuyoa strains were cultured, harvested at exponential phase, and CTXs were extracted with an implemented rapid protocol. Microalgal extracts were obtained from pellets with a low cell abundance (20,000 cell/mL) and were then analyzed with magnetic bead (MB)-based immunosensing tools (colorimetric immunoassay and electrochemical immunosensor). It is the first time that these approaches are used to screen Gambierdiscus and Fukuyoa strains, providing not only a global indication of the presence of CTXs, but also the ability to discriminate between two series of congeners (CTX1B and CTX3C). Analysis of the microalgal extracts revealed the presence of CTXs in 11 out of 13 strains and provided new information about Gambierdiscus and Fukuyoa toxin profiles. The use of immunosensing tools in the analysis of microalgal extracts facilitates the elucidation of further knowledge regarding these dinoflagellate genera and can contribute to improved ciguatera risk assessment and management.
Collapse
Affiliation(s)
- G Gaiani
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - S Leonardo
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - À Tudó
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - A Toldrà
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - M Rey
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - K B Andree
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - T Tsumuraya
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8570, Japan
| | - M Hirama
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8570, Japan
| | - J Diogène
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - C K O'Sullivan
- Departament D'Enginyeria Química, URV, Av. Països Catalans 26, 43007, Tarragona, Spain; ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - C Alcaraz
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - M Campàs
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain.
| |
Collapse
|
18
|
Leonardo S, Gaiani G, Tsumuraya T, Hirama M, Turquet J, Sagristà N, Rambla-Alegre M, Flores C, Caixach J, Diogène J, O'Sullivan CK, Alcaraz C, Campàs M. Addressing the Analytical Challenges for the Detection of Ciguatoxins Using an Electrochemical Biosensor. Anal Chem 2020; 92:4858-4865. [PMID: 32133843 DOI: 10.1021/acs.analchem.9b04499] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The importance of ciguatoxins (CTXs) in seafood safety and their emerging occurrence in locations far away from tropical areas highlight the need for simple and low-cost methods for the sensitive and rapid detection of these potent marine toxins to protect seafood consumers. Herein, an electrochemical immunosensor for the detection of CTXs is presented. A sandwich configuration is proposed, using magnetic beads (MBs) as immobilization supports for two capture antibodies, with their combination facilitating the detection of CTX1B, CTX3C, 54-deoxyCTX1B, and 51-hydroxyCTX3C. PolyHRP-streptavidin is used for the detection of the biotinylated detector antibody. Experimental conditions are first optimized using colorimetry, and these conditions are subsequently used for electrochemical detection on electrode arrays. Limits of detection at the pg/mL level are achieved for CTX1B and 51-hydroxyCTX3C. The applicability of the immunosensor to the analysis of fish samples is demonstrated, attaining detection of CTX1B at contents as low as 0.01 μg/kg and providing results in correlation with those obtained using mouse bioassay (MBA) and cell-based assay (CBA), and confirmed by liquid chromatography coupled to high-resolution mass spectrometry (LC-ESI-HRMS). This user-friendly bioanalytical tool for the rapid detection of CTXs can be used to mitigate ciguatera risk and contribute to the protection of consumer health.
Collapse
Affiliation(s)
- Sandra Leonardo
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Greta Gaiani
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Takeshi Tsumuraya
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan
| | - Masahiro Hirama
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan
| | - Jean Turquet
- Citeb, C/o CYROI, 2 Rue Maxime Rivière, 97490 Sainte Clotilde, La Réunion, France
| | - Núria Sagristà
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | | | - Cintia Flores
- Mass Spectrometry Laboratory/Organic Pollutants, IDAEA-CSIC, C. Jordi Girona 18, 08034 Barcelona, Spain
| | - Josep Caixach
- Mass Spectrometry Laboratory/Organic Pollutants, IDAEA-CSIC, C. Jordi Girona 18, 08034 Barcelona, Spain
| | - Jorge Diogène
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Ciara K O'Sullivan
- Departament d'Enginyeria Química, URV, Av. Països Catalans 26, 43007 Tarragona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Carles Alcaraz
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Mònica Campàs
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| |
Collapse
|
19
|
Soliño L, Costa PR. Global impact of ciguatoxins and ciguatera fish poisoning on fish, fisheries and consumers. ENVIRONMENTAL RESEARCH 2020; 182:109111. [PMID: 31927300 DOI: 10.1016/j.envres.2020.109111] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Ciguatera fish poisoning (CFP) is one of the most devastating food-borne illnesses caused by fish consumption. Ciguatoxins (CTXs) are potent neurotoxins synthesized by the benthic microalgae Gambierdiscus spp. and Fukuyoa spp. that are transmitted to fish by grazing and predation. Despite the high incidence of CFP, affecting an estimated number of 50,000 persons per year in tropical and subtropical latitudes, the factors underlying CTXs occurrence are still not well understood. Toxin transfer and dynamics in fish and food-webs are complex. Feeding habits and metabolic pathways determine the toxin profile and toxicity of fish, and migratory species may transport and spread the hazard. Furthermore, CTX effect on fish may be a limiting factor for fish recruitment and toxin prevalence. Recently, new occurrences of Gambierdiscus spp. in temperate areas have been concomitant with the detection of toxic fish and CFP incidents in non-endemic areas. CFP cases in Europe have led to implementation of monitoring programs and fisheries restrictions with considerable impact on local economies. More than 400 species of fish can be vectors of CTXs, and most of them are high-valued commercial species. Thus, the risk uncertainty and the spread of Gambierdiscus have serious consequences for fisheries and food safety. Here, we present a critical review of CTXs impacts on fish, fisheries, and humans, based on the current knowledge on CFP incidence and CTXs prevalence in microalgae and fish.
Collapse
Affiliation(s)
- Lucía Soliño
- IPMA - Instituto Português do Mar da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1495-006, Lisbon, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| | - Pedro Reis Costa
- IPMA - Instituto Português do Mar da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1495-006, Lisbon, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
20
|
Gray MJ, Gates MC. A descriptive study of ciguatera fish poisoning in Cook Islands dogs and cats: Exposure history, clinical signs, and formulation of a case definition. Vet World 2020; 13:372-385. [PMID: 32255982 PMCID: PMC7096299 DOI: 10.14202/vetworld.2020.372-385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/13/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Ciguatera fish poisoning (CFP) is a multisystem toxicosis caused by the ingestion of warm water marine species. Dogs and cats are susceptible to CFP, but there is little published and much unknown about the condition in these species. This study aims to describe the syndrome of CFP in dogs and cats and to develop a case definition. MATERIALS AND METHODS Six years (March 2011-February 2017) of medical records from the Esther Honey Foundation Animal Clinic (the only veterinary clinic in the Cook Islands during the study period) were reviewed to identify cases of CFP. Data relating to exposure history and clinical signs were collected. RESULTS Two hundred forty-six cases of CFP were identified, comprising 165 dogs and 81 cats. Fish ingestion was documented in 29% of cases. Reef/lagoon fish and moray eels were most commonly implicated. The toxicosis was characterized by motor dysfunction with a high frequency of ataxia and paresis/paralysis/recumbency. Respiratory and gastrointestinal systems were also affected, especially in canine CFP cases. A multi-tiered case definition and a diagnostic algorithm for CFP in dogs and cats were developed based upon the findings of this study and a review of the existing literature. CONCLUSION This case series is the largest study of canine and feline CFP to date. It documents the exposure history of cases and describes in detail clinical signs of the toxicosis. It also proposes a system of case classification that has the potential to both assist the diagnosis of CFP and facilitate future surveillance and research activities.
Collapse
Affiliation(s)
- Michelle J. Gray
- Master of Veterinary Medicine Program, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - M. Carolyn Gates
- EpiCentre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
21
|
Ciguatera Fish Poisoning: The Risk from an Aotearoa/New Zealand Perspective. Toxins (Basel) 2020; 12:toxins12010050. [PMID: 31952334 PMCID: PMC7020403 DOI: 10.3390/toxins12010050] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 01/24/2023] Open
Abstract
Gambierdiscus and Fukuyoa species have been identified in Aotearoa/New Zealand's coastal waters and G. polynesiensis, a known producer of ciguatoxins, has been isolated from Rangitāhua/Kermadec Islands (a New Zealand territory). The warming of the Tasman Sea and the waters around New Zealand's northern subtropical coastline heighten the risk of Gambierdiscus proliferating in New Zealand. If this occurs, the risk of ciguatera fish poisoning due to consumption of locally caught fish will increase. Research, including the development and testing of sampling methods, molecular assays, and chemical and toxicity tests, will continue. Reliable monitoring strategies are important to manage and mitigate the risk posed by this emerging threat. The research approaches that have been made, many of which will continue, are summarised in this review.
Collapse
|
22
|
Tsumuraya T, Hirama M. Rationally Designed Synthetic Haptens to Generate Anti-Ciguatoxin Monoclonal Antibodies, and Development of a Practical Sandwich ELISA to Detect Ciguatoxins. Toxins (Basel) 2019; 11:E533. [PMID: 31540301 PMCID: PMC6784113 DOI: 10.3390/toxins11090533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/02/2022] Open
Abstract
"Ciguatera" fish poisoning (CFP) is one of the well-known food poisoning caused by the ingestion of fish that have accumulated trace amounts of ciguatoxins (CTXs). CFP affects more than 50,000 individuals annually. The difficulty in preventing CFP comes from the lack of reliable methods for analysis of CTXs in contaminated fish, together with the normal appearance, taste, and smell of CTX-contaminated fish. Thus, a sensitive, accurate, routine, and portable analytical method to detect CTXs is urgently required. Monoclonal antibodies (mAbs) specific against either wing of major CTX congeners (CTX1B, 54-deoxyCTX1B, CTX3C, and 51-hydroxyCTX3C) were generated by immunizing mice with rationally designed synthetic haptens-KLH conjugates instead of the CTXs. Haptenic groups with a surface area greater than 400 Å2 are required to produce mAbs that can strongly bind to CTXs. Furthermore, a highly sensitive fluorescence-based sandwich enzyme-linked immunosorbent assay (ELISA) was developed. This protocol can detect and quantify four major CTX congeners (CTX1B, 54-deoxyCTX1B, CTX3C, and 51-hydroxyCTX3C) with a limit of detection (LOD) of less than 1 pg/mL. The LOD determined for this sandwich ELISA is sufficient to detect CTX1B-contaminated fish at the FDA guidance level of 0.01 ppb.
Collapse
Affiliation(s)
- Takeshi Tsumuraya
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan.
| | - Masahiro Hirama
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan.
| |
Collapse
|
23
|
Chinain M, Gatti C, Roué M, Darius H. Ciguatera poisoning in French Polynesia: insights into the novel trends of an ancient disease. New Microbes New Infect 2019; 31:100565. [PMID: 31312457 PMCID: PMC6610707 DOI: 10.1016/j.nmni.2019.100565] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 01/19/2023] Open
Abstract
Ciguatera is a non-bacterial seafood poisoning highly prevalent in French Polynesia where it constitutes a major health issue and a major threat to food sustainability and food security for local populations. Ciguatera results from the bioaccumulation in marine food webs of toxins known as ciguatoxins, originating from benthic dinoflagellates in the genera Gambierdiscus and Fukuyoa. Ciguatera is characterized by a complex array of gastrointestinal, neurological and cardiovascular symptoms. The effective management of patients is significantly hampered by the occurrence of atypical forms and/or chronic sequelae in some patients, and the lack of both a confirmatory diagnosis test and a specific antidote. In addition, recent findings have outlined the implication of novel species of the causative organisms as well as new vectors, namely marine invertebrates, in ciguatera outbreaks. Another novel trend relates to the geographical expansion of this disease to previously unaffected areas, not only in certain island groups of French Polynesia but also in temperate regions worldwide, as a likely consequence of the effects of climate change.
Collapse
Affiliation(s)
- M. Chinain
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR 241-EIO, Papeete, Tahiti, French Polynesia
| | - C.M. Gatti
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR 241-EIO, Papeete, Tahiti, French Polynesia
| | - M. Roué
- Institut de Recherche pour le Développement—UMR 241-EIO, Pirae, Tahiti, French Polynesia
| | - H.T. Darius
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR 241-EIO, Papeete, Tahiti, French Polynesia
| |
Collapse
|
24
|
Estevez P, Castro D, Pequeño-Valtierra A, Giraldez J, Gago-Martinez A. Emerging Marine Biotoxins in Seafood from European Coasts: Incidence and Analytical Challenges. Foods 2019; 8:E149. [PMID: 31052406 PMCID: PMC6560407 DOI: 10.3390/foods8050149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 11/30/2022] Open
Abstract
The presence of emerging contaminants in food and the sources of the contamination are relevant issues in food safety. The impact of climate change on these contaminations is a topic widely debated; however, the consequences of climate change for the food system is not as deeply studied as other human and animal health and welfare issues. Projections of climate change in Europe have been evaluated through the EU Commission, and the impact on the marine environment is considered a priority issue. Marine biotoxins are produced by toxic microalgae and are natural contaminants of the marine environment. They are considered to be an important contaminant that needs to be evaluated. Their source is affected by oceanographic and environmental conditions; water temperature, sunlight, salinity, competing microorganisms, nutrients, and wind and current directions affect the growth and proliferation of microalgae. Although climate change should not be the only reason for this increase and other factors such as eutrophication, tourism, fishery activities, etc. could be considered, the influence of climate change has been observed through increased growth of dinoflagellates in areas where they have not been previously detected. An example of this is the recent emergence of ciguatera fish poisoning toxins, typically found in tropical or subtropical areas from the Pacific and Caribbean and in certain areas of the Atlantic Sea such as the Canary Islands (Spain) and Madeira (Portugal). In addition, the recent findings of the presence of tetrodotoxins, typically found in certain areas of the Pacific, are emerging in the EU and contaminating not only the fish species where these toxins had been found before but also bivalve mollusks. The emergence of these marine biotoxins in the EU is a reason for concern in the EU, and for this reason, the risk evaluation and characterization of these toxins are considered a priority for the European Food Safety Authorities (EFSA), which also emphasize the search for occurrence data using reliable and efficient analytical methods.
Collapse
Affiliation(s)
- Pablo Estevez
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - David Castro
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Ana Pequeño-Valtierra
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Jorge Giraldez
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Ana Gago-Martinez
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
- EU Reference Laboratory for marine biotoxins, Campus Universitario de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
25
|
Implementation of liquid chromatography tandem mass spectrometry for the analysis of ciguatera fish poisoning in contaminated fish samples from Atlantic coasts. Food Chem 2019; 280:8-14. [DOI: 10.1016/j.foodchem.2018.12.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 12/22/2022]
|
26
|
Tamele IJ, Silva M, Vasconcelos V. The Incidence of Marine Toxins and the Associated Seafood Poisoning Episodes in the African Countries of the Indian Ocean and the Red Sea. Toxins (Basel) 2019; 11:E58. [PMID: 30669603 PMCID: PMC6357038 DOI: 10.3390/toxins11010058] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 01/09/2023] Open
Abstract
The occurrence of Harmful Algal Blooms (HABs) and bacteria can be one of the great threats to public health due to their ability to produce marine toxins (MTs). The most reported MTs include paralytic shellfish toxins (PSTs), amnesic shellfish toxins (ASTs), diarrheic shellfish toxins (DSTs), cyclic imines (CIs), ciguatoxins (CTXs), azaspiracids (AZTs), palytoxin (PlTXs), tetrodotoxins (TTXs) and their analogs, some of them leading to fatal outcomes. MTs have been reported in several marine organisms causing human poisoning incidents since these organisms constitute the food basis of coastal human populations. In African countries of the Indian Ocean and the Red Sea, to date, only South Africa has a specific monitoring program for MTs and some other countries count only with respect to centers of seafood poisoning control. Therefore, the aim of this review is to evaluate the occurrence of MTs and associated poisoning episodes as a contribution to public health and monitoring programs as an MT risk assessment tool for this geographic region.
Collapse
Affiliation(s)
- Isidro José Tamele
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Institute of Biomedical Science Abel Salazar, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Department of Chemistry, Faculty of Sciences, Eduardo Mondlane University, Av. Julius Nyerere, n 3453, Campus Principal, Maputo 257, Mozambique.
| | - Marisa Silva
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
| |
Collapse
|
27
|
Identification of Causative Ciguatoxins in Red Snappers Lutjanus bohar Implicated in Ciguatera Fish Poisonings in Vietnam. Toxins (Basel) 2018; 10:toxins10100420. [PMID: 30347818 PMCID: PMC6215179 DOI: 10.3390/toxins10100420] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/08/2018] [Accepted: 10/17/2018] [Indexed: 11/17/2022] Open
Abstract
Ciguatera fish poisoning (CFP) is a type of food poisoning caused by the consumption of a variety of toxic ciguatera fish species in the tropical and subtropical waters. Although there have been a large number of suspected CFP cases in the Southeast Asian countries, few were confirmed with causative ciguatoxins (CTXs), and reliable information on the symptoms still remains rather limited. In the present study, CTXs in red snapper Lutjanus bohar, implicated in two suspected CFP cases in Vietnam in 2014 and 2016, were determined by use of the single-quadrupole selected ion monitoring (SIM) liquid chromatography/mass spectrometry (LC/MS). Ciguatoxin-1B (CTX-1B), 54-deoxyCTX-1B, and 52-epi-54-deoxyCTX-1B were detected in the red snapper by our LC/MS method. Moreover, CTX-1B, 54-deoxyCTX-1B, and 52-epi-54-deoxyCTX-1B were further identified by the time of flight (TOF) LC/MS with the exact mass spectrum. The CTX profile of the red snapper in Vietnam is similar to those of ciguatera fish from Australia, Okinawa Islands in Japan, Kiribati, and Hong Kong. This is the first comprehensive report unambiguously identifying the causative toxins in fish implicated with reliable information on the poisoning symptoms in CFP in Vietnam and/or Southeast Asian countries.
Collapse
|
28
|
Silva M, Rey V, Barreiro A, Kaufmann M, Neto AI, Hassouani M, Sabour B, Botana A, Botana LM, Vasconcelos V. Paralytic Shellfish Toxins Occurrence in Non-Traditional Invertebrate Vectors from North Atlantic Waters (Azores, Madeira, and Morocco). Toxins (Basel) 2018; 10:toxins10090362. [PMID: 30200645 PMCID: PMC6162766 DOI: 10.3390/toxins10090362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 11/19/2022] Open
Abstract
Paralytic shellfish toxins (PSTs) are potent alkaloids of microalgal and cyanobacterial origin, with worldwide distribution. Over the last 20 years, the number of poisoning incidents has declined as a result of the implementation of legislation and monitoring programs based on bivalves. In the summer of 2012 and 2013, we collected a total of 98 samples from 23 different species belonging to benthic and subtidal organisms, such as echinoderms, crustaceans, bivalves, and gastropods. The sampling locations were Madeira, São Miguel Island (Azores archipelago), and the northwestern coast of Morocco. The samples were analyzed using post-column oxidation liquid chromatography with a fluorescence detection method. Our main goal was to detect new vectors for these biotoxins. After reporting a total of 59 positive results for PSTs with 14 new vectors identified, we verified that some of the amounts exceeded the limit value established in the EU. These results suggest that routine monitoring of saxitoxin and its analogs should be extended to more potential vectors other than bivalves, including other edible organisms, for a better protection of public health.
Collapse
Affiliation(s)
- Marisa Silva
- Department of Biology, Science Faculty, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edificio do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal.
| | - Verónica Rey
- Department of Analytical Chemistry, Science Faculty, University of Santiago de Compostela, 27002 Lugo, Spain.
| | - Aldo Barreiro
- Department of Biology, Science Faculty, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edificio do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal.
| | - Manfred Kaufmann
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edificio do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal.
- Life Sciences Faculty, Madeira University, Marine Biology Station, 9000-107 Funchal, Madeira Island, Portugal.
- Center of Interdisciplinary Marine and Environmental Research of Madeira-CIIMAR-Madeira, Edificio Madeira Tecnopolo, Caminho da Penteada, 9020-105 Funchal, Madeira, Portugal.
| | - Ana Isabel Neto
- cE3c/GBA-Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Department of Biology, Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, São Miguel, Azores, Portugal.
| | - Meryem Hassouani
- Phycology Research Unit-Biotechnology, Ecosystems Ecology and Valorization Laboratory, Science Faculty, University of Chouaib Doukkali, El Jadida BP20, Morocco.
| | - Brahim Sabour
- Phycology Research Unit-Biotechnology, Ecosystems Ecology and Valorization Laboratory, Science Faculty, University of Chouaib Doukkali, El Jadida BP20, Morocco.
| | - Ana Botana
- Department of Analytical Chemistry, Science Faculty, University of Santiago de Compostela, 27002 Lugo, Spain.
| | - Luis M Botana
- Department of Pharmacology, Veterinary Faculty, University of Santiago de Compostela, 27002 Lugo, Spain.
| | - Vitor Vasconcelos
- Department of Biology, Science Faculty, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edificio do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal.
| |
Collapse
|
29
|
Soliño L, Costa PR. Differential toxin profiles of ciguatoxins in marine organisms: Chemistry, fate and global distribution. Toxicon 2018; 150:124-143. [DOI: 10.1016/j.toxicon.2018.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 01/03/2023]
|
30
|
Tsumuraya T, Sato T, Hirama M, Fujii I. Highly Sensitive and Practical Fluorescent Sandwich ELISA for Ciguatoxins. Anal Chem 2018; 90:7318-7324. [PMID: 29770692 DOI: 10.1021/acs.analchem.8b00519] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ciguatera fish poisoning (CFP) caused by the consumption of fish that have accumulated ciguatoxins (CTXs) affects more than 50000 people annually. The spread of CFP causes enormous damage to public health, fishery resources, and the economies of tropical and subtropical endemic regions. The difficulty in avoiding CFP arises from the lack of sensitive and reliable analytical methods for the detection and quantification of CTXs in contaminated fish, along with the normal appearance, smell, and taste of fish contaminated with the causative toxins. Thus, an accurate, sensitive, routine, and portable detection method for CTXs is urgently required. We have successfully developed a highly sensitive fluorescent sandwich ELISA, which can detect, differentiate, and quantify four major CTX congeners (CTX1B, CTX3C, 51-hydroxyCTX3C, and 54-deoxyCTX1B) with a detection limit of less than 1 pg/mL. The ELISA protocol, using one microtiter plate coated with two mAbs (10C9 and 3G8), and ALP-linked 8H4, can detect any of the four CTX congeners in a single operation. CTX1B spiked into fish at the FDA guidance level of 0.01 ppb CTX1B equivalent toxicity in fish from Pacific regions was also proven to be reliably detected by this ELISA. Furthermore, the efficiency of extraction/purification procedures and the matrix effect of contaminants in fish were evaluated in detail, since pretreatment and matrix effects are critical for ELISA analysis.
Collapse
Affiliation(s)
- Takeshi Tsumuraya
- Department of Biological Science, Graduate School of Science , Osaka Prefecture University , Osaka 599-8570 , Japan
| | - Takeshi Sato
- Cell Science Inc. , Aoba-ku, Sendai , Miyagi 989-3212 , Japan
| | - Masahiro Hirama
- Department of Biological Science, Graduate School of Science , Osaka Prefecture University , Osaka 599-8570 , Japan
| | - Ikuo Fujii
- Department of Biological Science, Graduate School of Science , Osaka Prefecture University , Osaka 599-8570 , Japan
| |
Collapse
|
31
|
Darius HT, Roué M, Sibat M, Viallon J, Gatti CMII, Vandersea MW, Tester PA, Litaker RW, Amzil Z, Hess P, Chinain M. Toxicological Investigations on the Sea Urchin Tripneustes gratilla (Toxopneustidae, Echinoid) from Anaho Bay (Nuku Hiva, French Polynesia): Evidence for the Presence of Pacific Ciguatoxins. Mar Drugs 2018; 16:E122. [PMID: 29642418 PMCID: PMC5923409 DOI: 10.3390/md16040122] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 01/17/2023] Open
Abstract
The sea urchin Tripneustes gratilla (Toxopneustidae, Echinoids) is a source of protein for many islanders in the Indo-West Pacific. It was previously reported to occasionally cause ciguatera-like poisoning; however, the exact nature of the causative agent was not confirmed. In April and July 2015, ciguatera poisonings were reported following the consumption of T.gratilla in Anaho Bay (Nuku Hiva Island, Marquesas archipelago, French Polynesia). Patient symptomatology was recorded and sea urchin samples were collected from Anaho Bay in July 2015 and November 2016. Toxicity analysis using the neuroblastoma cell-based assay (CBA-N2a) detected the presence of ciguatoxins (CTXs) in T.gratilla samples. Gambierdiscus species were predominant in the benthic assemblages of Anaho Bay, and G.polynesiensis was highly prevalent in in vitro cultures according to qPCR results. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses revealed that P-CTX-3B was the major ciguatoxin congener in toxic sea urchin samples, followed by 51-OH-P-CTX-3C, P-CTX-3C, P-CTX-4A, and P-CTX-4B. Between July 2015 and November 2016, the toxin content in T.gratilla decreased, but was consistently above the safety limit allowed for human consumption. This study provides evidence of CTX bioaccumulation in T.gratilla as a cause of ciguatera-like poisoning associated with a documented symptomatology.
Collapse
Affiliation(s)
- Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae-UMR 241-EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Mélanie Roué
- Institut de Recherche pour le Développement (IRD)-UMR 241-EIO, PO Box 53267, 98716 Pirae, Tahiti, French Polynesia.
| | - Manoella Sibat
- IFREMER, Phycotoxins Laboratory, F-44311 Nantes, France.
| | - Jérôme Viallon
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae-UMR 241-EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Clémence Mahana Iti Iti Gatti
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae-UMR 241-EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Mark W Vandersea
- National Oceanic and Atmospheric Administration, National Ocean Service, Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, NC 28516, USA.
| | | | - R Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, NC 28516, USA.
| | - Zouher Amzil
- IFREMER, Phycotoxins Laboratory, F-44311 Nantes, France.
| | - Philipp Hess
- IFREMER, Phycotoxins Laboratory, F-44311 Nantes, France.
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae-UMR 241-EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia.
| |
Collapse
|
32
|
Gatti CMI, Lonati D, Darius HT, Zancan A, Roué M, Schicchi A, Locatelli CA, Chinain M. Tectus niloticus (Tegulidae, Gastropod) as a Novel Vector of Ciguatera Poisoning: Clinical Characterization and Follow-Up of a Mass Poisoning Event in Nuku Hiva Island (French Polynesia). Toxins (Basel) 2018; 10:E102. [PMID: 29495579 PMCID: PMC5869390 DOI: 10.3390/toxins10030102] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 01/19/2023] Open
Abstract
Ciguatera fish poisoning (CFP) is the most prevalent non-bacterial food-borne form of poisoning in French Polynesia, which results from the consumption of coral reef fish naturally contaminated with ciguatoxins produced by dinoflagellates in the genus Gambierdiscus. Since the early 2000s, this French territory has also witnessed the emergence of atypical forms of ciguatera, known as ciguatera shellfish poisoning (CSP), associated with the consumption of marine invertebrates. In June 2014, nine tourists simultaneously developed a major and persistent poisoning syndrome following the consumption of the gastropod Tectus niloticus collected in Anaho, a secluded bay of Nuku Hiva Island (Marquesas Archipelago, French Polynesia). The unusual nature and severity of this event prompted a multidisciplinary investigation in order to characterize the etiology and document the short/long-term health consequences of this mass-poisoning event. This paper presents the results of clinical investigations based on hospital medical records, medical follow-up conducted six and 20 months post-poisoning, including a case description. This study is the first to describe the medical signature of T. niloticus poisoning in French Polynesia and contributed to alerting local authorities about the potential health hazards associated with the consumption of this gastropod, which is highly prized by local communities in Pacific island countries and territories.
Collapse
Affiliation(s)
- Clémence Mahana Iti Gatti
- Laboratory of Toxic Microalgae, Institut Louis Malardé (ILM)-UMR 241-EIO, P.O. box 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Davide Lonati
- Poison Control Centre and National Toxicology Information Centre-Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Maugeri Hospital and University of Pavia, 27100 Pavia, Italy.
| | - Hélène Taiana Darius
- Laboratory of Toxic Microalgae, Institut Louis Malardé (ILM)-UMR 241-EIO, P.O. box 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Arturo Zancan
- Subacute Care Unit, Istituti Clinici Scientifici Maugeri, IRCCS Maugeri Hospital, 27100 Pavia, Italy.
| | - Mélanie Roué
- Institut de Recherche pour le Développement (IRD)-UMR 241-EIO, P.O. box 529, 98713 Papeete, Tahiti, French Polynesia.
| | - Azzurra Schicchi
- Poison Control Centre and National Toxicology Information Centre-Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Maugeri Hospital and University of Pavia, 27100 Pavia, Italy.
| | - Carlo Alessandro Locatelli
- Poison Control Centre and National Toxicology Information Centre-Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Maugeri Hospital and University of Pavia, 27100 Pavia, Italy.
| | - Mireille Chinain
- Laboratory of Toxic Microalgae, Institut Louis Malardé (ILM)-UMR 241-EIO, P.O. box 30, 98713 Papeete, Tahiti, French Polynesia.
| |
Collapse
|
33
|
Darius HT, Roué M, Sibat M, Viallon J, Gatti CMI, Vandersea MW, Tester PA, Litaker RW, Amzil Z, Hess P, Chinain M. Tectus niloticus (Tegulidae, Gastropod) as a Novel Vector of Ciguatera Poisoning: Detection of Pacific Ciguatoxins in Toxic Samples from Nuku Hiva Island (French Polynesia). Toxins (Basel) 2017; 10:E2. [PMID: 29267222 PMCID: PMC5793089 DOI: 10.3390/toxins10010002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022] Open
Abstract
Ciguatera fish poisoning (CFP) is a foodborne disease caused by the consumption of seafood (fish and marine invertebrates) contaminated with ciguatoxins (CTXs) produced by dinoflagellates in the genus Gambierdiscus. The report of a CFP-like mass-poisoning outbreak following the consumption of Tectus niloticus (Tegulidae, Gastropod) from Anaho Bay on Nuku Hiva Island (Marquesas archipelago, French Polynesia) prompted field investigations to assess the presence of CTXs in T. niloticus. Samples were collected from Anaho Bay, 1, 6 and 28 months after this poisoning outbreak, as well as in Taiohae and Taipivai bays. Toxicity analysis using the neuroblastoma cell-based assay (CBA-N2a) detected the presence of CTXs only in Anaho Bay T. niloticus samples. This is consistent with qPCR results on window screen samples indicating the presence of Gambierdiscus communities dominated by the species G. polynesiensis in Anaho Bay. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses revealed that P-CTX-3B was the major congener, followed by P-CTX-3C, P-CTX-4A and P-CTX-4B in toxic samples. Between July 2014 and November 2016, toxin content in T. niloticus progressively decreased, but was consistently above the safety limit recommended for human consumption. This study confirms for the first time T. niloticus as a novel vector of CFP in French Polynesia.
Collapse
Affiliation(s)
- Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae—UMR 241-EIO, P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (C.M.i.G.); (M.C.)
| | - Mélanie Roué
- Institut de Recherche pour le Développement (IRD)—UMR 241-EIO, P.O. Box 529, 98713 Papeete, Tahiti, French Polynesia;
| | - Manoella Sibat
- IFREMER, Phycotoxins Laboratory, F-44311 Nantes, France; (M.S.); (Z.A.); (P.H.)
| | - Jérôme Viallon
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae—UMR 241-EIO, P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (C.M.i.G.); (M.C.)
| | - Clémence Mahana iti Gatti
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae—UMR 241-EIO, P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (C.M.i.G.); (M.C.)
| | - Mark W. Vandersea
- National Oceanic and Atmospheric Administration, National Ocean Service, Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, NC 28516, USA; (M.W.V.); (R.W.L.)
| | | | - R. Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, NC 28516, USA; (M.W.V.); (R.W.L.)
| | - Zouher Amzil
- IFREMER, Phycotoxins Laboratory, F-44311 Nantes, France; (M.S.); (Z.A.); (P.H.)
| | - Philipp Hess
- IFREMER, Phycotoxins Laboratory, F-44311 Nantes, France; (M.S.); (Z.A.); (P.H.)
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae—UMR 241-EIO, P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (C.M.i.G.); (M.C.)
| |
Collapse
|
34
|
|
35
|
Kibler SR, Davenport ED, Tester PA, Hardison DR, Holland WC, Litaker RW. Gambierdiscus and Fukuyoa species in the greater Caribbean: Regional growth projections for ciguatera-associated dinoflagellates. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
36
|
Shmukler YB, Nikishin DA. Ladder-Shaped Ion Channel Ligands: Current State of Knowledge. Mar Drugs 2017; 15:E232. [PMID: 28726749 PMCID: PMC5532674 DOI: 10.3390/md15070232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022] Open
Abstract
Ciguatoxins (CTX) and brevetoxins (BTX) are polycyclic ethereal compounds biosynthesized by the worldwide distributed planktonic and epibenthic dinoflagellates of Gambierdiscus and Karenia genera, correspondingly. Ciguatera, evoked by CTXs, is a type of ichthyosarcotoxism, which involves a variety of gastrointestinal and neurological symptoms, while BTXs cause so-called neurotoxic shellfish poisoning. Both types of toxins are reviewed together because of similar mechanisms of their action. These are the only molecules known to activate voltage-sensitive Na⁺-channels in mammals through a specific interaction with site 5 of its α-subunit and may compete for it, which results in an increase in neuronal excitability, neurotransmitter release and impairment of synaptic vesicle recycling. Most marine ciguatoxins potentiate Nav channels, but a considerable number of them, such as gambierol and maitotoxin, have been shown to affect another ion channel. Although the extrinsic function of these toxins is probably associated with the function of a feeding deterrent, it was suggested that their intrinsic function is coupled with the regulation of photosynthesis via light-harvesting complex II and thioredoxin. Antagonistic effects of BTXs and brevenal may provide evidence of their participation as positive and negative regulators of this mechanism.
Collapse
Affiliation(s)
- Yuri B Shmukler
- Group of Embryophysiology, N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26, Vavilov st, 119334 Moscow, Russia.
| | - Denis A Nikishin
- Group of Embryophysiology, N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26, Vavilov st, 119334 Moscow, Russia.
| |
Collapse
|
37
|
Coccini T, Caloni F, De Simone U. Human neuronal cell based assay: A new in vitro model for toxicity evaluation of ciguatoxin. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:200-213. [PMID: 28437641 DOI: 10.1016/j.etap.2017.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/31/2017] [Accepted: 04/02/2017] [Indexed: 06/07/2023]
Abstract
Ciguatoxins (CTXs) are emerging marine neurotoxins representing the main cause of ciguatera fish poisoning, an intoxication syndrome which configures a health emergency and constitutes an evolving issue constantly changing due to new vectors and derivatives of CTXs, as well as their presence in new non-endemic areas. The study applied the neuroblastoma cell model of human origin (SH-SY5Y) to evaluate species-specific mechanistic information on CTX toxicity. Metabolic functionality, cell morphology, cytosolic Ca2+i responses, neuronal cell growth and proliferation were assessed after short- (4-24h) and long-term exposure (10days) to P-CTX-3C. In SH-SY5Y, P-CTX-3C displayed a powerful cytotoxicity requiring the presence of both Veratridine and Ouabain. SH-SY5Y were very sensitive to Ouabain: 10 and 0.25nM appeared the optimal concentrations, for short- and long-term toxicity studies, respectively, to be used in co-incubation with Veratridine (25μM), simulating the physiological and pathological endogenous Ouabain levels in humans. P-CTX-3C cytotoxic effect, on human neurons co-incubated with OV (Ouabain+Veratridine) mix, was expressed starting from 100pM after short- and 25pM after long-term exposure. Notably, P-CTX-3C alone at 25nM induced cytotoxicity after 24h and prolonged exposure. This human brain-derived cell line appears a suitable cell-based-model to evaluate cytotoxicity of CTX present in marine food contaminated at low toxic levels and to characterize the toxicological profile of other/new congeners.
Collapse
Affiliation(s)
- Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, Poison Control Centre, Toxicology Unit, Maugeri Clinical Scientific Institutes S.p.A.-BS, IRCCS Pavia, Pavia Italy.
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milano, Italy
| | - Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, Poison Control Centre, Toxicology Unit, Maugeri Clinical Scientific Institutes S.p.A.-BS, IRCCS Pavia, Pavia Italy
| |
Collapse
|
38
|
Friedemann M. [First ciguatera outbreak in Germany in 2012]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017; 59:1556-1565. [PMID: 27778083 DOI: 10.1007/s00103-016-2456-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In November 2012, 23 cases of ciguatera with typical combinations of gastrointestinal and neurological symptoms occurred in Germany after consumption of imported tropical fish (Lutjanus spp.). A questionnaire was used to gather information on the disease course and fish consumption. All patients suffered from pathognomonic cold allodynia. Aside from two severe courses of illness, all other cases showed symptoms of moderate intensity. During a three-year follow-up, seven patients reported prolonged paresthesia for more than one year. Two of them reported further neuropathies over almost three years. This is the first time that long-term persistence of symptoms has been documented in detail. Outbreak cases were allocated to eight clusters in seven German cities. A further cluster was prevented by the successful recall of ciguatoxic fish. Three clusters were confirmed by the detection of ciguatoxin in samples of suspicious and recalled fish. An extrapolation on the basis of ciguatoxic samples revealed twenty prevented cases of ciguatera. Further officially unknown cases should be assumed. During the outbreak investigations, inadvertently falsely labelled fish species and fishing capture areas on import and retail level documents were observed. The ascertainment of cases and the outbreak investigations proved to be difficult due to inconsistent case reports to poisons centers, local health and veterinary authorities. In Germany, many physicians are unaware of the disease pattern of ciguatera and the risks caused by tropical fish. The occurrence of further outbreaks during the following years emphasizes the increasing significance of ciguatera in Germany.
Collapse
Affiliation(s)
- Miriam Friedemann
- Dokumentation und Bewertung von Vergiftungen, Bundesinstitut für Risikobewertung (BfR), Diedersdorfer Weg 1, 12277, Berlin, Deutschland.
| |
Collapse
|
39
|
Pisapia F, Holland WC, Hardison DR, Litaker RW, Fraga S, Nishimura T, Adachi M, Nguyen-Ngoc L, Séchet V, Amzil Z, Herrenknecht C, Hess P. Toxicity screening of 13 Gambierdiscus strains using neuro-2a and erythrocyte lysis bioassays. HARMFUL ALGAE 2017; 63:173-183. [PMID: 28366392 DOI: 10.1016/j.hal.2017.02.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 06/07/2023]
Abstract
Species in the epi-benthic dinoflagellate genus Gambierdiscus produce ciguatoxins (CTXs) and maitotoxins (MTXs), which are among the most potent marine toxins known. Consumption of fish contaminated with sufficient quantities of CTXs causes Ciguatera Fish Poisoning (CFP), the largest cause of non-bacterial food poisoning worldwide. Maitotoxins, which can be found in the digestive system of fish, could also contribute to CFP if such tissues are consumed. Recently, an increasing number of Gambierdiscus species have been identified; yet, little is known about the variation in toxicity among Gambierdiscus strains or species. This study is the first assessment of relative CTX- and MTX-toxicity of Gambierdiscus species from areas as widespread as the North-Eastern Atlantic Ocean, Pacific Ocean and the Mediterranean Sea. A total of 13 strains were screened: (i) seven Pacific strains of G. australes, G. balechii, G. caribaeus, G. carpenteri, G. pacificus, G. scabrosus and one strain of an undetermined species (Gambierdiscus sp. Viet Nam), (ii) five strains from the North-Eastern Atlantic Ocean (two G. australes, a single G. excentricus and two G. silvae strains), and (iii) one G. carolinianus strain from the Mediterranean Sea. Cell pellets of Gambierdiscus were extracted with methanol and the crude extracts partitioned into a CTX-containing dichloromethane fraction and a MTX-containing aqueous methanol fraction. CTX-toxicity was estimated using the neuro-2a cytoxicity assay, and MTX-toxicity via a human erythrocyte lysis assay. Different species were grouped into different ratios of CTX- and MTX-toxicity, however, the ratio was not related to the geographical origin of species (Atlantic, Mediterranean, Pacific). All strains showed MTX-toxicity, ranging from 1.5 to 86pg MTX equivalents (eq) cell-1. All but one of the strains showed relatively low CTX-toxicity ranging from 0.6 to 50 fg CTX3C eq cell-1. The exception was the highly toxic G. excentricus strain from the Canary Islands, which produced 1426 fg CTX3C eq cell-1. As was true for CTX, the highest MTX-toxicity was also found in G. excentricus. Thus, the present study confirmed that at least one species from the Atlantic Ocean demonstrates similar toxicity as the most toxic strains from the Pacific, even if the metabolites in fish have so far been shown to be more toxic in the Pacific Ocean.
Collapse
Affiliation(s)
- Francesco Pisapia
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - William C Holland
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research (CCFHR),101 Pivers Island Road, Beaufort, NC 28516, USA
| | - D Ransom Hardison
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research (CCFHR),101 Pivers Island Road, Beaufort, NC 28516, USA
| | - R Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research (CCFHR),101 Pivers Island Road, Beaufort, NC 28516, USA
| | - Santiago Fraga
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Tomohiro Nishimura
- LAQUES (Laboratory of Aquatic Environmental Science), Faculty of Agriculture, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Masao Adachi
- LAQUES (Laboratory of Aquatic Environmental Science), Faculty of Agriculture, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Lam Nguyen-Ngoc
- Institute of Oceanography, VAST, Cauda 01, Vinh Nguyen, Nha Trang, Viet Nam
| | - Véronique Séchet
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France
| | - Zouher Amzil
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France
| | - Christine Herrenknecht
- LUNAM, University of Nantes, MMS EA2160, Pharmacy Faculty, 9 rue Bias, F-44035 Nantes, France
| | - Philipp Hess
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France
| |
Collapse
|
40
|
Marine Toxin Analysis for the Benefit of ‘One Health’ and for the Advancement of Science. RECENT ADVANCES IN THE ANALYSIS OF MARINE TOXINS 2017. [DOI: 10.1016/bs.coac.2017.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Visciano P, Schirone M, Berti M, Milandri A, Tofalo R, Suzzi G. Marine Biotoxins: Occurrence, Toxicity, Regulatory Limits and Reference Methods. Front Microbiol 2016; 7:1051. [PMID: 27458445 PMCID: PMC4933704 DOI: 10.3389/fmicb.2016.01051] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/23/2016] [Indexed: 01/08/2023] Open
Abstract
Harmful algal blooms are natural phenomena caused by the massive growth of phytoplankton that may contain highly toxic chemicals, the so-called marine biotoxins causing illness and even death to both aquatic organisms and humans. Their occurrence has been increased in frequency and severity, suggesting a worldwide public health risk. Marine biotoxins can accumulate in bivalve molluscs and regulatory limits have been set for some classes according to European Union legislation. These compounds can be distinguished in water- and fat-soluble molecules. The first group involves those of Paralytic Shellfish Poisoning and Amnesic Shellfish Poisoning, whereas the toxins soluble in fat can cause Diarrheic Shellfish Poisoning and Neurotoxic Shellfish Poisoning. Due to the lack of long-term toxicity studies, establishing tolerable daily intakes for any of these marine biotoxins was not possible, but an acute reference dose can be considered more appropriate, because these molecules show an acute toxicity. Dietary exposure assessment is linked both to the levels of marine biotoxins present in bivalve molluscs and the portion that could be eaten by consumers. Symptoms may vary from a severe gastrointestinal intoxication with diarrhea, nausea, vomiting, and abdominal cramps to neurological disorders such as ataxia, dizziness, partial paralysis, and respiratory distress. The official method for the detection of marine biotoxins is the mouse bioassay (MBA) showing some limits due to ethical restrictions and insufficient specificity. For this reason, the liquid chromatography-mass spectrometry method has replaced MBA as the reference technique. However, the monitoring of algal blooms producing marine biotoxins should be regularly assessed in order to obtain more reliable, accurate estimates of bloom toxicity and their potential impacts.
Collapse
Affiliation(s)
- Pierina Visciano
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo Teramo, Italy
| | - Maria Schirone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo Teramo, Italy
| | - Miriam Berti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale" Teramo, Italy
| | - Anna Milandri
- National Reference Laboratory for Marine Biotoxins, Fondazione Centro Ricerche Marine Cesenatico, Italy
| | - Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo Teramo, Italy
| | - Giovanna Suzzi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo Teramo, Italy
| |
Collapse
|
42
|
Affiliation(s)
- Luis M. Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|