1
|
Golenser J, Hunt NH, Birman I, Jaffe CL, Zech J, Mäder K, Gold D. Applicability of Redirecting Artemisinins for New Targets. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300030. [PMID: 38094863 PMCID: PMC10714028 DOI: 10.1002/gch2.202300030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Indexed: 10/16/2024]
Abstract
Employing new therapeutic indications for drugs that are already approved for human use has obvious advantages, including reduced costs and timelines, because some routine steps of drug development and regulation are not required. This work concentrates on the redirection of artemisinins (ARTS) that already are approved for clinical use, or investigated, for malaria treatment. Several mechanisms of action are suggested for ARTS, among which only a few have been successfully examined in vivo, mainly the induction of oxidant stress and anti-inflammatory effects. Despite these seemingly contradictory effects, ARTS are proposed for repurposing in treatment of inflammatory disorders and diverse types of diseases caused by viral, bacterial, fungal, and parasitic infections. When pathogens are treated the expected outcome is diminution of the causative agents and/or their inflammatory damage. In general, repurposing ARTS is successful in only a very few cases, specifically when a valid mechanism can be targeted using an additional therapeutic agent and appropriate drug delivery. Investigation of repurposing should include optimization of drug combinations followed by examination in relevant cell lines, organoids, and animal models, before moving to clinical trials.
Collapse
Affiliation(s)
- Jacob Golenser
- Department of Microbiology and Molecular GeneticsKuvin Center for the Study of Infectious and Tropical DiseasesThe Hebrew University – Hadassah Medical CenterJerusalemIsrael
| | - Nicholas H. Hunt
- School of Medical SciencesUniversity of SydneySydney2050Australia
| | - Ida Birman
- Department of Microbiology and Molecular GeneticsKuvin Center for the Study of Infectious and Tropical DiseasesThe Hebrew University – Hadassah Medical CenterJerusalemIsrael
| | - Charles L. Jaffe
- Department of Microbiology and Molecular GeneticsKuvin Center for the Study of Infectious and Tropical DiseasesThe Hebrew University – Hadassah Medical CenterJerusalemIsrael
| | - Johanna Zech
- Institute of PharmacyMartin Luther University Halle‐Wittenberg06108HalleGermany
| | - Karsten Mäder
- Institute of PharmacyMartin Luther University Halle‐Wittenberg06108HalleGermany
| | - Daniel Gold
- Department of Clinical Microbiology and ImmunologyFaculty of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
2
|
Koopman JPR, Houlder EL, Janse JJ, Casacuberta-Partal M, Lamers OAC, Sijtsma JC, de Dood C, Hilt ST, Ozir-Fazalalikhan A, Kuiper VP, Roozen GVT, de Bes-Roeleveld LM, Kruize YCM, Wammes LJ, Smits HH, van Lieshout L, van Dam GJ, van Amerongen-Westra IM, Meij P, Corstjens PLAM, Jochems SP, van Diepen A, Yazdanbakhsh M, Hokke CH, Roestenberg M. Safety and infectivity of female cercariae in Schistosoma-naïve, healthy participants: a controlled human Schistosoma mansoni infection study. EBioMedicine 2023; 97:104832. [PMID: 37837930 PMCID: PMC10585222 DOI: 10.1016/j.ebiom.2023.104832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND A controlled human infection model for schistosomiasis (CHI-S) can speed up vaccine development and provides insight into early immune responses following schistosome exposure. Recently, we established CHI-S model using single-sex male-only Schistosoma mansoni (Sm) cercariae in Schistosoma-naïve individuals. Given important differences in antigenic profile and human immune responses to schistosomes of different sex, we pioneered a single-sex female-only CHI-S model for future use in vaccine development. METHODS We exposed 13 healthy, Schistosoma-naïve adult participants to 10 (n = 3) or 20 (n = 10) female cercariae and followed for 20 weeks, receiving treatment with praziquantel (PZQ) 60 mg/kg at week 8 and 12 after exposure. FINDINGS The majority (11/13) participants reported rash and/or itch at the site of exposure, 5/13 had transient symptoms of acute schistosomiasis. Exposure to 20 cercariae led to detectable infection, defined as serum circulating anodic antigen levels >1.0 pg/mL, in 6/10 participants. Despite two rounds of PZQ treatment, 4/13 participants showed signs of persistent infection. Additional one- or three-day PZQ treatment (1 × 60 mg/kg and 3 × 60 mg/kg) or artemether did not result in cure, but over time three participants self-cured. Antibody, cellular, and cytokine responses peaked at week 4 post infection, with a mixed Th1, Th2, and regulatory profile. Cellular responses were (most) discriminative for symptoms. INTERPRETATION Female-only infections exhibit similar clinical and immunological profiles as male-only infections but are more resistant to PZQ treatment. This limits future use of this model and may have important implications for disease control programs. FUNDING European Union's Horizon 2020 (grant no. 81564).
Collapse
Affiliation(s)
- Jan Pieter R Koopman
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Emma L Houlder
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Jacqueline J Janse
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Miriam Casacuberta-Partal
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Olivia A C Lamers
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Jeroen C Sijtsma
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Claudia de Dood
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Stan T Hilt
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands; Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Arifa Ozir-Fazalalikhan
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Vincent P Kuiper
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Geert V T Roozen
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Laura M de Bes-Roeleveld
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Yvonne C M Kruize
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Linda J Wammes
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Hermelijn H Smits
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Lisette van Lieshout
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Govert J van Dam
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Inge M van Amerongen-Westra
- Center for Cell and Gene Therapy, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Pauline Meij
- Center for Cell and Gene Therapy, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Paul L A M Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Simon P Jochems
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Angela van Diepen
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Maria Yazdanbakhsh
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Cornelis H Hokke
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| |
Collapse
|
3
|
Pfarr KM, Krome AK, Al-Obaidi I, Batchelor H, Vaillant M, Hoerauf A, Opoku NO, Kuesel AC. The pipeline for drugs for control and elimination of neglected tropical diseases: 2. Oral anti-infective drugs and drug combinations for off-label use. Parasit Vectors 2023; 16:394. [PMID: 37907954 PMCID: PMC10619278 DOI: 10.1186/s13071-023-05909-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/31/2023] [Indexed: 11/02/2023] Open
Abstract
In its 'Road map for neglected tropical diseases 2021-2030', the World Health Organization outlined its targets for control and elimination of neglected tropical diseases (NTDs) and research needed to achieve them. For many NTDs, this includes research for new treatment options for case management and/or preventive chemotherapy. Our review of small-molecule anti-infective drugs recently approved by a stringent regulatory authority (SRA) or in at least Phase 2 clinical development for regulatory approval showed that this pipeline cannot deliver all new treatments needed. WHO guidelines and country policies show that drugs may be recommended for control and elimination for NTDs for which they are not SRA approved (i.e. for 'off-label' use) if efficacy and safety data for the relevant NTD are considered sufficient by WHO and country authorities. Here, we are providing an overview of clinical research in the past 10 years evaluating the anti-infective efficacy of oral small-molecule drugs for NTD(s) for which they are neither SRA approved, nor included in current WHO strategies nor, considering the research sponsors, likely to be registered with a SRA for that NTD, if found to be effective and safe. No such research has been done for yaws, guinea worm, Trypanosoma brucei gambiense human African trypanosomiasis (HAT), rabies, trachoma, visceral leishmaniasis, mycetoma, T. b. rhodesiense HAT, echinococcosis, taeniasis/cysticercosis or scabies. Oral drugs evaluated include sparfloxacin and acedapsone for leprosy; rifampicin, rifapentin and moxifloxacin for onchocerciasis; imatinib and levamisole for loiasis; itraconazole, fluconazole, ketoconazole, posaconazole, ravuconazole and disulfiram for Chagas disease, doxycycline and rifampicin for lymphatic filariasis; arterolane, piperaquine, artesunate, artemether, lumefantrine and mefloquine for schistosomiasis; ivermectin, tribendimidine, pyrantel, oxantel and nitazoxanide for soil-transmitted helminths including strongyloidiasis; chloroquine, ivermectin, balapiravir, ribavirin, celgosivir, UV-4B, ivermectin and doxycycline for dengue; streptomycin, amoxicillin, clavulanate for Buruli ulcer; fluconazole and isavuconazonium for mycoses; clarithromycin and dapsone for cutaneous leishmaniasis; and tribendimidine, albendazole, mebendazole and nitazoxanide for foodborne trematodiasis. Additional paths to identification of new treatment options are needed. One promising path is exploitation of the worldwide experience with 'off-label' treatment of diseases with insufficient treatment options as pursued by the 'CURE ID' initiative.
Collapse
Affiliation(s)
- Kenneth M Pfarr
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Anna K Krome
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Bonn, Germany
| | - Issraa Al-Obaidi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michel Vaillant
- Competence Center for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Grand Duchy of Luxembourg
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Nicholas O Opoku
- Department of Epidemiology and Biostatistics School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Annette C Kuesel
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (WHO/TDR), World Health Organization, Geneva, Switzerland.
| |
Collapse
|
4
|
Roquini V, Mengarda AC, Cajas RA, Martins-da-Silva MF, Godoy-Silva J, Santos GA, Espírito-Santo MCC, Pavani TFA, Melo VA, Salvadori MC, Teixeira FS, Rando DGG, de Moraes J. The Existing Drug Nifuroxazide as an Antischistosomal Agent: In Vitro, In Vivo, and In Silico Studies of Macromolecular Targets. Microbiol Spectr 2023; 11:e0139323. [PMID: 37409934 PMCID: PMC10434008 DOI: 10.1128/spectrum.01393-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023] Open
Abstract
Schistosomiasis is a parasitic disease that afflicts approximately 250 million people worldwide. There is an urgent demand for new antiparasitic agents because praziquantel, the only drug available for the treatment of schistosomiasis, is not universally effective and may derail current progress toward the WHO goal of eliminating this disease as a public health problem by 2030. Nifuroxazide (NFZ), an oral nitrofuran antibiotic, has recently been explored to be repurposed for parasitic diseases. Here, in vitro, in vivo, and in silico studies were conducted to evaluate the activity of NFZ on Schistosoma mansoni. The in vitro study showed significant antiparasitic activity, with 50% effective concentration (EC50) and 90% effective concentration (EC90) values of 8.2 to 10.8 and 13.7 to 19.3 μM, respectively. NFZ also affected worm pairing and egg production and induced severe damage to the tegument of schistosomes. In vivo, a single oral dose of NFZ (400 mg/kg of body weight) to mice harboring either prepatent or patent S. mansoni infection significantly reduced the total worm burden (~40%). In patent infection, NFZ achieved a high reduction in the number of eggs (~80%), but the drug caused a low reduction in the egg burden of animals with prepatent infection. Finally, results from in silico target fishing methods predicted that serine/threonine kinases could be one of the potential targets for NFZ in S. mansoni. Overall, the present study revealed that NFZ possesses antischistosomal properties, mainly in terms of egg burden reduction in animals with patent S. mansoni infection. IMPORTANCE The increasing recognition of the burden imposed by helminthiasis, associated with the limited therapeutic arsenal, has led to initiatives and strategies to research and develop new drugs for the treatment of schistosomiasis. One of these strategies is drug repurposing, which considers low-risk compounds with potentially reduced costs and shorter time for development. In this study, nifuroxazide (NFZ) was evaluated for its anti-Schistosoma mansoni potential through in vitro, in vivo, and in silico studies. In vitro, NFZ affected worm pairing and egg production and induced severe damage to the tegument of schistosomes. In vivo, a single oral dose of NFZ (400 mg/kg) to mice harboring either prepatent or patent S. mansoni infection significantly reduced the total worm burden and egg production. In silico investigations have identified serine/threonine kinases as a molecular target for NFZ. Collectively, these results implied that NFZ might be a potential therapeutic candidate for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Vinícius Roquini
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Ana C. Mengarda
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Rayssa A. Cajas
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| | | | - Julia Godoy-Silva
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Gustavo A. Santos
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Maria Cristina C. Espírito-Santo
- Laboratory of Immunopathology of Schistosomiasis (LIM-06), Department of Infectious and Parasitic Diseases, Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
- Laboratory of Helminthology, Institute of Tropical Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Thais F. A. Pavani
- Biological Chemistry Post-Graduate Course, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Vanusa A. Melo
- Biological Chemistry Post-Graduate Course, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Maria C. Salvadori
- Institute of Physics, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Daniela G. G. Rando
- Chemico-Pharmaceutical Research Group, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Josué de Moraes
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| |
Collapse
|
5
|
Biendl S, Häberli C, Chen G, Wang W, Zhong L, Saunders J, Pham T, Wang X, Wu J, Charman SA, Vennerstrom JL, Keiser J. In Vitro and In Vivo Antischistosomal Activity Profiling and Pharmacokinetics of Ozonide Carboxylic Acids. ACS Infect Dis 2023; 9:643-652. [PMID: 36794836 PMCID: PMC10858445 DOI: 10.1021/acsinfecdis.2c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Praziquantel, the only drug in clinical use for the treatment and control of schistosomiasis, is inactive against developing infections. Ozonides are synthetic peroxide derivatives inspired by the naturally occurring artemisinin and show particularly promising activity against juvenile schistosomes. We conducted an in-depth characterization of the in vitro and in vivo antischistosomal activity and pharmacokinetics of lead ozonide carboxylic acid OZ418 and four of its active analogs. In vitro, the ozonides featured rapid and consistent activity against schistosomula and adult schistosomes at double-digit micromolar EC50 values. Potency did not vary considerably between Schistosoma spp. The zwitterionic OZ740 and OZ772 were more active in vivo compared to their non-amphoteric carboxylic acids OZ418 and OZ748, despite their much lower systemic plasma exposure (AUC). The most active compound in vivo was ethyl ester OZ780, which was rapidly transformed to its parent zwitterion OZ740 and achieved ED50 values of 35 ± 2.4 and 29 ± 2.4 mg/kg against adult and juvenile Schistosoma mansoni, respectively. Ozonide carboxylic acids represent promising candidates for further optimization and development due to their good efficacy against both life stages together with their broad activity range against all relevant parasite species.
Collapse
Affiliation(s)
- Stefan Biendl
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Cécile Häberli
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Gong Chen
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Wen Wang
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Longjin Zhong
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jessica Saunders
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Thao Pham
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 986125, United States of America
| | - Jianbo Wu
- College of Pharmacy, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 986125, United States of America
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jonathan L Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 986125, United States of America
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| |
Collapse
|
6
|
Sousa MS, Meneses GC, van Dam GJ, Corstjens PLAM, Galvão RLDF, Pinheiro MCC, Martins AMC, Daher EDF, Bezerra FSDM. Subclinical signs of podocyte injury associated with Circulating Anodic Antigen (CAA) in Schistosoma mansoni-infected patients in Brazil. Rev Soc Bras Med Trop 2023; 56:e0341. [PMID: 36820657 PMCID: PMC9957141 DOI: 10.1590/0037-8682-0341-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/22/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND The long-term effects of schistosomiasis on the glomerulus may contribute to the development of chronic kidney disease. This study aimed to investigate baseline Schistosoma mansoni-Circulating Anodic Antigen (CAA) levels and their association with kidney biomarkers related to podocyte injury and inflammation in long-term follow-up after praziquantel (PZQ) treatment. METHODS Schistosoma infection was diagnosed by detecting CAA in urine using a quantitative assay based on lateral flow using luminescent up-converting phosphor reporter particles. A cutoff threshold of 0.1 pg/mL CAA was used to diagnose Schistosoma infection (baseline) in a low-prevalence area in Ceará, Northeast, Brazil. Two groups were included: CAA-positive and CAA-negative individuals, both of which received a single dose of PZQ at baseline. Urinary samples from 55 individuals were evaluated before (baseline) and at 1, 2, and 3 years after PZQ treatment. At all time points, kidney biomarkers were quantified in urine and adjusted for urinary creatinine levels. RESULTS CAA-positive patients had increased baseline albuminuria and proteinuria and showed greater associations between kidney biomarkers. CAA levels correlated only with Vascular Endothelial Growth Factor (VEGF) (podocyte injury) levels. Increasing trends were observed for malondialdehyde (oxidative stress), monocyte chemoattractant protein-1 (inflammation marker), and VEGF. In the follow-up analysis, no relevant differences were observed in kidney biomarkers between the groups and different periods. CONCLUSIONS S. mansoni-infected individuals presented subclinical signs of glomerular damage that may reflect podocyte injury. However, no causal effect on long-term renal function was observed after PZQ treatment.
Collapse
Affiliation(s)
- Mariana Silva Sousa
- Universidade Federal do Ceará, Departamento de Análises Clínicas e Toxicológicas, Laboratório de Pesquisa em Parasitologia e Biologia de Moluscos, Fortaleza, CE, Brasil. , Universidade Federal do Ceará, Programa de Pós-graduação stricto senso em Ciências Médicas, Fortaleza, CE, Brasil.
| | - Gdayllon Cavalcante Meneses
- Universidade Federal do Ceará, Programa de Pós-graduação stricto senso em Ciências Médicas, Fortaleza, CE, Brasil.
| | - Govert Jan van Dam
- Leiden University Medical Centre, Department of Parasitology, Leiden, The Netherlands.
| | | | - Rosangela Lima de Freitas Galvão
- Universidade Federal do Ceará, Departamento de Análises Clínicas e Toxicológicas, Laboratório de Pesquisa em Parasitologia e Biologia de Moluscos, Fortaleza, CE, Brasil. , Universidade Federal do Ceará, Programa de Pós-graduação stricto senso em Patologia, Fortaleza, CE, Brasil.
| | - Marta Cristhiany Cunha Pinheiro
- Universidade Federal do Ceará, Departamento de Análises Clínicas e Toxicológicas, Laboratório de Pesquisa em Parasitologia e Biologia de Moluscos, Fortaleza, CE, Brasil.
| | - Alice Maria Costa Martins
- Universidade Federal do Ceará, Programa de Pós-graduação stricto senso em Ciências Farmacêuticas, Fortaleza, CE, Brasil.
| | - Elizabeth de Francesco Daher
- Universidade Federal do Ceará, Programa de Pós-graduação stricto senso em Ciências Médicas, Fortaleza, CE, Brasil.
| | - Fernando Schemelzer de Moraes Bezerra
- Universidade Federal do Ceará, Departamento de Análises Clínicas e Toxicológicas, Laboratório de Pesquisa em Parasitologia e Biologia de Moluscos, Fortaleza, CE, Brasil. , Universidade Federal do Ceará, Programa de Pós-graduação stricto senso em Ciências Médicas, Fortaleza, CE, Brasil. , Universidade Federal do Ceará, Programa de Pós-graduação stricto senso em Patologia, Fortaleza, CE, Brasil.
| |
Collapse
|
7
|
Schluth CG, Standley CJ, Bansal S, Carlson CJ. Spatial parasitology and the unmapped human helminthiases. Parasitology 2023; 150:1-9. [PMID: 36632014 PMCID: PMC10090474 DOI: 10.1017/s0031182023000045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Helminthiases are a class of neglected tropical diseases that affect at least 1 billion people worldwide, with a disproportionate impact on resource-poor areas with limited disease surveillance. Geospatial methods can offer valuable insights into the burden of these infections, particularly given that many are subject to strong ecological influences on the environmental, vector-borne or zoonotic stages of their life cycle. In this study, we screened 6829 abstracts and analysed 485 studies that use maps to document, infer or predict transmission patterns for over 200 species of parasitic worms. We found that quantitative mapping methods are increasingly used in medical parasitology, drawing on One Health surveillance data from the community scale to model geographic distributions and burdens up to the regional or global scale. However, we found that the vast majority of the human helminthiases may be entirely unmapped, with research effort focused disproportionately on a half-dozen infections that are targeted by mass drug administration programmes. Entire regions were also surprisingly under-represented in the literature, particularly southern Asia and the Neotropics. We conclude by proposing a shortlist of possible priorities for future research, including several neglected helminthiases with a burden that may be underestimated.
Collapse
Affiliation(s)
| | - Claire J. Standley
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Colin J. Carlson
- Department of Biology, Georgetown University, Washington, DC, USA
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
8
|
Gebreyesus TD, Makonnen E, Tadele T, Mekete K, Gashaw H, Gerba H, Aklillu E. Efficacy and safety of praziquantel preventive chemotherapy in Schistosoma mansoni infected school children in Southern Ethiopia: A prospective cohort study. Front Pharmacol 2023; 14:968106. [PMID: 36937860 PMCID: PMC10014719 DOI: 10.3389/fphar.2023.968106] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Background: The World Health Organization recommends efficacy and safety surveillance of anti-helminths used in mass drug administration campaigns. We evaluated the effectiveness of single-dose praziquantel against Schistosoma mansoni infection, and the safety of praziquantel plus albendazole preventive chemotherapy (PC) in Schistosoma mansoni infected school children (n = 512) in Southern Ethiopia. Method: Stool examinations were done using thick smear Kato-Katz at baseline, week-4, and week-8 of post-Mass drug administration (MDA) to assess praziquantel efficacy. Participants were followed for MDA-associated adverse events up to day 7 of post-MDA. The primary and secondary study outcomes were praziquantel efficacy (parasitological cure and egg reduction rates) and MDA-associated adverse events (AEs), respectively. Result: The overall cure rates at week-4 and week-8 were 89.1% (95%CI = 86.1-91.7) and 87.5% (95%CI = 83.6-90.8), respectively. Cure rates among moderate-to-heavily infected children were significantly lower (p = 0.001) compared to those with light infection at week-4 (84.4% vs. 91.1%, p = 0.03) and week-8 (78.6% vs. 91.9%, respectively). Older children had a higher cure rate than younger ones at week-8 (90.1% vs. 79.5%, p = 0.01). Among those who were Schistosoma egg-free (cured) at week 4, 7.8% became egg-positive at week 8. The overall egg reduction rate (ERR) at week-4 and week-8 were 93.5% and 91.3%, respectively, being lower among the 5-9 years old age groups (p = 0.01) at week-8. The proportion of children who remained schistosoma egg-positive throughout the study follow-up period was 4.6%, and their ERR at week-4 and week-8 was 50% and 51%, respectively, which is below the 90% World Health Organization threshold for efficacy. The incidence of experiencing at least one type of MDA-associated AEs were 17.0% (95%CI = 13.8%-20.5%); abdominal pain, headache, and vomiting were the most common. The proportion of mild, moderate, and severe AEs was 63.2%, 26.3%, and 10.5%, respectively. Females experienced more AEs than males (p = 0.03). Conclusion: Single-dose praziquantel is still effective for the treatment of intestinal schistosomiasis. Praziquantel and albendazole preventive chemotherapy is safe and tolerable, and associated AEs are mostly mild-to-moderate and transient. However, the reduced PZQ effectiveness in moderate-to-heavy infection and observed AEs in about one-fifth of infected children underscores the need for better treatment strategies and surveillance for early detection of parasite resistance and management of AEs.
Collapse
Affiliation(s)
- Tigist Dires Gebreyesus
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
- Ethiopian Food and Drug Authority, Addis Ababa, Ethiopia
| | - Eyasu Makonnen
- Center for Innovative Drug Development and Therapeutic Trials for Africa, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Departments of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tafesse Tadele
- College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | | | - Habtamu Gashaw
- Ethiopian Food and Drug Authority, Addis Ababa, Ethiopia
| | - Heran Gerba
- Ethiopian Food and Drug Authority, Addis Ababa, Ethiopia
| | - Eleni Aklillu
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Eleni Aklillu,
| |
Collapse
|
9
|
Xavier ES, de Souza RL, Rodrigues VC, Melo CO, Roquini DB, Lemes BL, Wilairatana P, Oliveira EE, de Moraes J. Therapeutic Efficacy of Carvacrol-Loaded Nanoemulsion in a Mouse Model of Schistosomiasis. Front Pharmacol 2022; 13:917363. [PMID: 35784725 PMCID: PMC9247328 DOI: 10.3389/fphar.2022.917363] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022] Open
Abstract
Since praziquantel is the only drug available to treat schistosomiasis, a neglected parasitic disease that affects more than 240 million people worldwide, there is an urgent demand for new antischistosomal agents. Natural compound-loaded nanoparticles have recently emerged as a promising alternative for the treatment of schistosomiasis. Carvacrol is an antimicrobial monoterpene present in the essential oil extracted from several plants, especially oregano (Origanum vulgare). In this study, a carvacrol nanoemulsion (CVNE) was prepared, characterized, and administered orally (200 mg/kg) in a mouse infected with either immature (prepatent infection) or adult (patent infection) Schistosoma mansoni. For comparison, data obtained with an unloaded nanoemulsion (blank formulation), free carvacrol, and the drug of reference praziquantel are also presented. CVNE was more effective than free carvacrol in reducing the worm burden and egg production in both patent and prepatent infections. Favorably, CVNE had a high effect in terms of reducing the number of worms and eggs (85%–90%) compared with praziquantel (∼30%) in prepatent infection. In tandem, carvacrol-loaded nanoemulsion markedly improved antischistosomal activity, showing efficiency in reducing worm and egg burden, and thus it may be a promising delivery system for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Edilaine S. Xavier
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, Brazil
| | - Rafael L. de Souza
- Laboratory of Synthesis and Drug Delivery, State University of Paraiba, João Pessoa, Brazil
| | | | - Camila O. Melo
- Laboratory of Synthesis and Drug Delivery, State University of Paraiba, João Pessoa, Brazil
| | - Daniel B. Roquini
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, Brazil
| | - Bruna L. Lemes
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, Brazil
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- *Correspondence: Polrat Wilairatana, ; Josué de Moraes,
| | - Elquio E. Oliveira
- Laboratory of Synthesis and Drug Delivery, State University of Paraiba, João Pessoa, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, Brazil
- *Correspondence: Polrat Wilairatana, ; Josué de Moraes,
| |
Collapse
|
10
|
Drug associations as alternative and complementary therapy for neglected tropical diseases. Acta Trop 2022; 225:106210. [PMID: 34687644 DOI: 10.1016/j.actatropica.2021.106210] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/02/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022]
Abstract
The present paper aims to establish different treatments for neglected tropical disease by a survey on drug conjugations and possible fixed-dose combinations (FDC) used to obtain alternative, safer and more effective treatments. The source databases used were Science Direct and PubMed/Medline, in the intervals between 2015 and 2021 with the drugs key-words or diseases, like "schistosomiasis", "praziquantel", "malaria", "artesunate", "Chagas' disease", "benznidazole", "filariasis", diethylcarbamazine", "ivermectin", " albendazole". 118 works were the object of intense analysis, other articles and documents were used to increase the quality of the studies, such as consensuses for harmonizing therapeutics and historical articles. As a result, an effective NTD control can be achieved when different public health approaches are combined with interventions guided by the epidemiology of each location and the availability of appropriate measures to detect, prevent and control disease. It was also possible to verify that the FDCs promote a simplification of the therapeutic regimen, which promotes better patient compliance and enables a reduction in the development of parasitic resistance, requiring further studies aimed at resistant strains, since the combined APIs usually act by different mechanisms or at different target sites. In addition to eliminating the process of developing a new drug based on the identification and validation of active compounds, which is a complex, long process and requires a strong long-term investment, other advantages that FDCs have are related to productive gain and gain from the industrial plant, which can favor and encourage the R&D of new FDCs not only for NTDs but also for other diseases that require the use of more than one drug.
Collapse
|
11
|
Silva BC, Mengarda AC, Rodrigues VC, Cajas RA, Carnaúba PU, Espírito-Santo MCC, Bezerra-Filho CSM, de Sousa DP, de Moraes J. Efficacy of carvacryl acetate in vitro and following oral administration to mice harboring either prepatent or patent Schistosoma mansoni infections. Parasitol Res 2021; 120:3837-3844. [PMID: 34604934 DOI: 10.1007/s00436-021-07333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Schistosomiasis is a major public health problem that afflicts more than 240 million individuals globally, particularly in poor communities. Treatment of schistosomiasis relies heavily on a single oral drug, praziquantel, and there is interest in the search for new antischistosomal drugs. This study reports the anthelmintic evaluation of carvacryl acetate, a derivative of the terpene carvacrol, against Schistosoma mansoni ex vivo and in a schistosomiasis animal model harboring either adult (patent infection) or juvenile (prepatent infection) parasites. For comparison, data obtained with gold standard antischistosomal drug praziquantel are also presented. Initially in vitro effective concentrations of 50% (EC50) and 90% (EC90) were determined against larval and adult stages of S. mansoni. In an animal with patent infection, a single oral dose of carvacryl acetate (100, 200, or 400 mg/kg) caused a significant reduction in worm burden (30-40%). S. mansoni egg production, a process responsible for both life cycle and pathogenesis, was also markedly reduced (70-80%). Similar to praziquantel, carvacryl acetate 400 mg/kg had low efficacy in pre-patent infection. In tandem, although carvacryl acetate had interesting in vitro schistosomicidal activity, the compound exhibited low efficacy in terms of reduction of worm load in S. mansoni-infected mice.
Collapse
Affiliation(s)
- Bianca C Silva
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, R. Eng. Prestes Maia, 88, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Ana C Mengarda
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, R. Eng. Prestes Maia, 88, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Vinícius C Rodrigues
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, R. Eng. Prestes Maia, 88, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Rayssa A Cajas
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, R. Eng. Prestes Maia, 88, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Paulo U Carnaúba
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, R. Eng. Prestes Maia, 88, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Maria Cristina C Espírito-Santo
- Laboratório de Imunopatologia da Esquistossomose (LIM-06), Departamento de Moléstias Infecciosas E Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório de Helmintologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, SP, São Paulo, Brazil
| | - Carlos S M Bezerra-Filho
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Damião P de Sousa
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, R. Eng. Prestes Maia, 88, Centro, Guarulhos, SP, 07023-070, Brazil.
| |
Collapse
|
12
|
El-Shehabi F, Mansour B, Bayoumi WA, El Bialy SA, Elmorsy MA, Eisa HM, Taman A. Homology modelling, molecular dynamics simulation and docking evaluation of β-tubulin of Schistosoma mansoni. Biophys Chem 2021; 278:106660. [PMID: 34482215 DOI: 10.1016/j.bpc.2021.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 11/15/2022]
Abstract
Schistosomiasis is one of the neglected diseases causing considerable morbidity and mortality throughout the world. Microtubules with its main component, tubulin play a vital role in helminthes including schistosomes. Benzimidazoles represent potential drug candidates by binding β-tubulin. The study aimed to generate a homology model for the β-tubulin of S. mansoni using the crystal structure of O visaries (Sheep) β-tubulin (PDB ID: 3N2G D) as a template, then different β-tubulin models were generated and two previously reported benzimidazole derivatives (NBTP-F and NBTP-OH) were docked to the generated models, the binding results indicated that both S. mansoni, S. haematobium were susceptible to the two NBTP derivatives. Additionally, three mutated versions of S. mansoni β-tubulin wild-type were generated and the mutation (F185Y) seems to slightly enhance the ligand binding. Dynamics simulation experiments showed S. haematobium β-tubulin is highly susceptible to the tested compounds; similar to S. mansoni, moreover, mutated models of S. mansoni β-tubulin altered its NBTPs susceptibility. Moreover, additional seven new benzimidazole derivatives were synthesized and tested by molecular docking on the generated model binding site of S. mansoni β-tubulin and were found to have good interaction inside the pocket.
Collapse
Affiliation(s)
- Fouad El-Shehabi
- Department of Biological Sciences and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan
| | - Basem Mansour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City 11152, Mansoura, Egypt.
| | - Waleed A Bayoumi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City 11152, Mansoura, Egypt; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Serry A El Bialy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohammad A Elmorsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City 11152, Mansoura, Egypt; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hassan M Eisa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Amira Taman
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
13
|
Prediction of antischistosomal small molecules using machine learning in the era of big data. Mol Divers 2021; 26:1597-1607. [PMID: 34351547 DOI: 10.1007/s11030-021-10288-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022]
Abstract
Schistosomiasis is a neglected tropical disease caused by helminths of the Schistosoma genus. Despite its high morbidity and socio-economic burden, therapeutics are just a handful with praziquantel being the main drug. Praziquantel is an old drug registered for human use in 1982 and has since been administered en masse for chemotherapy, risking the development of resistance, thus the need for new drugs with different mechanisms of action. This review examines the use of machine learning (ML) in this era of big data to aid in the prediction of novel antischistosomal molecules. It first discusses the challenges of drug discovery in schistosomiasis. Explanations are then offered for big data, its characteristics and then, some open databases where large biochemical data on schistosomiasis can be obtained for ML model development are examined. The concepts of artificial intelligence, ML, and deep learning and their drug applications are explored in schistosomiasis. The use of binary classification in predicting antischistosomal compounds and some algorithms that have been applied including random forest and naive Bayesian are discussed. For this review, some deep learning algorithms (deep neural networks) are proposed as novel algorithms for predicting antischistosomal molecules via binary classification. Databases specifically designed for housing bioactivity data on antischistosomal molecules enriched with functional genomic datasets and ontologies are thus urgently needed for developing predictive ML models. This shows the application of machine learning techniques for the discovery of novel antischistosomal small molecules via binary classification in the era of big data.
Collapse
|
14
|
Minzi OM, Mnkugwe RH, Ngaimisi E, Kinung’hi S, Hansson A, Pohanka A, Kamuhabwa A, Aklillu E. Effect of Dihydroartemisinin-Piperaquine on the Pharmacokinetics of Praziquantel for Treatment of Schistosoma mansoni Infection. Pharmaceuticals (Basel) 2021; 14:ph14050400. [PMID: 33922522 PMCID: PMC8145331 DOI: 10.3390/ph14050400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Praziquantel (PZQ) and dihydroartemisinin-piperaquine (DHP) combination recently showed superior effectiveness than PZQ alone to treat intestinal schistosomiasis. In this follow-up study, we investigated the effect of DHP co-administration on the pharmacokinetics of PZQ and its enantiomers among 64 Schistosoma mansoni infected children treated with PZQ alone (n = 32) or PZQ + DHP combination (n = 32). Plasma samples collected at 0, 1, 2, 4, 6, and 8 h post-dose were quantified using UPLCMS/MS. The geometric mean (GM) of AUCs for total PZQ, R-PZQ and S-PZQ were significantly higher among children who received PZQ + DHP than PZQ alone. The geometric mean ratio (GMR) and (90% CI) of AUC0–∞ for PZQ + DHP to PZQ for total PZQ, R-PZQ, and S-PZQ were 2.18 (1.27, 3.76), 3.98 (2.27, 7.0) and 1.86 (1.06, 3.28), respectively. The GMR and (90% CI) of AUC0–8 for total PZQ, R-PZQ, and S-PZQ were 1.73 (1.12, 2.69), 2.94 (1.75, 4.92), and 1.50 (0.97, 2.31), respectively. The GM of Cmax for total PZQ, R-PZQ and S-PZQ were significantly higher among those who received PZQ + DHP than PZQ alone. The GMR (90% CI) of Cmax of PZQ + DHP to PZQ for total PZQ, R-PZQ, and S-PZQ were 1.75 (1.15, 2.65), 3.08 (1.91, 4.96), and 1.50 (1.0, 2.25%), respectively. The 90% CI of the GMRs for both AUCs and Cmax for total PZQ, R-PZQ, and S-PZQ were outside the acceptable 0.80–1.25 range, indicating that the two treatment arms were not bioequivalent. DHP co-administration significantly increases systemic PZQ exposure, and this may contribute to increased effectiveness of PZQ + DHP combination therapy than PZQ alone to treat schistosomiasis.
Collapse
Affiliation(s)
- Omary Mashiku Minzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, 11103 Dar es Salaam, Tanzania; (O.M.M.); (A.K.)
| | - Rajabu Hussein Mnkugwe
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden; (R.H.M.); (A.P.)
- Department of Clinical Pharmacology, School of Medicine, Muhimbili University of Health and Allied Sciences, 11103 Dar es Salaam, Tanzania
| | - Eliford Ngaimisi
- Office of Clinical Pharmacology, Division of Pharmacometrics, Food and Drugs Administration, Silver Spring, MD 20993, USA;
| | - Safari Kinung’hi
- National Institute for Medical Research, Mwanza Research Centre, 33104 Mwanza, Tanzania;
| | - Anna Hansson
- Department of Clinical Pharmacology, Karolinska University Hospital-Huddinge, 141 86 Stockholm, Sweden;
| | - Anton Pohanka
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden; (R.H.M.); (A.P.)
- Department of Clinical Pharmacology, Karolinska University Hospital-Huddinge, 141 86 Stockholm, Sweden;
| | - Appolinary Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, 11103 Dar es Salaam, Tanzania; (O.M.M.); (A.K.)
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden; (R.H.M.); (A.P.)
- Correspondence: ; Tel.: +46-73-511-6131
| |
Collapse
|
15
|
Folliero V, Zannella C, Chianese A, Stelitano D, Ambrosino A, De Filippis A, Galdiero M, Franci G, Galdiero M. Application of Dendrimers for Treating Parasitic Diseases. Pharmaceutics 2021; 13:343. [PMID: 33808016 PMCID: PMC7998910 DOI: 10.3390/pharmaceutics13030343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 01/02/2023] Open
Abstract
Despite advances in medical knowledge, parasitic diseases remain a significant global health burden and their pharmacological treatment is often hampered by drug toxicity. Therefore, drug delivery systems may provide useful advantages when used in combination with conventional therapeutic compounds. Dendrimers are three-dimensional polymeric structures, characterized by a central core, branches and terminal functional groups. These nanostructures are known for their defined structure, great water solubility, biocompatibility and high encapsulation ability against a wide range of molecules. Furthermore, the high ratio between terminal groups and molecular volume render them a hopeful vector for drug delivery. These nanostructures offer several advantages compared to conventional drugs for the treatment of parasitic infection. Dendrimers deliver drugs to target sites with reduced dosage, solving side effects that occur with accepted marketed drugs. In recent years, extensive progress has been made towards the use of dendrimers for therapeutic, prophylactic and diagnostic purposes for the management of parasitic infections. The present review highlights the potential of several dendrimers in the management of parasitic diseases.
Collapse
Affiliation(s)
- Veronica Folliero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Debora Stelitano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Anna De Filippis
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy;
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| |
Collapse
|
16
|
Feng L, Pomel S, Latre de Late P, Taravaud A, Loiseau PM, Maes L, Cho-Ngwa F, Bulman CA, Fischer C, Sakanari JA, Ziniel PD, Williams DL, Davioud-Charvet E. Repurposing Auranofin and Evaluation of a New Gold(I) Compound for the Search of Treatment of Human and Cattle Parasitic Diseases: From Protozoa to Helminth Infections. Molecules 2020; 25:molecules25215075. [PMID: 33139647 PMCID: PMC7663263 DOI: 10.3390/molecules25215075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Neglected parasitic diseases remain a major public health issue worldwide, especially in tropical and subtropical areas. Human parasite diversity is very large, ranging from protozoa to worms. In most cases, more effective and new drugs are urgently needed. Previous studies indicated that the gold(I) drug auranofin (Ridaura®) is effective against several parasites. Among new gold(I) complexes, the phosphole-containing gold(I) complex {1-phenyl-2,5-di(2-pyridyl)phosphole}AuCl (abbreviated as GoPI) is an irreversible inhibitor of both purified human glutathione and thioredoxin reductases. GoPI-sugar is a novel 1-thio-β-d-glucopyranose 2,3,4,6-tetraacetato-S-derivative that is a chimera of the structures of GoPI and auranofin, designed to improve stability and bioavailability of GoPI. These metal-ligand complexes are of particular interest because of their combined abilities to irreversibly target the essential dithiol/selenol catalytic pair of selenium-dependent thioredoxin reductase activity, and to kill cells from breast and brain tumors. In this work, screening of various parasites—protozoans, trematodes, and nematodes—was undertaken to determine the in vitro killing activity of GoPI-sugar compared to auranofin. GoPI-sugar was found to efficiently kill intramacrophagic Leishmania donovani amastigotes and adult filarial and trematode worms.
Collapse
Affiliation(s)
- Liwen Feng
- UMR 7042 CNRS-Université de Strasbourg-Université Haute-Alsace, Laboratoire d’Innovation Moléculaire et Applications (LIMA), Bioorganic and Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France;
| | - Sébastien Pomel
- BioCIS, Faculty of Pharmacy, Université Paris-Saclay, CNRS, 92290 Châtenay-Malabry, France; (S.P.); (A.T.); (P.M.L.)
| | - Perle Latre de Late
- INSERM U1016, CNRS UMR 8104, Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Cochin Institute, Faculté de Medecine, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France;
| | - Alexandre Taravaud
- BioCIS, Faculty of Pharmacy, Université Paris-Saclay, CNRS, 92290 Châtenay-Malabry, France; (S.P.); (A.T.); (P.M.L.)
| | - Philippe M. Loiseau
- BioCIS, Faculty of Pharmacy, Université Paris-Saclay, CNRS, 92290 Châtenay-Malabry, France; (S.P.); (A.T.); (P.M.L.)
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium;
| | - Fidelis Cho-Ngwa
- Biotechnology Unit, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon;
| | - Christina A. Bulman
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (J.A.S.)
| | - Chelsea Fischer
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (J.A.S.)
| | - Judy A. Sakanari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (J.A.S.)
| | - Peter D. Ziniel
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA;
| | - David L. Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA;
- Correspondence: (D.L.W.); (E.D.-C.)
| | - Elisabeth Davioud-Charvet
- UMR 7042 CNRS-Université de Strasbourg-Université Haute-Alsace, Laboratoire d’Innovation Moléculaire et Applications (LIMA), Bioorganic and Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France;
- Correspondence: (D.L.W.); (E.D.-C.)
| |
Collapse
|
17
|
Monnier N, Barth-Jaeggi T, Knopp S, Steinmann P. Core components, concepts and strategies for parasitic and vector-borne disease elimination with a focus on schistosomiasis: A landscape analysis. PLoS Negl Trop Dis 2020; 14:e0008837. [PMID: 33125375 PMCID: PMC7598467 DOI: 10.1371/journal.pntd.0008837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
Efforts to control and eliminate human schistosomiasis have accelerated over the past decade. In a number of endemic countries and settings, interruption of schistosome transmission has been achieved. In others, Schistosoma infections continue to challenge program managers at different levels, from the complexity of the transmission cycle, over limited treatment options and lack of field-friendly accurate diagnostics, to controversy around adequate intervention strategies. We conducted a landscape analysis on parasitic and vector-borne disease elimination approaches with the aim to identify evidence-based strategies, core components and key concepts for achieving and sustaining schistosomiasis control and for progressing elimination efforts towards interruption of transmission in sub-Saharan Africa. A total of 118 relevant publications were identified from Web of Science, Pubmed and the grey literature and reviewed for their content. In addition, we conducted in-depth interviews with 23 epidemiologists, program managers, policymakers, donors and field researchers. Available evidence emphasizes the need for comprehensive, multipronged and long-term strategies consisting of multiple complementary interventions that must be sustained over time by political commitment and adequate funding in order to reach interruption of transmission. Based on the findings of this landscape analysis, we propose a comprehensive set of intervention strategies for schistosomiasis control and elimination. Before deployment, the proposed interventions will require review, evaluation and validation in the frame of an expert consultation as a step towards adaptation to specific contexts, conditions and settings. Field testing to ensure local relevance and effectiveness is paramount given the diversity of socio-ecological and epidemiological contexts. This landscape analysis explored successful concepts, approaches and interventions of past and ongoing parasitic and vector-borne disease elimination efforts and programs with regard to relevance for progress in the elimination of human schistosome infections. Schistosomiasis is a disabling, water borne parasitic disease of public health concern with an estimated 250 million people infected worldwide. The long-term morbidity of this neglected tropical disease significantly impacts growth, cognition and socioeconomic development at all ages. Despite increased global efforts to control morbidity and advance elimination, challenges in view of the complex life cycle which involves freshwater sources, intermediate snail hosts and humans, remain. This calls for targeted interventions and concerted programs. According to the evidence from the literature and as proposed by a wide range of key informants, comprehensive, multipronged and long-term strategies supported by strong political commitment and adequate funding are required in order to achieve and sustain the set goals. Based on the findings, we propose here a comprehensive set of intervention strategies for schistosomiasis control and elimination for review and evaluation to inform implementation research needs and elimination program design.
Collapse
Affiliation(s)
- Nora Monnier
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| | - Tanja Barth-Jaeggi
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Stefanie Knopp
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Peter Steinmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Mnkugwe RH, Minzi O, Kinung’hi S, Kamuhabwa A, Aklillu E. Efficacy and safety of praziquantel and dihydroartemisinin piperaquine combination for treatment and control of intestinal schistosomiasis: A randomized, non-inferiority clinical trial. PLoS Negl Trop Dis 2020; 14:e0008619. [PMID: 32966290 PMCID: PMC7510991 DOI: 10.1371/journal.pntd.0008619] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/20/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Despite the reported success in reducing morbidity, praziquantel alone is insufficient for the control and elimination of schistosomiasis, partly due to its poor efficacy against the juvenile worms. Artemisinin derivatives are effective against juvenile worms but are less effective against adult worms. We compared the safety and efficacy of praziquantel and Dihydroartemisinin-piperaquine combination against the standard praziquantel alone for treatment of intestinal schistosomiasis. METHODS In this randomized, open-label, non-inferiority trial, 639 Schistosoma mansoni infected children were enrolled and randomized to receive either praziquantel alone or praziquantel plus Dihydroartemisinin-piperaquine combination. Two stool samples were collected on consecutive days at baseline, 3 and 8 weeks post-treatment and analyzed using thick smear Kato Katz method. Efficacy was assessed by cure and egg reduction rates at 3 and 8 weeks post-treatment. Adverse events were assessed within four hours of drugs intake. The primary outcome was cure rates at 8 weeks of post-treatment. Secondary outcomes were egg reduction rates at 8 weeks of post-treatment and treatment-associated adverse events. RESULTS At 3 weeks of post-treatment, cure rates were 88.3% (263/298, 95% CI = 84.1%- 91.4%) and 81.2% (277/341, 95% CI = 76.7%- 85.0%) for the combination therapy and praziquantel alone, respectively (p < 0.01, odds ratio (OR) = 1.74, 95% CI of OR = 1.11 to 2.69). At 8 weeks, there was a significant drop in the cure rates in praziquantel alone group to 63.9% (218/341, 95% CI = 58.7%- 68.8%) compared to 81.9% (244/298, 95% CI = 77.1%- 85.8%) in the combination therapy group (p < 0.0001, OR = 2.55, 95%CI of OR = 1.75 to 3.69). Egg reduction rates at 8 weeks post-treatment were significantly higher in the combination therapy group 93.6% (95% CI = 90.8%- 96.4%) compared to 87.9% (95% CI = 84.4%- 91.4%) in the praziquantel only group (p = 0.01). On both Univariate and Multivariate regression analysis, type of treatment received was a significant predictor of cure at week 8 post-treatment. Overall, 30.8% (95% CI = 27.2%- 34.4%) of the study participants experienced mild and transient treatment-associated adverse events, post-treatment abdominal pain (27.1%) being the most common adverse event observed. There was no significant difference in the overall occurrence of adverse events between the two treatment groups. CONCLUSION Praziquantel and Dihydroartemisinin piperaquine combination therapy is safe, and more efficacious compared to praziquantel alone for the treatment of intestinal schistosomiasis. Further studies are needed to explore if the combination therapy can be considered as an option for mass drug administration to control and eventually eliminate schistosomiasis.
Collapse
Affiliation(s)
- Rajabu Hussein Mnkugwe
- Department of Clinical Pharmacology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Omary Minzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Safari Kinung’hi
- National Institute for Medical Research (NIMR), Mwanza Research Centre, Mwanza, Tanzania
| | - Appolinary Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Zech J, Gold D, Salaymeh N, Sasson NC, Rabinowitch I, Golenser J, Mäder K. Oral Administration of Artemisone for the Treatment of Schistosomiasis: Formulation Challenges and In Vivo Efficacy. Pharmaceutics 2020; 12:E509. [PMID: 32503130 PMCID: PMC7356104 DOI: 10.3390/pharmaceutics12060509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Artemisone is an innovative artemisinin derivative with applications in the treatment of malaria, schistosomiasis and other diseases. However, its low aqueous solubility and tendency to degrade after solubilisation limits the translation of this drug into clinical practice. We developed a self-microemulsifying drug delivery system (SMEDDS), which is easy to produce (simple mixing) with a high drug load. In addition to known pharmaceutical excipients (Capmul MCM, Kolliphor HS15, propylene glycol), we identified Polysorb ID 46 as a beneficial new additional excipient. The physicochemical properties were characterized by dynamic light scattering, conductivity measurements, rheology and electron microscopy. High storage stability, even at 30 °C, was achieved. The orally administrated artemisone SMEDDS formulation was highly active in vivo in S. mansoni infected mice. Thorough elimination of the adult worms, their eggs and prevention of the deleterious granuloma formation in the livers of infected mice was observed even at a relatively low dose of the drug. The new formulation has a high potential to accelerate the clinical use of artemisone in schistosomiasis and malaria.
Collapse
Affiliation(s)
- Johanna Zech
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany;
| | - Daniel Gold
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel;
| | - Nadeen Salaymeh
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel;
| | - Netanel Cohen Sasson
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel; (N.C.S.); (I.R.)
| | - Ithai Rabinowitch
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel; (N.C.S.); (I.R.)
| | - Jacob Golenser
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel;
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany;
| |
Collapse
|
20
|
Xavier RP, Mengarda AC, Silva MP, Roquini DB, Salvadori MC, Teixeira FS, Pinto PL, Morais TR, Ferreira LLG, Andricopulo AD, de Moraes J. H1-antihistamines as antischistosomal drugs: in vitro and in vivo studies. Parasit Vectors 2020; 13:278. [PMID: 32487175 PMCID: PMC7268501 DOI: 10.1186/s13071-020-04140-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background Schistosomiasis is a socioeconomically devastating parasitic infection afflicting hundreds of millions of people and animals worldwide. It is the most important helminth infection, and its treatment relies solely on the drug praziquantel. Oral H1-antihistamines are available worldwide, and these agents are among the most widely used of all medications in children and adults. Given the importance of the drug repositioning strategy, we evaluated the antischistosomal properties of the H1-antihistamine drugs commonly used in clinical practices. Methods Twenty-one antihistamine drugs were initially screened against adult schistosomes ex vivo. Subsequently, we investigated the anthelmintic properties of these antihistamines in a murine model of schistosomiasis for both early and chronic S. mansoni infections at oral dosages of 400 mg/kg single dose or 100 mg/kg daily for five consecutive days. We also demonstrated and described the ability of three antihistamines to induce tegumental damage in schistosomes through the use of scanning electron microscopy. Results From phenotypic screening, we found that desloratadine, rupatadine, promethazine, and cinnarizine kill adult S. mansoni in vitro at low concentrations (5–15 µM). These results were further supported by scanning electron microscopy analysis. In an animal model, rupatadine and cinnarizine revealed moderate worm burden reductions in mice harboring either early or chronic S. mansoni infection. Egg production, a key mechanism for both transmission and pathogenesis, was also markedly inhibited by rupatadine and cinnarizine, and a significant reduction in hepatomegaly and splenomegaly was recorded. Although less effective, desloratadine also revealed significant activity against the adult and juvenile parasites. Conclusions Although the worm burden reductions achieved are all only moderate, comparatively, treatment with any of the three antihistamines is more effective in early infection than praziquantel. On the other hand, the clinical use of H1-antihistamines for the treatment of schistosomiasis is highly unlikely.![]()
Collapse
Affiliation(s)
- Rogério P Xavier
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Ana C Mengarda
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Marcos P Silva
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Daniel B Roquini
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Maria C Salvadori
- Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Pedro L Pinto
- Núcleo de Enteroparasitas, Instituto Adolfo Lutz, São Paulo, SP, Brazil
| | - Thiago R Morais
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Leonardo L G Ferreira
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Adriano D Andricopulo
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil.
| |
Collapse
|
21
|
Elimination of schistosomiasis requires multifactorial diagnostics: evidence from high- and low-prevalence areas in the Nile Delta, Egypt. Infect Dis Poverty 2020; 9:31. [PMID: 32241298 PMCID: PMC7119160 DOI: 10.1186/s40249-020-00648-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/11/2020] [Indexed: 01/01/2023] Open
Abstract
Background Schistosomiasis is one of the neglected tropical diseases (NTDs) selected for worldwide elimination in the near future. Egypt has made strong progress against its two endemic species of Schistosoma mansoni and S. haematobium. The former is prevalent in the Nile Delta with the latter dominating in the Nile south of Cairo. Innovative efforts are needed to reach the goal as further reduction of the prevalence has stalled due to ongoing transmission. In this study we aimed to explore the difference between low and high prevalence villages with regard to knowledge attitude and practice about schistosomiasis, utilization of health services, infection and transmission indices. Methods A hybrid cross-sectional longitudinal study was conducted with three annual follow-ups conducted during 1994–1996. We used a representative systematic random sampling technique investigating 993 individuals from the high prevalence village and 614 from the low prevalence village. Data were analyzed using SPSS, comparing proportions with the Chi square test and means with the Student t test, and ANOVA. Results Compliance of faecal sampling and chemotherapy was above 70% in both villages over the whole study period. Selective praziquantel treatment resulted in a significant reduction of prevalence and intensity of infection in both villages, dropping from 35.8% prevalence to 20.6%, in the low-prevalence village, and from 69.5 to 45.9% in the high-prevalence one. Intensity of infection at the base line was 30 eggs per gram (EPG) of stool in the low-prevalence village versus 105 EPG in the high-prevalence village. However, after the second round, reinfection rebounded by 22% in the high-prevalence village, while a slight improvement of the infection indices was demonstrated in the low-prevalence one. The level of knowledge was modest in both villages: people knew about self-protection and treatment, but not much about the role of human excreta for schistosomiasis transmission. While all participants maintained that using the water from the canals was inevitable, inhabitants in the high-prevalence village showed significantly lower scores reflecting higher water contact compared to the low-prevalence one. Many of them (67%) did not utilize the health centre at all compared to 26% of the people in the low-prevalence village. Interestingly, private clinics were seen as the primary source of health care by both villages, but more frequently so in the high-prevalence village (used by 87.2% of the inhabitants) compared to the low-prevalence one (59.8%). Conclusions Even if chemotherapy works well as reflected by the observed downregulation of intensity of infection in both villages, reinfection continued due to difficulties to avoid water contact. Efforts must be made to make people understand the role of human excreta for transmission. There is also a need to make people better trust the medical services available.
Collapse
|
22
|
Famakinde DO. Public health concerns over gene-drive mosquitoes: will future use of gene-drive snails for schistosomiasis control gain increased level of community acceptance? Pathog Glob Health 2020; 114:55-63. [PMID: 32100643 DOI: 10.1080/20477724.2020.1731667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
With the advent of CRISPR (clustered regularly interspaced short palindromic repeat)-based gene drive, present genetic research in schistosomiasis vector control envisages the breeding and release of transgenic schistosome-resistant (TSR) snail vectors to curb the spread of the disease. Although this approach is still in its infancy, studies focussing on production of genetically modified (GM) mosquitoes (including gene-drive mosquitoes) are well advanced and set the pace for other transgenic vector research. Unfortunately, as with other GM mosquitoes, open field release of gene-drive mosquitoes is currently challenged in part by some concerns such as gene drive failure and increased transmission potential for other mosquito-borne diseases among others, which might have adverse effects on human well-being. Therefore, not only should we learn from the GM mosquito protocols, frameworks and guidelines but also appraise the applicability of its current hurdles to other transgenic vector systems, such as the TSR snail approach. Placing these issues in a coherent comparative perspective, I argue that although the use of TSR snails may face similar technical, democratic and diplomatic challenges, some of the concerns over gene-drive mosquitoes may not apply to gene-drive snails, proposing a theory that community consent will be no harder and possibly easier to obtain for TSR snails than the experience with GM mosquitoes. In the future, these observations may help public health practitioners and policy makers in effective communication with communities on issues regarding the use of TSR snails to interrupt schistosomiasis transmission, especially in sub-Saharan Africa.
Collapse
Affiliation(s)
- Damilare O Famakinde
- Department of Medical Microbiology and Parasitology, University of Lagos, Lagos, Nigeria
| |
Collapse
|
23
|
Schistosomiasis-from immunopathology to vaccines. Semin Immunopathol 2020; 42:355-371. [PMID: 32076812 PMCID: PMC7223304 DOI: 10.1007/s00281-020-00789-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
Schistosomiasis (bilharzia) is a neglected tropical disease caused by trematode worms of the genus Schistosoma. The transmission cycle involves human (or other mammalian) water contact with surface water contaminated by faeces or urine, as well as specific freshwater snails acting as intermediate hosts. The main disease-causing species are S. haematobium, S. mansoni and S. japonicum. According to the World Health Organisation, over 250 million people are infected worldwide, leading to considerable morbidity and the estimated loss of 1.9 million disability-adjusted life years (DALYs), a likely underestimated figure. Schistosomiasis is characterised by focal epidemiology and an over-dispersed population distribution, with higher infection rates in children. Complex immune mechanisms lead to the slow acquisition of immune resistance, but innate factors also play a part. Acute schistosomiasis, a feverish syndrome, is most evident in travellers following a primary infection. Chronic schistosomiasis affects mainly individuals with long-standing infections residing in poor rural areas. Immunopathological reactions against schistosome eggs trapped in host tissues lead to inflammatory and obstructive disease in the urinary system (S. haematobium) or intestinal disease, hepatosplenic inflammation and liver fibrosis (S. mansoni and S. japonicum). An effective drug—praziquantel—is available for treatment but, despite intensive efforts, no schistosomiasis vaccines have yet been accepted for public use. In this review, we briefly introduce the schistosome parasites and the immunopathogenic manifestations resulting from schistosomiasis. We then explore aspects of the immunology and host-parasite interplay in schistosome infections paying special attention to the current status of schistosomiasis vaccine development highlighting the advancement of a new controlled human challenge infection model for testing schistosomiasis vaccines.
Collapse
|
24
|
Mnkugwe RH, Minzi OS, Kinung'hi SM, Kamuhabwa AA, Aklillu E. Prevalence and correlates of intestinal schistosomiasis infection among school-aged children in North-Western Tanzania. PLoS One 2020; 15:e0228770. [PMID: 32023307 PMCID: PMC7001966 DOI: 10.1371/journal.pone.0228770] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/23/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Schistosomiasis is a neglected tropical disease that continues to cause morbidity and mortality in Sub Saharan Africa. Due to its endemicity, co-infection with malaria is common. The diseases cause anaemia and impaired nutritional status among children. We investigated the prevalence of intestinal schistosomiasis and its association with malaria, anaemia and nutritional status among school children. METHODS This was a cross sectional survey among 830 children in Nyamikoma village along Lake Victoria in Tanzania. A pre-tested questionnaire was used to collect socio-demographic data, history of drug use, and clinical data. Two faecal samples were collected on two consecutive days and analyzed using thick smears Kato Katz method. Diagnosis of malaria was done by malaria rapid diagnostic test, and haemoglobin concentration was determined using HemoCue. Nutritional status was assessed by anthropometric measurements. RESULTS The overall prevalence of intestinal schistosomiasis was 90.6% (95% CI = 88.6% - 92.6%). Intensity of infection was light 24.1% (200/830), moderate 38.4% (319/830) and heavy 28.1% (233/830). Pre-adolescents (≤12 years) were more infected with intestinal schistosomiasis (93.2%) than adolescents (>12 years) (84.7%) (p < 0.001). Prevalence of malaria was 1.7% (14/824), and that of intestinal schistosomiasis-malaria co-infection was 1.6% (13/824). The overall prevalence of anaemia was 24.6% (95%CI = 18.7% - 30.5%). Severe anaemia was found in 2.3% (19/824) of study participants. The prevalence of stunting and wasting were 29.0% and 11.3%, respectively. On both univariate and multivariate regression analysis, only lower age was significantly associated intestinal schistosomiasis infection, but not anemia, malaria, stunting or wasting. However among those infected, a negative binomial regression analysis indicated independent significant association of male sex, loose stool consistency, and stunting with high eggs count/gram of stool. CONCLUSIONS Despite several rounds of annual mass praziquantel administration, intestinal schistosomiasis is highly prevalent among school children particularly in younger children living in the study area. Biannual targeted mass praziquantel treatments or alternative regimens may be considered in future in the study area to redress the situation.
Collapse
Affiliation(s)
- Rajabu Hussein Mnkugwe
- Department of Clinical Pharmacology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Omary S. Minzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Safari M. Kinung'hi
- National Institute for Medical Research (NIMR), Mwanza Research Centre, Mwanza, Tanzania
| | - Appolinary A. Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Efficacy and Safety of Praziquantel for Treatment of Schistosoma mansoni Infection among School Children in Tanzania. Pathogens 2019; 9:pathogens9010028. [PMID: 31892235 PMCID: PMC7168679 DOI: 10.3390/pathogens9010028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
Single-dose targeted praziquantel preventive chemotherapy is the WHO-recommended intervention for schistosomiasis control in endemic countries. The objective of this study was to assess the efficacy and safety of single-dose praziquantel among Schistosoma mansoni-infected children in north-western Tanzania. A prospective safety and efficacy surveillance study was conducted among 341 school-going children treated with a single-dose praziquantel 40 mg/kg body weight. Socio-demographic, pre-treatment, and post-treatment stool examination and safety data were collected. The primary and secondary outcomes were treatment efficacy (parasitological cure and egg reduction rates at three weeks post-treatment) and treatment-related adverse events, respectively. The overall cure rate and egg reduction rate were 81.2% (76.8–85.3%) and 95.0% (92.7–97.3%), respectively. There was no significant association between cure rate and pre-treatment infection intensity. The incidence of treatment-associated adverse events was 28.5% (23.7–33.3%), with abdominal pain being the most common. Post-treatment abdominal pain and vomiting were significantly associated with pre-treatment infection intensity (p < 0.001) and anemia (p = 0.03), respectively. Praziquantel single-dose is still safe and efficacious against Schistosoma mansoni infection. However, the lack of cure in about one-fifth and adverse events in a quarter, of the infected children indicate the need for close praziquantel safety monitoring and treatment optimization research to improve efficacy.
Collapse
|
26
|
Promethazine exhibits antiparasitic properties in vitro and reduces worm burden, egg production, hepato-, and splenomegaly in a schistosomiasis animal model. Antimicrob Agents Chemother 2019:AAC.01208-19. [PMID: 31527034 DOI: 10.1128/aac.01208-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The treatment and control of schistosomiasis, a neglected disease that affects more than 200 million people worldwide, rely on the use of a single drug, praziquantel. A vaccine has yet to be developed and since new drug design and development is a lengthy and costly process, drug repurposing is a promising strategy. In this study, the efficacy of promethazine, a first-generation antihistamine, was evaluated against Schistosoma mansoni ex vivo and in a murine model of schistosomiasis. In vitro assays demonstrated that promethazine affected parasite motility, viability, and it induced severe tegumental damage in schistosomes. The LC50 of the drug was 5.84 μM. Similar to promethazine, schistosomes incubated with atropine, a classical anticholinergic drug, displayed reduced motor activity. In an animal model, promethazine treatment was introduced at an oral dose of 100 mg/kg for five successive days at different intervals from the time of infection, for the evaluation of the stage-specific susceptibility (pre-patent and patent infections). Various parasitological criteria indicated the in vivo antischistosomal effects of promethazine: there were significant reductions in worm burden, egg production, and hepato- and splenomegaly. The highest worm burden reduction was achieved with promethazine in patent infections (> 90%). Taken together, considering the importance of the repositioning of drugs in infectious diseases, especially those related to poverty, our data revealed the possibility of promethazine repositioning as an antischistosomal agent.
Collapse
|
27
|
Bergquist R, Gray DJ. Schistosomiasis Elimination: Beginning of the End or a Continued March on a Trodden Path. Trop Med Infect Dis 2019; 4:tropicalmed4020076. [PMID: 31060317 PMCID: PMC6630800 DOI: 10.3390/tropicalmed4020076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
In spite of spectacular progress towards the goal of elimination of schistosomiasis, particularly in China but also in other areas, research gaps and outstanding issues remain. Although expectations of achieving elimination of this disease have never been greater, all constraints have not been swept aside. Indeed, there are some formidable obstacles, such as insufficient amounts of drugs to treat everybody and still limited use of high-sensitive diagnostic techniques, both for the definitive and the intermediate hosts, which indicate that prevalence is considerably underrated in well-controlled areas. Elimination will be difficult to achieve without a broad approach, including a stronger focus on transmission, better diagnostics and the establishment of a reliable survey system activating a rapid response when called for. Importantly, awareness of the crucial importance of transmission has been revived resulting in renewed interest in snail control together with more emphasis on health education and sanitation. The papers collected in this special issue entitled ‘Prospects for Schistosomiasis Elimination’ reflect these issues and we are particularly pleased to note that some also discuss the crucial question when to declare a country free of schistosomiasis and present techniques that together create an approach that can show unequivocally when interruption of transmission has been achieved.
Collapse
Affiliation(s)
| | - Darren J Gray
- Research School of Population Health, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
28
|
Lago EM, Silva MP, Queiroz TG, Mazloum SF, Rodrigues VC, Carnaúba PU, Pinto PL, Rocha JA, Ferreira LLG, Andricopulo AD, de Moraes J. Phenotypic screening of nonsteroidal anti-inflammatory drugs identified mefenamic acid as a drug for the treatment of schistosomiasis. EBioMedicine 2019; 43:370-379. [PMID: 31027918 PMCID: PMC6557910 DOI: 10.1016/j.ebiom.2019.04.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 12/03/2022] Open
Abstract
Background Treatment and control of schistosomiasis, one of the most insidious and serious parasitic diseases, depend almost entirely on a single drug, praziquantel. Since the funding for drug development for poverty-associated diseases is very limited, drug repurposing is a promising strategy. In this study, 73 nonsteroidal anti-inflammatory drugs (NSAIDs) commonly used in medical and veterinary fields were evaluated for their anti-schistosomal properties. Methods The efficacy of NSAIDs was first tested against adult Schistosoma mansoni ex vivo using phenotypic screening strategy, effective drugs were further tested in a murine model of schistosomiasis. The disease parameters measured were worm and egg burden, hepato- and splenomegaly. Findings From 73 NSAIDs, five (mefenamic acid, tolfenamic acid, meclofenamic acid, celecoxib, and diclofenac) were identified to effectively kill schistosomes. These results were further supported by scanning electron microscopy analysis. In addition, the octanol-water partition coefficient, both for neutral and ionized species, revealed to be a critical property for the ex vivo activity profile. Compounds were then tested in vivo using both patent and a prepatent S. mansoni infection in a mouse model. The most effective NSAID was mefenamic acid, which highly reduced worm burden, egg production, and hepato- and splenomegaly. Interpretation The treatment regimen used in this study is within the range for which mefenamic acid has been used in clinical practice, thus, it is demonstrated the capacity of mefenamic acid to act as a potent anti-schistosomal agent suitable for clinical repurposing in the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Eloi M Lago
- Research Center for Neglected Diseases, University of Guarulhos, Praça Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| | - Marcos P Silva
- Research Center for Neglected Diseases, University of Guarulhos, Praça Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| | - Talita G Queiroz
- Research Center for Neglected Diseases, University of Guarulhos, Praça Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| | - Susana F Mazloum
- Research Center for Neglected Diseases, University of Guarulhos, Praça Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| | - Vinícius C Rodrigues
- Research Center for Neglected Diseases, University of Guarulhos, Praça Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| | - Paulo U Carnaúba
- Research Center for Neglected Diseases, University of Guarulhos, Praça Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| | - Pedro L Pinto
- Center for Research in Parasitology, Adolfo Lutz Institute, São Paulo, SP, Brazil
| | - Jefferson A Rocha
- Research Group of Natural Science and Biotechnology, Federal University of Maranhão, Grajaú, MA, Brazil
| | - Leonardo L G Ferreira
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Physics Institute of Sao Carlos, University of Sao Paulo, São Carlos, SP, Brazil
| | - Adriano D Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Physics Institute of Sao Carlos, University of Sao Paulo, São Carlos, SP, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases, University of Guarulhos, Praça Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil.
| |
Collapse
|