1
|
Niu Y, Wei H, Zhang Y, Su J. Transcriptome response of a marine copepod in response to environmentally-relevant concentrations of saxitoxin. MARINE POLLUTION BULLETIN 2024; 205:116546. [PMID: 38870575 DOI: 10.1016/j.marpolbul.2024.116546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/05/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Paralytic shellfish toxins (PSTs) can pose a serious threat to human health. Among them, saxitoxin (STX) is one of the most potent natural neurotoxins. Here, the copepod Tigriopus japonicus, was exposed to environmentally relevant concentrations (2.5 and 25 μg/L) STX for 48 h. Although no lethal effects were observed at both concentrations, the transcriptome was significantly altered, and displayed a concentration-dependent response. STX exposure decreased the copepod's metabolism and compromised immune defense and detoxification. Additionally, STX disturbed signal transduction, which might affect other cellular processes. STX exposure could inhibit the copepod's chitin metabolism, disrupting its molting process. Also, the processes related to damage repair and protection were up-regulated to fight against high concentration exposure. Collectively, this study has provided an early warning of PSTs for coastal ecosystem not only because of their potent toxicity effect but also their bioaccumulation that can transfer up the food chain after ingestion by copepods.
Collapse
Affiliation(s)
- Yaolu Niu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Hui Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yunlei Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Jie Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361013, China.
| |
Collapse
|
2
|
Hall AJ, Kershaw JL, Fraser S, Davidson K, Rowland-Pilgrim S, Turner AD, McConnell B. Estimating the risks of exposure to harmful algal toxins among Scottish harbour seals. HARMFUL ALGAE 2024; 136:102653. [PMID: 38876527 DOI: 10.1016/j.hal.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Harmful algal bloom (HAB) toxins consumed by marine predators through fish prey can be lethal but studies on the resulting population consequences are lacking. Over the past approximately 20 years there have been large regional declines in some harbour seal populations around Scotland. Analyses of excreta (faeces and urine from live and dead seals and faecal samples from seal haulout sites) suggest widespread exposure to toxins through the ingestion of contaminated prey. A risk assessment model, incorporating concentrations of the two major HAB toxins found in seal prey around Scotland (domoic acid (DA), and saxitoxins (STX)), the seasonal persistence of the toxins in the fish and the foraging patterns of harbour seals were used to estimate the proportion of adults and juveniles likely to have ingested doses above various estimated toxicity thresholds. The results were highly dependent on toxin type, persistence, and foraging regime as well as age class, all of which affected the proportion of exposed animals exceeding toxicity thresholds. In this preliminary model STX exposure was unlikely to result in mortalities. Modelled DA exposure resulted in doses above an estimated lethal threshold of 1900 µg/kg body mass affecting up to 3.8 % of exposed juveniles and 5.3 % of exposed adults. Given the uncertainty in the model parameters and the limitations of the data these conclusions should be treated with caution, but they indicate that DA remains a potential factor involved in the regional declines of harbour seals. Similar risks may be experienced by other top predators, including small cetaceans and seabirds that feed on similar prey in Scottish waters.
Collapse
Affiliation(s)
- Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK, KY16 8LB.
| | - Joanna L Kershaw
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK, KY16 8LB
| | - Shaun Fraser
- UHI Shetland, University of the Highlands and Islands, Port Arthur, Scalloway, Shetland, UK, ZE1 0UN
| | - Keith Davidson
- Scottish Association for Marine Science, Oban, UK, PA37 1QA
| | - Stephanie Rowland-Pilgrim
- Food Safety Group, Centre for Environment and Fisheries Science (Cefas), Weymouth, Dorset, UK, DT4 8UB
| | - Andrew D Turner
- Food Safety Group, Centre for Environment and Fisheries Science (Cefas), Weymouth, Dorset, UK, DT4 8UB
| | - Bernie McConnell
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK, KY16 8LB
| |
Collapse
|
3
|
Watanabe R, Oikawa H, Tsunemitsu T, Miyahara K, Ozawa M, Numano S, Uchida H, Matsushima R, Suzuki T. A case of paralytic shellfish poisoning caused by consumption of visceral balls from geoduck Panopea japonica in Japan. Toxicon 2024; 243:107738. [PMID: 38685389 DOI: 10.1016/j.toxicon.2024.107738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
In the end of March 2018, an unprecedented food poisoning incident due to ingestion of the visceral balls of geoduck Panopea japonica occurred in Japan. The patient, presented with symptoms of numbness on the lips and general weakness, was diagnosed as paralytic shellfish poisoning (PSP). The patient immediately treated with the mechanical ventilation recovered and left the hospital after 3 days treatment. Saxitoxins (STXs) in the plasma and urinary samples collected from the patient on the first and second day after hospitalization were analyzed by ultra high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC/MS/MS) and liquid chromatography with post-column fluorescent detection (LC/FLD). The STXs levels of 499.1 and 6.0 μg/L of STX dihydrochloride equivalent (STX·2HCl eq.) were quantitated by LC/FLD in the urinary samples on the first and second day, respectively. In addition, geoducks harvested from the same areas of the PSP causative specimens after the incident were analyzed by LC/FLD, and the results showed the level of STXs in their whole bodies of the geoducks exceeding 0.8 mg STX·2HCl eq./kg which is the maximum levels of STX in CODEX STAN 292-2008. Prominent toxins in STXs that detected in urinary and geoduck samples and identified by UHPLC/MS/MS and LC/FLD were gonyautoxin-1+4 (GTX1+4). These results concluded that the incident was the food poisoning due to STXs accumulated in the geoducks. This is the first PSP case caused by consumption of geoducks in Japan. This is also the first PSP case that causative toxins are detected in urinary samples of patients involved in PSP in Japan.
Collapse
Affiliation(s)
- Ryuichi Watanabe
- Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan.
| | - Hiroshi Oikawa
- Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan.
| | - Takefumi Tsunemitsu
- Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashi Namba-cho, Amagasaki, Hyogo, 660-8550, Japan.
| | - Kazutaka Miyahara
- Fisheries Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, 22-2 Minami-Futami, Futami-cho, Akashi, Hyogo, 674-0093, Japan.
| | - Mayu Ozawa
- Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan.
| | - Satoshi Numano
- Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan.
| | - Hajime Uchida
- Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan.
| | - Ryoji Matsushima
- Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan.
| | - Toshiyuki Suzuki
- Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan.
| |
Collapse
|
4
|
Cadaillon AM, Mattera B, Albizzi A, Montoya N, Maldonado S, Raya Rey A, Riccialdelli L, Almandoz GO, Schloss IR. Multispecies mass mortality in the Beagle Channel associated with paralytic shellfish toxins. HARMFUL ALGAE 2024; 132:102581. [PMID: 38331545 DOI: 10.1016/j.hal.2024.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/06/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
The Beagle Channel is a Subantarctic semi-estuarine environment at the southern tip of South America, where intoxication events associated with harmful algal blooms have been reported since 1886, including a world record in toxicity due to Alexandrium catenella in 1992. Toxic algae affect public health and ecosystem services, particularly mussel aquaculture and fisheries management. During the austral summer of 2022, an intense bloom of A. catenella (5 × 104 cells L-1) occurred in the Beagle Channel, leading to the second most toxic event in the area, with mussel toxicity reaching 197,266 µg STXeq kg-1. This event was synchronous with the mortality of marine organisms from different trophic levels and terrestrial fauna, i.e., two Fuegian red foxes and a southern caracara. Stomach content and liver samples from dead kelp gulls (Larus dominicanus), Magellanic penguins (Spheniscus magellanicus), papua penguins (Pygoscelis papua), and imperial cormorants (Leucocarbo atriceps), presented variable paralytic shellfish toxins (PST) levels (up to 3427 µg STXeq kg-1) as measured by high performance liquid chromatography (HPLC), suggesting that deaths were associated with high PST toxicity level. The different toxin profiles found in phytoplankton, zooplankton, squat lobsters (Grimothea gregaria), Fuegian sprat (Sprattus fuegensis), and seabirds evidenced possible toxin transformation along the food web and the possible transfer vectors. The unexpected detection of PST in terrestrial fauna (up to 2707 µg STXeq kg-1) suggested intoxication by scavenging on squat lobsters, which had high toxicity (26,663 µg STXeq kg-1). PST trace levels were also detected in a liver sample of a dead false killer whale (Pseudorca crassidens), an oceanic odontocete stranded on the coast during the bloom. Overall, our results denote the exceptional nature of the toxic, multispecies mortality event and that toxins may propagate to several levels of the food web in this Subantarctic environment.
Collapse
Affiliation(s)
- A M Cadaillon
- Centro Austral de Investigaciones Científicas (CADIC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Argentina; Instituto de Desarrollo Económico e Innovación (IDEI), Universidad Nacional de Tierra del Fuego, Antártida e Islas del Atlántico Sur (UNTDF), Yrigoyen 879, Ushuaia 9410, Argentina.
| | - B Mattera
- Instituto Nacional de Investigación y Desarrollo Pesquero, Paseo Victoria Ocampo N°1, Mar del Plata 7600, Argentina
| | - A Albizzi
- Centro Austral de Investigaciones Científicas (CADIC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Argentina
| | - N Montoya
- Instituto Nacional de Investigación y Desarrollo Pesquero, Paseo Victoria Ocampo N°1, Mar del Plata 7600, Argentina
| | - S Maldonado
- Dirección General de Laboratorio de Toxinas y Microbiología, Secretaría de Pesca y Acuicultura, Ministerio de Produccion y Ambiente. Gobierno de la Provincia de Tierra del Fuego, Antártida e Islas del Atlántico Sur, Argentina
| | - A Raya Rey
- Centro Austral de Investigaciones Científicas (CADIC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Argentina; Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA), UNTDF, Yrigoyen 879, Ushuaia 9410, Argentina; Wildlife Conservation Society, Amenábar 1595, Office 19, C1426AKC CABA, Buenos Aires, Argentina
| | - L Riccialdelli
- Centro Austral de Investigaciones Científicas (CADIC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Argentina
| | - G O Almandoz
- División Ficología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA La Plata, Argentina; CONICET, Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina
| | - I R Schloss
- Centro Austral de Investigaciones Científicas (CADIC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Argentina; Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA), UNTDF, Yrigoyen 879, Ushuaia 9410, Argentina; Instituto Antártico Argentino, Buenos Aires, Argentina
| |
Collapse
|
5
|
Paralytic Shellfish Toxins in the Gastropod Concholepas concholepas: Variability, Toxin Profiles and Mechanisms for Toxicity Reduction. Mar Drugs 2023; 21:md21010044. [PMID: 36662217 PMCID: PMC9866859 DOI: 10.3390/md21010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Harmful algal blooms of toxin-producing microalgae are recurrent in southern Chile. Paralytic shellfish poisoning (PSP) outbreaks pose the main threat to public health and the fishing industry in the Patagonian fjords. This study aims to increase understanding of the individual and spatial variability of PSP toxicity in the foot of Concholepas concholepas, Chile’s most valuable commercial benthic invertebrate species, extracted from the Guaitecas Archipelago in Chilean Patagonia. The objective is to determine the effect of pigment removal and freezing during the detoxification process. A total of 150 specimens (≥90 mm length) were collected from this area. The live specimens were transferred to a processing plant, where they were measured and gutted, the foot was divided into two equal parts, and pigment was manually removed from one of these parts. The PSP toxicity of each foot (edible tissue) was determined by mouse bioassay (MBA) and high-performance liquid chromatography with fluorescence detection and postcolumn oxidation (HPLC-FLD PCOX). The individual toxicity per loco, as the species is known locally, varied from <30 to 146 μg STX diHCL eq 100 g−1 (CV = 43.83%) and from 5.96 to 216.3 μg STX diHCL eq 100 g−1 (CV = 34.63%), using MBA and HPLC, respectively. A generalized linear model showed a negative relation between individual weight and toxicity. The toxicological profile showed a dominance of STX (>95%), neoSTX and GTX2. The removal of pigment produced a reduction in PSP toxicity of up to 90% and could represent a good detoxification tool moving forward. The freezing process in the muscle with pigment did not produce a clear pattern. There is a significant reduction (p < 0.05) of PSP toxicity via PCOX but not MBA. Furthermore, the study discusses possible management and commercialization implications of the findings regarding small-scale fisheries.
Collapse
|
6
|
Kang HM, Lee J, Lee YJ, Park Y, Lee E, Shin AY, Han J, Lee HS, Lee JS, Lee KW. Transcriptional and toxic responses to saxitoxin exposure in the marine copepod Tigriopus japonicus. CHEMOSPHERE 2022; 309:136464. [PMID: 36122751 DOI: 10.1016/j.chemosphere.2022.136464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Saxitoxin (STX) is a highly toxic marine neurotoxin produced by phytoplankton and a growing threat to ecosystems worldwide due to the spread of toxic algae. Although STX is an established sodium channel blocker, the overall profile of transcriptional levels in STX-exposed organisms has yet to be described. Here, we describe a toxicity assay and transcriptome analysis of the copepod Tigriopus japonicus exposed to STX. The half-maximal lethal concentration of STX was 12.35 μM, and a rapid mortality slope was evident at concentrations between 12 and 13 μM. STX induced changes in swimming behavior among the copepods after 10 min of exposure. In transcriptome analysis, gene ontology revealed that the genes involved in nervous system and gene expression were highly enriched. In addition, the congenital neurological disorder and nuclear factor erythroid 2-related factor 2-mediated oxidative stress pathways were identified to be the most significant in network analysis and toxicity pathway analysis, respectively. This study provides valuable information about the effects of STX and related transcriptional responses in T. japonicus.
Collapse
Affiliation(s)
- Hye-Min Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Jihoon Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Yeon-Ju Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Yeun Park
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Euihyeon Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - A-Young Shin
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Jeonghoon Han
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Hyi-Seung Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Jong Seok Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Kyun-Woo Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea.
| |
Collapse
|
7
|
Rodríguez-Villegas C, Figueroa RI, Pérez-Santos I, Molinet C, Saldías GS, Rosales SA, Álvarez G, Linford P, Díaz PA. Continental shelf off northern Chilean Patagonia: A potential risk zone for the onset of Alexandrium catenella toxic bloom? MARINE POLLUTION BULLETIN 2022; 184:114103. [PMID: 36115195 DOI: 10.1016/j.marpolbul.2022.114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Harmful Algal Blooms (HAB) pose a severe socio-economic problem worldwide. The dinoflagellate species Alexandrium catenella produces potent neurotoxins called saxitoxins (STXs) and its blooms are associated with the human intoxication named Paralytic Shellfish Poisoning (PSP). Knowing where and how these blooms originate is crucial to predict blooms. Most studies in the Chilean Patagonia, were focused on coastal areas, considering that blooms from the adjacent oceanic region are almost non-existent. Using a combination of field studies and modelling approaches, we first evaluated the role of the continental shelf off northern Chilean Patagonia as a source of A. catenella resting cysts, which may act as inoculum for their toxic coastal blooms. This area is characterized by a seasonal upwelling system with positive Ekman pumping during spring-summer, and by the presence of six major submarine canyons. We found out that these submarine canyons increase the vertical advection of bottom waters, and thus, significantly enhance the process of coastal upwelling. This is a previously unreported factor, among those involved in bloom initiation. This finding put this offshore area at high risk of resuspension of resting cysts of A. catenella. Here, we discuss in detail the physical processes promoting this resuspension.
Collapse
Affiliation(s)
- Camilo Rodríguez-Villegas
- Programa de Doctorado en Ciencias, Mención Conservación y Manejo de Recursos Naturales, Universidad de Los Lagos, Camino Chinquihue km 6, Puerto Montt, Chile; Centro i∼mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Rosa I Figueroa
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Iván Pérez-Santos
- Centro i∼mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile; Centro de Investigaciones en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
| | - Carlos Molinet
- Programa de Investigación Pesquera, Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Programa Integrativo, Centro Interdisciplinario para la Investigación Acuícola (INCAR), Concepción, Chile
| | - Gonzalo S Saldías
- Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile; Departamento de Física, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, Chile; Centro de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Sergio A Rosales
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1281, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1281, Chile
| | - Pamela Linford
- Programa de Doctorado en Ciencias, Mención Conservación y Manejo de Recursos Naturales, Universidad de Los Lagos, Camino Chinquihue km 6, Puerto Montt, Chile
| | - Patricio A Díaz
- Centro i∼mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile.
| |
Collapse
|
8
|
Goya AB, Baqer D, Alexander RP, Stubbs P, Dean K, Lewis AM, Coates L, Maskrey BH, Turner AD. Marine Biotoxins in Whole and Processed Scallops from the Argentine Sea. Mar Drugs 2022; 20:634. [PMID: 36286458 PMCID: PMC9604692 DOI: 10.3390/md20100634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Harmful algal blooms are an increasing worldwide threat to the seafood industry and human health as a consequence of the natural production of biotoxins that can accumulate in shellfish. In the Argentine Sea, this has been identified as an issue for the offshore fisheries of Patagonian scallops (Zygochlamys patagonica), leading to potentially harmful effects on consumers. Here we assess spatial and temporal patterns in marine biotoxin concentrations in Patagonian scallops harvested in Argentinian waters between 2012-2017, based on analyses for paralytic shellfish toxins, lipophilic toxins, and amnesic shellfish toxins. There was no evidence for concentrations of lipophilic or amnesic toxins above regulatory acceptance thresholds, with trace concentrations of pectenotoxin 2, azaspiracid 2 and okadaic acid group toxins confirmed. Conversely, paralytic shellfish toxins were quantified in some scallops. Gonyautoxins 1 and 2 dominated the unusual toxin profiles (91%) in terms of saxitoxin equivalents with maximum concentrations reaching 3985 µg STX eq/kg and with changes in profiles linked in part to seasonal changes. Total toxin concentrations were compared between samples of the adductor muscle and whole tissue, with results showing the absence of toxins in the adductor muscle confirming toxin accumulation in the digestive tracts of the scallops and the absence of a human health threat following the processing of scallop adductor meat. These findings highlight that paralytic shellfish toxins with an unusual toxin profile can occur in relatively high concentrations in whole Patagonian scallops in specific regions and during particular time periods, also showing that the processing of scallops on board factory ships to obtain frozen adductor muscle is an effective management process that minimizes the risk of poisonings from final products destined for human consumption.
Collapse
Affiliation(s)
- Alejandra B. Goya
- Marine Biotoxin Department, Mar del Plata Regional Laboratory, National Service for Agri-food Health and Quality (Senasa), AvisoDorrego y Víctimas del ‘46, Puerto, Mar del Plata B7600, Buenos Aires Province, Argentina
| | - Danial Baqer
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
- Department of Biological Sciences, University of Surrey, Stag Hill, Guildford GU2 7XH, UK
| | - Ryan P. Alexander
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Patrycja Stubbs
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Karl Dean
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Adam M. Lewis
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Lewis Coates
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Benjamin H. Maskrey
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Andrew D. Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|
9
|
Oyaneder-Terrazas J, Figueroa D, Araneda OF, García C. Saxitoxin Group Toxins Accumulation Induces Antioxidant Responses in Tissues of Mytilus chilensis, Ameghinomya antiqua, and Concholepas concholepas during a Bloom of Alexandrium pacificum. Antioxidants (Basel) 2022; 11:392. [PMID: 35204273 PMCID: PMC8869173 DOI: 10.3390/antiox11020392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Saxitoxin (STX) group toxins consist of a set of analogues which are produced by harmful algal blooms (HABs). During a HAB, filter-feeding marine organisms accumulate the dinoflagellates and concentrate the toxins in the tissues. In this study, we analyze the changes in antioxidant enzymes and oxidative damage in the bivalves Mytilus chilensis and Ameghinomya antiqua, and the gastropod Concholepas concholepas during a bloom of Alexandrium pacificum. The results show that during the exponential phase of the bloom bivalves show an increase in toxicity and activity of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathinoe reductase, p < 0.05), while in the gastropods, increased activity of antioxidant enzymes was associated with the bioaccumulation of toxins through the diet. At the end of the bloom, decreased activity of antioxidant enzymes in the visceral and non-visceral tissues was detected in the bivalves, with an increase in oxidative damage (p < 0.05), in which the latter is correlated with the detection of the most toxic analogues of the STX-group (r = 0.988). In conclusion, in areas with high incidence of blooms, shellfish show a high activity of antioxidants, however, during the stages involving the distribution and bioconversion of toxins, there is decreased activity of antioxidant enzymes resulting in oxidative damage.
Collapse
Affiliation(s)
- Javiera Oyaneder-Terrazas
- Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (J.O.-T.); (D.F.)
| | - Diego Figueroa
- Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (J.O.-T.); (D.F.)
| | - Oscar F. Araneda
- Integrative Laboratory of Biomechanics and Physiology of Effort, Kinesiology School, Faculty of Medicine, Universidad de Los Andes, Santiago 8320000, Chile;
| | - Carlos García
- Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (J.O.-T.); (D.F.)
| |
Collapse
|
10
|
Fast screening of saxitoxin, neosaxitoxin, and decarbamoyl analogues in fresh and brackish surface waters by on-line enrichment coupled to HILIC-HRMS. Talanta 2022; 241:123267. [DOI: 10.1016/j.talanta.2022.123267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 01/31/2023]
|
11
|
Leal JF, Cristiano MLS. Marine paralytic shellfish toxins: chemical properties, mode of action, newer analogues, and structure-toxicity relationship. Nat Prod Rep 2021; 39:33-57. [PMID: 34190283 DOI: 10.1039/d1np00009h] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Up to the end of 2020Every year, the appearance of marine biotoxins causes enormous socio-economic damage worldwide. Among the major groups of biotoxins, paralytic shellfish toxins, comprising saxitoxin and its analogues (STXs), are the ones that cause the most severe effects on humans, including death. However, the knowledge that currently exists on their chemistry, properties and mode of toxicological action is disperse and partially outdated. This review intends to systematically compile the dispersed information, updating and complementing it. With this purpose, it addresses several aspects related to the molecular structure of these toxins. Special focus is given to the bioconversion reactions that may occur in the different organisms (dinoflagellates, bivalves, and humans) and the possible mediators involved. A critical review of the most recently discovered analogues, the M-series toxins, is presented. Finally, a deep discussion about the relationship between the molecular structure (e.g., effect of the substituting groups and the net charge of the molecules) and the toxic activity of these molecules is performed, proposing the concept of "toxicological traffic light" based on the toxicity equivalency factors (TEFs).
Collapse
Affiliation(s)
- Joana F Leal
- Centre of Marine Sciences (CCMAR), Department of Chemistry and Pharmacy, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Maria L S Cristiano
- Centre of Marine Sciences (CCMAR), Department of Chemistry and Pharmacy, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
12
|
Investigation of Algal Toxins in a Multispecies Seabird Die-Off in the Bering and Chukchi Seas. J Wildl Dis 2021; 57:399-407. [PMID: 33822145 DOI: 10.7589/jwd-d-20-00057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/03/2020] [Indexed: 11/20/2022]
Abstract
Between 2014 and 2017, widespread seabird mortality events were documented annually in the Bering and Chukchi seas, concurrent with dramatic reductions of sea ice, warmer than average ocean temperatures, and rapid shifts in marine ecosystems. Among other changes in the marine environment, harmful algal blooms (HABs) that produce the neurotoxins saxitoxin (STX) and domoic acid (DA) have been identified as a growing concern in this region. Although STX and DA have been documented in Alaska (US) for decades, current projections suggest that the incidence of HABs is likely to increase with climate warming and may pose a threat to marine birds and other wildlife. In 2017, a multispecies die-off consisting of primarily Northern Fulmars (Fulmarus glacialis) and Short-tailed Shearwaters (Ardenna tenuirostris) occurred in the Bering and Chukchi seas. To evaluate whether algal toxins may have contributed to bird mortality, we tested carcasses collected from multiple locations in western and northern Alaska for STX and DA. We did not detect DA in any samples, but STX was present in 60% of all individuals tested and in 88% of Northern Fulmars. Toxin concentrations in Northern Fulmars were within the range of those reported from other STX-induced bird die-offs, suggesting that STX may have contributed to mortalities. However, direct neurotoxic action by STX could not be confirmed and starvation appeared to be the proximate cause of death among birds examined in this study.
Collapse
|
13
|
Bertani P, Lu W. Cyanobacterial toxin biosensors for environmental monitoring and protection. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
14
|
Kershaw JL, Jensen SK, McConnell B, Fraser S, Cummings C, Lacaze JP, Hermann G, Bresnan E, Dean KJ, Turner AD, Davidson K, Hall AJ. Toxins from harmful algae in fish from Scottish coastal waters. HARMFUL ALGAE 2021; 105:102068. [PMID: 34303514 DOI: 10.1016/j.hal.2021.102068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Harmful algal bloom events are increasing in a number of water bodies around the world with significant economic impacts on the aquaculture, fishing and tourism industries. As well as their potential impacts on human health, toxin exposure from harmful algal blooms (HABs) has resulted in widespread morbidity and mortality in marine life, including top marine predators. There is therefore a need for an improved understanding of the trophic transfer, and persistence of toxins in marine food webs. For the first time, the concentrations of two toxin groups of commercial and environmental importance, domoic acid (DA) and saxitoxin (including Paralytic Shellfish Toxin (PST) analogues), were measured in the viscera of 40 different fish species caught in Scotland between February and November, 2012 to 2019. Overall, fish had higher concentrations of DA compared to PSTs, with a peak in the summer / autumn months. Whole fish concentrations were highest in pelagic species including Atlantic mackerel and herring, key forage fish for marine predators including seals, cetaceans and seabirds. The highest DA concentrations were measured along the east coast of Scotland and in Orkney. PSTs showed highest concentrations in early summer, consistent with phytoplankton bloom timings. The detection of multiple toxins in such a range of demersal, pelagic and benthic fish prey species suggests that both the fish, and by extension, piscivorous marine predators, experience multiple routes of toxin exposure. Risk assessment models to understand the impacts of exposure to HAB toxins on marine predators therefore need to consider how chronic, low-dose exposure to multiple toxins, as well as acute exposure during a bloom, could lead to potential long-term health effects ultimately contributing to mortalities. The potential synergistic, neurotoxic and physiological effects of long-term exposure to multiple toxins require investigation in order to appropriately assess the risks of HAB toxins to fish as well as their predators.
Collapse
Affiliation(s)
- Joanna L Kershaw
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, KY16 8LB, UK; School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, PL4 8AA, UK.
| | - Silje-Kristin Jensen
- The Norwegian Directorate of Fisheries, Kystens Hus, Stortorget 1A, 9008 Tromsø, Norway
| | - Bernie McConnell
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, KY16 8LB, UK
| | - Shaun Fraser
- NAFC Marine Centre, University of the Highlands and Islands, Port Arthur, Scalloway, Shetland, ZE1 0UN, UK
| | - Caroline Cummings
- US Fish and Wildlife Service Alaska Region, 1011 East Tudor Road, Anchorage, Alaska, USA, 99503
| | | | | | - Eileen Bresnan
- Marine Laboratory, Marine Scotland Science, Aberdeen, AB119DB, UK
| | - Karl J Dean
- Cefas, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Andrew D Turner
- Cefas, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Keith Davidson
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, PA37 1QA, UK
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, KY16 8LB, UK
| |
Collapse
|
15
|
Tobke J, Giarratano E, Ortiz A, Garrido C, Serra M, Gil MN, Navarro JM. Chitosan performance during Paralytic Shellfish Toxins (PST) depuration of Mytilus chilensis exposed to Alexandrium catenella. Toxicon 2021; 195:48-57. [PMID: 33722633 DOI: 10.1016/j.toxicon.2021.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Blooms of the dinoflagellate Alexandrium catenella, which produces Paralytic Shellfish Toxins (PST), generate serious socio-economic consequences for mariculture in Chile, especially for the production of Mytilus chilensis and other bivalves. Palliative strategies, such as the depuration of mussels in enriched water with chitosan offer encouraging prospects against the advance of contaminated areas and toxin persistence. Adult mussels were fed with A. catenella for 20 days and then were allowed to depurate using chitosan as facilitator, for the same period. Intoxicated mussels showed a reduction in feeding activity and rapid PST accumulation in 20 days (C = 451.5t + 1,673.6, R2 = 0.55 p = 0.008). Not enough evidence was found to indicate a positive effect of chitosan in mussel depuration after 20 days (C = -311.1t + 8,462.4, R2 = 0.8 p = 0.001). At the end of the study, toxicity was higher than 800 μg STX eq kg-1. C2 and GTX4 analogues were the most abundant in the dinoflagellate strain, while C2 and C1 were the most accumulated in mussels. The presence of C1 was notorious during depuration, as the persistence of GTX2,3. GTX5 was only detected in A. catenella, while STX was only present in mussels. Mussel sensitivity to the presence of the toxic dinoflagellate was observed in the present study. The biotransformation, selective elimination and epimerization processes were deduced from intoxication and depuration experiments.
Collapse
Affiliation(s)
- Jésica Tobke
- Centro para el Estudio de Sistemas Marinos (CESIMAR - CONICET), Puerto Madryn, Chubut, Argentina
| | - Erica Giarratano
- Centro para el Estudio de Sistemas Marinos (CESIMAR - CONICET), Puerto Madryn, Chubut, Argentina.
| | - Alejandro Ortiz
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Carla Garrido
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Mariana Serra
- Centro Nacional Patagónico, CCT CONICET-CENPAT, Puerto Madryn, Chubut, Argentina
| | - Mónica N Gil
- Centro para el Estudio de Sistemas Marinos (CESIMAR - CONICET), Puerto Madryn, Chubut, Argentina; Universidad Nacional de la Patagonia San Juan Bosco, Puerto Madryn, Chubut, Argentina
| | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
16
|
Rourke WA, Justason A, Martin JL, Murphy CJ. Shellfish Toxin Uptake and Depuration in Multiple Atlantic Canadian Molluscan Species: Application to Selection of Sentinel Species in Monitoring Programs. Toxins (Basel) 2021; 13:toxins13020168. [PMID: 33671640 PMCID: PMC7926447 DOI: 10.3390/toxins13020168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 01/25/2023] Open
Abstract
Shellfish toxin monitoring programs often use mussels as the sentinel species to represent risk in other bivalve shellfish species. Studies have examined accumulation and depuration rates in various species, but little information is available to compare multiple species from the same harvest area. A 2-year research project was performed to validate the use of mussels as the sentinel species to represent other relevant eastern Canadian shellfish species (clams, scallops, and oysters). Samples were collected simultaneously from Deadmans Harbour, NB, and were tested for paralytic shellfish toxins (PSTs) and amnesic shellfish toxin (AST). Phytoplankton was also monitored at this site. Scallops accumulated PSTs and AST sooner, at higher concentrations, and retained toxins longer than mussels. Data from monitoring program samples in Mahone Bay, NS, are presented as a real-world validation of findings. Simultaneous sampling of mussels and scallops showed significant differences between shellfish toxin results in these species. These data suggest more consideration should be given to situations where multiple species are present, especially scallops.
Collapse
Affiliation(s)
- Wade A. Rourke
- Dartmouth Laboratory, Canadian Food Inspection Agency, 1992 Agency Drive, Dartmouth, NS B3B 1Y9, Canada;
- Correspondence:
| | - Andrew Justason
- New Brunswick Operations, Canadian Food Inspection Agency, 99 Mount Pleasant Road, P.O. Box 1036, St. George, NB E5C 3S9, Canada;
| | - Jennifer L. Martin
- St. Andrews Biological Station, Fisheries and Oceans Canada, 125 Marine Science Drive, St. Andrews, NB E5B 0E4, Canada;
| | - Cory J. Murphy
- Dartmouth Laboratory, Canadian Food Inspection Agency, 1992 Agency Drive, Dartmouth, NS B3B 1Y9, Canada;
| |
Collapse
|
17
|
Turnbull A, Malhi N, Seger A, Jolley J, Hallegraeff G, Fitzgibbon Q. Accumulation of paralytic shellfish toxins by Southern Rock lobster Jasus edwardsii causes minimal impact on lobster health. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105704. [PMID: 33316749 DOI: 10.1016/j.aquatox.2020.105704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Recurrent dinoflagellate blooms of Alexandrium catenella expose the economically and ecologically important Southern Rock Lobster in Tasmania to paralytic shellfish toxins (PST), and it is unknown if PST accumulation adversely affects lobster performance, health and catchability. In a controlled aquaculture setting, lobsters were fed highly contaminated mussels to accumulate toxin levels in the hepatopancreas (mean of 6.65 mg STX.2HCl equiv. kg-1), comparable to those observed in nature. Physiological impact of PST accumulation was comprehensively assessed by a range of behavioural (vitality score, righting ability and reflex impairment score), health (haemocyte count, bacteriology, gill necrosis and parasite load), nutritional (hepatopancreas index and haemolymph refractive index) and haemolymph biochemical (21 parameters including electrolytes, metabolites, and enzymes) parameters during a 63 day period of uptake and depuration of toxins. Exposure to PST did not result in mortality nor significant changes in the behavioural, health, or nutritional measures suggesting limited gross impact on lobster performance. Furthermore, most haemolymph biochemical parameters measured exhibited no significant difference between control and exposed animals. However, the concentration of potassium in the haemolymph increased with PST, whilst the concentration of lactate and the sodium:potassium ratio decreased with PST. In addition, exposed lobsters showed a hyperglycaemic response to PST exposure, indicative of stress. These findings suggest that PST accumulation results in some measurable indicators of stress for lobsters. However, these changes are likely within the adaptive range for Jasus edwardsii and do not result in a significant impairment of gross performance. Our findings support previous conclusions that crustaceans are relatively tolerant to PST and the implications for the lobster fishery are discussed.
Collapse
Affiliation(s)
- Alison Turnbull
- South Australian Research and Development Institute, GPO Box 397, Adelaide, SA, 5001, Australia; Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania, Australia.
| | - Navreet Malhi
- South Australian Research and Development Institute, GPO Box 397, Adelaide, SA, 5001, Australia
| | - Andreas Seger
- South Australian Research and Development Institute, GPO Box 397, Adelaide, SA, 5001, Australia
| | - Jessica Jolley
- South Australian Research and Development Institute, GPO Box 397, Adelaide, SA, 5001, Australia
| | - Gustaaf Hallegraeff
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania, Australia
| | - Quinn Fitzgibbon
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania, Australia
| |
Collapse
|
18
|
Application of Six Detection Methods for Analysis of Paralytic Shellfish Toxins in Shellfish from Four Regions within Latin America. Mar Drugs 2020; 18:md18120616. [PMID: 33287439 PMCID: PMC7761785 DOI: 10.3390/md18120616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/19/2022] Open
Abstract
With the move away from use of mouse bioassay (MBA) to test bivalve mollusc shellfish for paralytic shellfish poisoning (PSP) toxins, countries around the world are having to adopt non-animal-based alternatives that fulfil ethical and legal requirements. Various assays have been developed which have been subjected to single-laboratory and multi-laboratory validation studies, gaining acceptance as official methods of analysis and approval for use in some countries as official control testing methods. The majority of validation studies conducted to date do not, however, incorporate shellfish species sourced from Latin America. Consequently, this study sought to investigate the performance of five alternative PSP testing methods together with the MBA, comparing the PSP toxin data generated both qualitatively and quantitatively. The methods included a receptor binding assay (RBA), two liquid chromatography with fluorescence detection (LC-FLD) methods including both pre-column and post-column oxidation, liquid chromatography with tandem mass spectrometry (LC-MS/MS) and a commercial lateral flow assay (LFA) from Scotia. A total of three hundred and forty-nine shellfish samples from Argentina, Mexico, Chile and Uruguay were assessed. For the majority of samples, qualitative results compared well between methods. Good statistical correlations were demonstrated between the majority of quantitative results, with a notably excellent correlation between the current EU reference method using pre-column oxidation LC-FLD and LC-MS/MS. The LFA showed great potential for qualitative determination of PSP toxins, although the findings of high numbers of false-positive results and two false negatives highlighted that some caution is still needed when interpreting results. This study demonstrated that effective replacement methods are available for countries that no longer wish to use the MBA, but highlighted the importance of comparing toxin data from the replacement method using local shellfish species of concern before implementing new methods in official control testing programs.
Collapse
|
19
|
Chakraborty K, Joy M. High-value compounds from the molluscs of marine and estuarine ecosystems as prospective functional food ingredients: An overview. Food Res Int 2020; 137:109637. [PMID: 33233216 PMCID: PMC7457972 DOI: 10.1016/j.foodres.2020.109637] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/02/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Extensive biodiversity and availability of marine and estuarine molluscs, along with their their wide-range of utilities as food and nutraceutical resources developed keen attention of the food technologists and dieticians, particularly during the recent years. The current review comprehensively summarized the nutritional qualities, functional food attributes, and bioactive properties of these organisms. Among the phylum mollusca, Cephalopoda, Bivalvia, and Gastropoda were mostly reported for their nutraceutical applications and bioactive properties. The online search tools, like Scifinder/Science Direct/PubMed/Google Scholar/MarinLit database and marine natural product reports (1984-2019) were used to comprehend the information about the molluscs. More than 1334 secondary metabolites were reported from marine molluscs between the periods from 1984 to 2019. Among various classes of specialized metabolites, terpenes were occupied by 55% in gastropods, whereas sterols occupied 41% in bivalves. The marketed nutraceuticals, such as CadalminTM green mussel extract (Perna viridis) and Lyprinol® (Perna canaliculus) were endowed with potential anti-inflammatory activities, and were used against arthritis. Molluscan-derived therapeutics, for example, ziconotide was used as an analgesic, and elisidepsin was used in the treatment of cancer. Greater numbers of granted patents (30%) during 2016-2019 recognized the increasing importance of bioactive compounds from molluscs. Consumption of molluscs as daily diets could be helpful in the enhancement of immunity, and reduce the risk of several ailments. The present review comprehended the high value compounds and functional food ingredients from marine and estuarine molluscs.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin-682018, Kerala, India.
| | - Minju Joy
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin-682018, Kerala, India
| |
Collapse
|
20
|
Figueroa D, Signore A, Araneda O, Contreras HR, Concha M, García C. Toxicity and differential oxidative stress effects on zebrafish larvae following exposure to toxins from the okadaic acid group. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:573-588. [PMID: 32686606 DOI: 10.1080/15287394.2020.1793046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Okadaic acid-group (OA-group) is a set of lipophilic toxins produced only in seawater by species of the Dinophysis and Prorocentrum genera, and characterized globally by being associated with harmful algal blooms (HABs). The diarrhetic shellfish poisoning toxins okadaic acid (OA) and dinophysistoxin-1 (DTX-1) are the most prevalent toxic analogues making up the OA-group, which jeopardize environmental safety and human health through consumption of hydrobiological organisms contaminated with these toxins that produce diarrhetic shellfish poisoning (DSP) syndrome in humans. Consequently, a regulatory limit of 160 μg of OA-group/kg was established for marine resources (bivalves). The aim of this study was to investigate effects varying concentrations of 1-15 μg/ml OA or DTX-1 on toxicity, development, and oxidative damage in zebrafish larvae (Danio rerio). After determining the lethal concentration 50 (LC50) in zebrafish larvae of 10 and 7 μg/ml (24 h) and effective concentration 50 (EC50) of 8 and 6 μg/ml (24 h), different concentrations (5, 6.5, or 8 μg/ml of OA and 4, 4.5, or 6 μg/ml of DTX-1) were used to examine the effects of these toxins on oxidative damage to larvae at different time points between 24 and 120 hpf. Macroscopic evaluation during the exposure period showed alterations in zebrafish including pericardial edema, cyclopia, shortening in the anteroposterior axis, and developmental delay. The activity levels of biochemical biomarkers superoxide dismutase (SOD) and catalase (CAT) demonstrated a concentration-dependent decrease while glutathione peroxidase (GPx) and glutathione reductase (GR) were markedly elevated. In addition, increased levels of oxidative damage (malondialdehyde and carbonyl content) were detected following toxin exposure. Data demonstrate that high concentrations of OA and DTX-1produced pathological damage in the early stages of development <48 h post-fertilization (hpf) associated with oxidative damage.
Collapse
Affiliation(s)
- Diego Figueroa
- Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad De Chile , Santiago, Chile
| | - Ailen Signore
- Anatomy and Developmental Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad De Chile , Santiago, Chile
| | - Oscar Araneda
- Integrative Laboratory of Biomechanics and Physiology of Effort, Kinesiology School, Faculty of Medicine, Universidad De Los Andes , Santiago, Chile
| | - Héctor R Contreras
- Department of Basic and Clinical Oncology, Faculty of Medicine, Universidad De Chile , Santiago, Chile
| | - Miguel Concha
- Anatomy and Developmental Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad De Chile , Santiago, Chile
| | - Carlos García
- Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad De Chile , Santiago, Chile
| |
Collapse
|
21
|
Dean KJ, Hatfield RG, Lee V, Alexander RP, Lewis AM, Maskrey BH, Teixeira Alves M, Hatton B, Coates LN, Capuzzo E, Ellis JR, Turner AD. Multiple New Paralytic Shellfish Toxin Vectors in Offshore North Sea Benthos, a Deep Secret Exposed. Mar Drugs 2020; 18:E400. [PMID: 32751216 PMCID: PMC7460140 DOI: 10.3390/md18080400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
In early 2018, a large easterly storm hit the East Anglian coast of the UK, colloquially known as the 'Beast from the East', which also resulted in mass strandings of benthic organisms. There were subsequent instances of dogs consuming such organisms, leading to illness and, in some cases, fatalities. Epidemiological investigations identified paralytic shellfish toxins (PSTs) as the cause, with toxins present in a range of species and concentrations exceeding 14,000 µg STX eq./kg in the sunstar Crossaster papposus. This study sought to better elucidate the geographic spread of any toxicity and identify any key organisms of concern. During the summers of 2018 and 2019, various species of benthic invertebrates were collected from demersal trawl surveys conducted across a variety of locations in the North Sea. An analysis of the benthic epifauna using two independent PST testing methods identified a 'hot spot' of toxic organisms in the Southern Bight, with a mean toxicity of 449 µg STX eq./kg. PSTs were quantified in sea chervil (Alcyonidium diaphanum), the first known detection in the phylum bryozoan, as well as eleven other new vectors (>50 µg STX eq./kg), namely the opisthobranch Scaphander lignarius, the starfish Anseropoda placenta, Asterias rubens, Luidia ciliaris, Astropecten irregularis and Stichastrella rosea, the brittlestar Ophiura ophiura, the crustaceans Atelecyclus rotundatus and Munida rugosa, the sea mouse Aphrodita aculeata, and the sea urchin Psammechinus miliaris. The two species that showed consistently high PST concentrations were C. papposus and A. diaphanum. Two toxic profiles were identified, with one dominated by dcSTX (decarbamoylsaxitoxin) associated with the majority of samples across the whole sampling region. The second profile occurred only in North-Eastern England and consisted of mostly STX (Saxitoxin) and GTX2 (gonyautoxin 2). Consequently, this study highlights widespread and variable levels of PSTs in the marine benthos, together with the first evidence for toxicity in a large number of new species. These findings highlight impacts to 'One Health', with the unexpected sources of toxins potentially creating risks to animal, human and environmental health, with further work required to assess the severity and geographical/temporal extent of these impacts.
Collapse
Affiliation(s)
- Karl J. Dean
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
| | - Robert G. Hatfield
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
| | - Vanessa Lee
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
- Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Ryan P. Alexander
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
| | - Adam M. Lewis
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
| | - Benjamin H. Maskrey
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
| | - Mickael Teixeira Alves
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
| | - Benjamin Hatton
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK; (B.H.); (J.R.E.)
| | - Lewis N. Coates
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
| | - Elisa Capuzzo
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
| | - Jim R. Ellis
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK; (B.H.); (J.R.E.)
| | - Andrew D. Turner
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
| |
Collapse
|
22
|
Hatfield RG, Batista FM, Bean TP, Fonseca VG, Santos A, Turner AD, Lewis A, Dean KJ, Martinez-Urtaza J. The Application of Nanopore Sequencing Technology to the Study of Dinoflagellates: A Proof of Concept Study for Rapid Sequence-Based Discrimination of Potentially Harmful Algae. Front Microbiol 2020; 11:844. [PMID: 32457722 PMCID: PMC7227484 DOI: 10.3389/fmicb.2020.00844] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/08/2020] [Indexed: 01/05/2023] Open
Abstract
Harmful algal blooms (HABs) are a naturally occurring global phenomena that have the potential to impact fisheries, leisure and ecosystems, as well as posing a significant hazard to animal and human health. There is significant interest in the development and application of methodologies to study all aspects of the causative organisms and toxins associated with these events. This paper reports the first application of nanopore sequencing technology for the detection of eukaryotic harmful algal bloom organisms. The MinION sequencing platform from Oxford Nanopore technologies provides long read sequencing capabilities in a compact, low cost, and portable format. In this study we used the MinION to sequence long-range PCR amplicons from multiple dinoflagellate species with a focus on the genus Alexandrium. Primers applicable to a wide range of dinoflagellates were selected, meaning that although the study was primarily focused on Alexandrium the applicability to three additional genera of toxic algae, namely; Gonyaulax, Prorocentrum, and Lingulodinium was also demonstrated. The amplicon generated here spanned approximately 3 kb of the rDNA cassette, including most of the 18S, the complete ITS1, 5.8S, ITS2 and regions D1 and D2 of the 28S. The inclusion of barcode genes as well as highly conserved regions resulted in identification of organisms to the species level. The analysis of reference cultures resulted in over 99% of all sequences being attributed to the correct species with an average identity above 95% from a reference list of over 200 species (see Supplementary Material 1). The use of mock community analysis within environmental samples highlighted that complex matrices did not prevent the ability to distinguish between phylogenetically similar species. Successful identification of causative organisms in environmental samples during natural toxic events further highlighted the potential of the assay. This study proves the suitability of nanopore sequencing technology for taxonomic identification of harmful algal bloom organisms and acquisition of data relevant to the World Health Organisations "one health" approach to marine monitoring.
Collapse
Affiliation(s)
- Robert G. Hatfield
- Centre for Environment, Fisheries and Aquaculture Science, Dorset, United Kingdom
| | - Frederico M. Batista
- Centre for Environment, Fisheries and Aquaculture Science, Dorset, United Kingdom
| | | | - Vera G. Fonseca
- Centre for Environment, Fisheries and Aquaculture Science, Dorset, United Kingdom
| | - Andres Santos
- Centre for Environment, Fisheries and Aquaculture Science, Dorset, United Kingdom
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Andrew D. Turner
- Centre for Environment, Fisheries and Aquaculture Science, Dorset, United Kingdom
| | - Adam Lewis
- Centre for Environment, Fisheries and Aquaculture Science, Dorset, United Kingdom
| | - Karl J. Dean
- Centre for Environment, Fisheries and Aquaculture Science, Dorset, United Kingdom
| | | |
Collapse
|
23
|
Van Hemert C, Schoen SK, Litaker RW, Smith MM, Arimitsu ML, Piatt JF, Holland WC, Ransom Hardison D, Pearce JM. Algal toxins in Alaskan seabirds: Evaluating the role of saxitoxin and domoic acid in a large-scale die-off of Common Murres. HARMFUL ALGAE 2020; 92:101730. [PMID: 32113594 DOI: 10.1016/j.hal.2019.101730] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/21/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Elevated seawater temperatures are linked to the development of harmful algal blooms (HABs), which pose a growing threat to marine birds and other wildlife. During late 2015 and early 2016, a massive die-off of Common Murres (Uria aalge; hereafter, murres) was observed in the Gulf of Alaska coincident with a strong marine heat wave. Previous studies have documented illness and death among seabirds resulting from exposure to the HAB neurotoxins saxitoxin (STX) and domoic acid (DA). Given the unusual mortality event, corresponding warm water anomalies, and recent detection of STX and DA throughout coastal Alaskan waters, HABs were identified as a possible factor of concern. To evaluate whether algal toxins may have contributed to murre deaths, we tested for STX and DA in a suite of tissues obtained from beach-cast murre carcasses associated with the die-off as well as from apparently healthy murres and Black-legged Kittiwakes (Rissa tridactyla; hereafter, kittiwakes) sampled in the preceding and following summers. We also tested forage fish and marine invertebrates collected in the Gulf of Alaska in 2015-2017 to evaluate potential sources of HAB toxin exposure for seabirds. Saxitoxin was present in multiple tissue types of both die-off (36.4 %) and healthy (41.7 %) murres and healthy kittiwakes (54.2 %). Among birds, we detected the highest concentrations of STX in liver tissues (range 1.4-10.8 μg 100 g-1) of die-off murres. Saxitoxin was relatively common in forage fish (20.3 %) and invertebrates (53.8 %). No established toxicity limits currently exist for seabirds, but concentrations of STX in birds and forage fish in our study were lower than values reported from most other bird die-offs in which STX intoxication was causally linked. We detected low concentrations of DA in a single bird sample and in 33.3 % of invertebrates and 4.0 % of forage fish samples. Although these results do not support the hypothesis that acute exposure to STX or DA was a primary factor in the 2015-2016 mortality event, additional information about the sensitivity of murres to these toxins is needed before we can discount their potential role in the die-off. The widespread occurrence of STX in seabirds, forage fish, and invertebrates in the Gulf of Alaska indicates that algal toxins should be considered in future assessments of seabird health, especially given the potential for greater occurrence of HABs in the future.
Collapse
Affiliation(s)
| | - Sarah K Schoen
- US Geological Survey, Alaska Science Center, Anchorage, AK, United States
| | - R Wayne Litaker
- National Oceanic and Atmospheric Association, National Centers for Coastal Ocean Science, Beaufort, NC, United States
| | - Matthew M Smith
- US Geological Survey, Alaska Science Center, Anchorage, AK, United States
| | - Mayumi L Arimitsu
- US Geological Survey, Alaska Science Center, Anchorage, AK, United States
| | - John F Piatt
- US Geological Survey, Alaska Science Center, Anchorage, AK, United States
| | - William C Holland
- National Oceanic and Atmospheric Association, National Centers for Coastal Ocean Science, Beaufort, NC, United States
| | - D Ransom Hardison
- National Oceanic and Atmospheric Association, National Centers for Coastal Ocean Science, Beaufort, NC, United States
| | - John M Pearce
- US Geological Survey, Alaska Science Center, Anchorage, AK, United States
| |
Collapse
|
24
|
Masias D, Gómez K, Contreras C, Gaete L, García C. Rapid screening fluorescence method applied to detection and quantitation of paralytic shellfish toxins in invertebrate marine vectors. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1118-1137. [DOI: 10.1080/19440049.2019.1615645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Daisy Masias
- Department of Chemistry, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Laboratory of Marine Toxins, Physiology and Biophysics Programme, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Kelly Gómez
- Department of Chemistry, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Laboratory of Marine Toxins, Physiology and Biophysics Programme, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristóbal Contreras
- Laboratory of Marine Toxins, Physiology and Biophysics Programme, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Leonardo Gaete
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Carlos García
- Laboratory of Marine Toxins, Physiology and Biophysics Programme, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
25
|
Contreras HR, García C. Inter-species variability of okadaic acid group toxicity in relation to the content of fatty acids detected in different marine vectors. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:464-482. [DOI: 10.1080/19440049.2019.1569265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Héctor R. Contreras
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carlos García
- Laboratory of Marine Toxins, Physiology and Biophysics Programme, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
26
|
Turner AD, Dhanji-Rapkova M, Dean K, Milligan S, Hamilton M, Thomas J, Poole C, Haycock J, Spelman-Marriott J, Watson A, Hughes K, Marr B, Dixon A, Coates L. Fatal Canine Intoxications Linked to the Presence of Saxitoxins in Stranded Marine Organisms Following Winter Storm Activity. Toxins (Basel) 2018; 10:E94. [PMID: 29495385 PMCID: PMC5869382 DOI: 10.3390/toxins10030094] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 11/16/2022] Open
Abstract
At the start of 2018, multiple incidents of dog illnesses were reported following consumption of marine species washed up onto the beaches of eastern England after winter storms. Over a two-week period, nine confirmed illnesses including two canine deaths were recorded. Symptoms in the affected dogs included sickness, loss of motor control, and muscle paralysis. Samples of flatfish, starfish, and crab from the beaches in the affected areas were analysed for a suite of naturally occurring marine neurotoxins of dinoflagellate origin. Toxins causing paralytic shellfish poisoning (PSP) were detected and quantified using two independent chemical testing methods in samples of all three marine types, with concentrations over 14,000 µg saxitoxin (STX) eq/kg found in one starfish sample. Further evidence for PSP intoxication of the dogs was obtained with the positive identification of PSP toxins in a vomited crab sample from one deceased dog and in gastrointestinal samples collected post mortem from a second affected dog. Together, this is the first report providing evidence of starfish being implicated in a PSP intoxication case and the first report of PSP in canines.
Collapse
Affiliation(s)
- Andrew D Turner
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Monika Dhanji-Rapkova
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Karl Dean
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Steven Milligan
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Mike Hamilton
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Julie Thomas
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Chris Poole
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Jo Haycock
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Jo Spelman-Marriott
- Taverham Veterinary Hospital, Fir Covert Road, Taverham, Norwich, Norfolk NR8 6HT, UK.
| | - Alice Watson
- Taverham Veterinary Hospital, Fir Covert Road, Taverham, Norwich, Norfolk NR8 6HT, UK.
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | - Bridget Marr
- Environment Agency, Dragonfly House, 2 Gilders Way, Norwich, Norfolk NR3 1UB, UK.
| | - Alan Dixon
- North Norfolk District Council, Holt Road, Cromer, Norfolk, NR27 9EN, UK.
| | - Lewis Coates
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| |
Collapse
|