1
|
Iyaloo DP, Zohdy S, Carney RM, Mosawa VR, Elahee KB, Munglee N, Latchooman N, Puryag S, Bheecarry A, Bhoobun H, Rasamoelina-Andriamanivo H, Bedja SA, Spear J, Baldet T, Carter TE. A regional One Health approach to the risk of invasion by Anopheles stephensi in Mauritius. PLoS Negl Trop Dis 2024; 18:e0011827. [PMID: 39259766 PMCID: PMC11444417 DOI: 10.1371/journal.pntd.0011827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 10/01/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Anopheles stephensi is an invasive malaria vector in Africa that threatens to put an additional 126 million people at risk of malaria if it continues to spread. The island nation of Mauritius is highly connected to Asia and Africa and is at risk of introduction due to this connectivity. For early detection of An. stephensi, the Vector Biology and Control Division under the Ministry of Health in Mauritius, leveraged a well-established Aedes program, as An. stephensi is known to share Aedes habitats. These efforts triggered multisectoral coordination and cascading benefits of integrated vector and One Health approaches. METHODS Beginning June 2021, entomological surveys were conducted at points of entry (seaport, airport) and on ships transporting livestock in collaboration with the Civil Aviation Department, the Mauritian Port Authority and National Veterinary Services. A total of 18, 39, 723 mosquito larval surveys were respectively conducted in the airport, seaport, and other localities in Mauritius while two, 20, and 26 adult mosquito surveys were respectively conducted in the airport, seaport, and twenty-six animal assembly points. Alongside adult mosquito surveys, surveillance of vectors of veterinary importance (e.g.- Culicoides spp.) was also carried out in collaboration with National Parks and Conservation Service and land owners. RESULTS A total of 8,428 adult mosquitoes were collected and 1,844 larval habitats were positive for mosquitoes. All collected mosquitoes were morphologically identified and 151 Anopheles and 339 Aedes mosquitoes were also molecularly characterized. Mosquito species detected were Aedes albopictus, Anopheles arabiensis, An. coustani, An. merus, Culex quinquefasciatus, Cx. thalassius and Lutzia tigripes. Anopheles stephensi was not detected. The One Health approach was shared with the French Agricultural Research Centre for International Development (CIRAD), strengthening collaboration between Mauritius and Réunion Island on vector surveillance at entry points and insecticide resistance monitoring. The Indian Ocean Commission (IOC) was also alerted to the risk of An. stephensi, leading to regional efforts supporting trainings and development of a response strategy to An. stephensi bringing together stakeholders from Comoros, Madagascar, Mauritius, Réunion Island and Seychelles. CONCLUSIONS Mauritius is a model system showing how existing public health entomology capabilities can be used to enhance vector surveillance and control and create multisectoral networks to respond to any emerging public and veterinary health vector-borne disease threat.
Collapse
Affiliation(s)
- Diana P Iyaloo
- Vector Biology and Control Division, Ministry of Health and Wellness, Curepipe, Mauritius
- Surveillance Epidemiologique et Gestion des Alertes (SEGA) One Health network, Indian Ocean Commission, Ebene, Mauritius
| | - Sarah Zohdy
- US President's Malaria Initiative, US Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Ryan M Carney
- Department of Integrative Biology, College of Arts & Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Varina Ramdonee Mosawa
- Vector Biology and Control Division, Ministry of Health and Wellness, Curepipe, Mauritius
- Surveillance Epidemiologique et Gestion des Alertes (SEGA) One Health network, Indian Ocean Commission, Ebene, Mauritius
| | - Khouaildi B Elahee
- Vector Biology and Control Division, Ministry of Health and Wellness, Curepipe, Mauritius
- Surveillance Epidemiologique et Gestion des Alertes (SEGA) One Health network, Indian Ocean Commission, Ebene, Mauritius
| | - Nabiihah Munglee
- Vector Biology and Control Division, Ministry of Health and Wellness, Curepipe, Mauritius
- Surveillance Epidemiologique et Gestion des Alertes (SEGA) One Health network, Indian Ocean Commission, Ebene, Mauritius
| | - Nilesh Latchooman
- Vector Biology and Control Division, Ministry of Health and Wellness, Curepipe, Mauritius
- Surveillance Epidemiologique et Gestion des Alertes (SEGA) One Health network, Indian Ocean Commission, Ebene, Mauritius
| | - Surendra Puryag
- Vector Biology and Control Division, Ministry of Health and Wellness, Curepipe, Mauritius
- Surveillance Epidemiologique et Gestion des Alertes (SEGA) One Health network, Indian Ocean Commission, Ebene, Mauritius
| | - Ambicadutt Bheecarry
- Vector Biology and Control Division, Ministry of Health and Wellness, Curepipe, Mauritius
- Surveillance Epidemiologique et Gestion des Alertes (SEGA) One Health network, Indian Ocean Commission, Ebene, Mauritius
| | - Hemant Bhoobun
- Surveillance Epidemiologique et Gestion des Alertes (SEGA) One Health network, Indian Ocean Commission, Ebene, Mauritius
- Livestock and Veterinary Division, Ministry of Agro Industry and Food Security, Reduit, Mauritius
| | - Harena Rasamoelina-Andriamanivo
- Surveillance Epidemiologique et Gestion des Alertes (SEGA) One Health network, Indian Ocean Commission, Ebene, Mauritius
- Indian Ocean Commission, Ebene, Mauritius
| | - Saïd Ahmed Bedja
- Surveillance Epidemiologique et Gestion des Alertes (SEGA) One Health network, Indian Ocean Commission, Ebene, Mauritius
- Indian Ocean Commission, Ebene, Mauritius
| | - Joseph Spear
- Department of Biology, College of Arts & Sciences, Baylor University, Waco, Texas, United States of America
| | - Thierry Baldet
- Surveillance Epidemiologique et Gestion des Alertes (SEGA) One Health network, Indian Ocean Commission, Ebene, Mauritius
- UMR ASTRE, Cirad, INRAe, Univ. Montpellier, Sainte-Clotilde, La Réunion, France
| | - Tamar E Carter
- Department of Biology, College of Arts & Sciences, Baylor University, Waco, Texas, United States of America
| |
Collapse
|
2
|
Samake JN, Lavretsky P, Gunarathna I, Follis M, Brown JI, Ali S, Yared S, Carter TE. Population genomic analyses reveal population structure and major hubs of invasive Anopheles stephensi in the Horn of Africa. Mol Ecol 2023; 32:5695-5708. [PMID: 37795951 DOI: 10.1111/mec.17136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
Anopheles stephensi invasion in the Horn of Africa (HoA) poses a substantial risk of increased malaria disease burden in the region. An understanding of the history of introduction(s), establishment(s) and potential A. stephensi sources in the HoA is needed to predict future expansions and establish where they may be effectively controlled. To this end, we take a landscape genomic approach to assess A. stephensi origins and spread throughout the HoA, information essential for vector control. Specifically, we assayed 2070 genome-wide single nucleotide polymorphisms across 214 samples spanning 13 populations of A. stephensi from Ethiopia and Somaliland collected in 2018 and 2020, respectively. Principal component and genetic ancestry analyses revealed clustering that followed an isolation-by-distance pattern, with genetic divergence among the Ethiopian samples significantly correlating with geographical distance. Additionally, genetic relatedness was observed between the northeastern and east central Ethiopian A. stephensi populations and the Somaliland A. stephensi populations. These results reveal population differentiation and genetic connectivity within HoA A. stephensi populations. Furthermore, based on genetic network analysis, we uncovered that Dire Dawa, the site of a spring 2022 malaria outbreak, was one of the major hubs from which sequential founder events occurred in the rest of the eastern Ethiopian region. These findings can be useful for the selection of sites for heightened control to prevent future malaria outbreaks. Finally, we did not detect significant genotype-environmental associations, potentially due to the recency of their colonization and/or other anthropogenic factors leading to the initial spread and establishment of A. stephensi. Our study highlights how coupling genomic data at landscape levels can shed light into even ongoing invasions.
Collapse
Affiliation(s)
| | - Philip Lavretsky
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | | | - Madison Follis
- Department of Biology, Baylor University, Waco, Texas, USA
| | - Joshua I Brown
- Department of Life, Earth, and Environmental Sciences, West Texas A&M University, Canyon, Texas, USA
| | - Said Ali
- Ministry of Health Somaliland, Hargeisa, Somalia
| | - Solomon Yared
- Department of Biology, Jigjiga University, Jigjiga, Ethiopia
| | - Tamar E Carter
- Department of Biology, Baylor University, Waco, Texas, USA
| |
Collapse
|
3
|
Morris RS, Bingham PC. Japanese encephalitis virus: epidemiology and risk-based surveillance approaches for New Zealand. N Z Vet J 2023; 71:283-294. [PMID: 37621178 DOI: 10.1080/00480169.2023.2248054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
The introduction and subsequent rapid spread of Japanese encephalitis virus genotype IV across all Australian mainland states and the Northern Territory since late 2021 has increased the risk of an incursion of this mosquito-transmitted zoonotic virus disease into New Zealand, with serious implications for both animal and human health. The potential modes of entry are through introduction of infected mosquitoes as hitchhikers on ships or aircraft, windborne transfer of mosquitoes, or arrival of infected reservoir bird species. A competent vector mosquito, Culex quinquefasciatus, is endemic in New Zealand and other mosquito species may also become involved. If infection becomes established in New Zealand, the scale of transmission may be considerably less than has occurred in Australia because climatic and epidemiological factors are not so favourable. Early evidence of an incursion could come from detection of clinical disease in horses or pigs, or from human cases. Targeted surveillance to confirm or refute indications of an incursion could be undertaken by antibody detection in a number of species. Dogs have been shown to be a particularly valuable sentinel species due to their cohabitation with people and high seroconversion rate. Other novel methods of surveillance could include reverse transcriptase PCR (RT-PCR) on oronasal secretions of pigs. Should evidence of the disease be detected, prompt action would be required to vaccinate at-risk human populations and clarify the epidemiological situation with respect to mammalian hosts and mosquito vector species, including whether a new mosquito species had arrived in the country.Abbreviations: AHL: Animal Health Laboratory; JE: Japanese encephalitis disease; JEV: Japanese encephalitis virus; RT-PCR: Reverse transcriptase PCR.
Collapse
Affiliation(s)
- R S Morris
- MorVet Ltd., Masterton, New Zealand
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - P C Bingham
- Diagnostic and Surveillance Services Directorate, Operations Branch, Ministry for Primary Industries, Wallaceville, New Zealand
| |
Collapse
|
4
|
Seok S, Raz CD, Miller JH, Malcolm AN, Eason MD, Romero-Weaver AL, Giordano BV, Jacobsen CM, Wang X, Akbari OS, Raban R, Mathias DK, Caragata EP, Vorsino AE, Chiu JC, Lee Y. Arboviral disease outbreaks, Aedes mosquitoes, and vector control efforts in the Pacific. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1035273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recurring outbreaks of mosquito-borne diseases, like dengue, in the Pacific region represent a major biosecurity risk to neighboring continents through potential introductions of disease-causing pathogens. Aedes mosquitoes, highly prevalent in this region, are extremely invasive and the predominant vectors of multiple viruses including causing dengue, chikungunya, and Zika. Due to the absence of vaccines for most of these diseases, Aedes control remains a high priority for public health. Currently, international organizations put their efforts into improving mosquito surveillance programs in the Pacific region. Also, a novel biocontrol method using Wolbachia has been tried in the Pacific region to control Aedes mosquito populations. A comprehensive understanding of mosquito biology is needed to assess the risk that mosquitoes might be introduced to neighboring islands in the region and how this might impact arboviral virus transmission. As such, we present a comprehensive review of arboviral disease outbreak records as well as Aedes mosquito biology research findings relevant to the Pacific region collected from both non-scientific and scientific sources.
Collapse
|
5
|
Kasper J, Tomotani B, Hovius A, McIntyre M, Musicante M. Changing distributions of the cosmopolitan mosquito species Culex quinquefasciatus Say and endemic Cx. pervigilans Bergroth (Diptera: Culicidae) in New Zealand. NEW ZEALAND JOURNAL OF ZOOLOGY 2022. [DOI: 10.1080/03014223.2022.2121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Julia Kasper
- Natural Environment, Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | | | - Anton Hovius
- Natural Environment, Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Mary McIntyre
- Health, Environment and Infection, Dept. Public Health, University of Otago, Wellington, New Zealand
| | | |
Collapse
|
6
|
A literature review of dispersal pathways of Aedes albopictus across different spatial scales: implications for vector surveillance. Parasit Vectors 2022; 15:303. [PMID: 36030291 PMCID: PMC9420301 DOI: 10.1186/s13071-022-05413-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aedes albopictus is a highly invasive species and an important vector of dengue and chikungunya viruses. Indigenous to Southeast Asia, Ae. albopictus has successfully invaded every inhabited continent, except Antarctica, in the past 80 years. Vector surveillance and control at points of entry (PoE) is the most critical front line of defence against the introduction of Ae. albopictus to new areas. Identifying the pathways by which Ae. albopictus are introduced is the key to implementing effective vector surveillance to rapidly detect introductions and to eliminate them. METHODS A literature review was conducted to identify studies and data sources reporting the known and suspected dispersal pathways of human-mediated Ae. albopictus dispersal between 1940-2020. Studies and data sources reporting the first introduction of Ae. albopictus in a new country were selected for data extraction and analyses. RESULTS Between 1940-2020, Ae. albopictus was reported via various dispersal pathways into 86 new countries. Two main dispersal pathways were identified: (1) at global and continental spatial scales, maritime sea transport was the main dispersal pathway for Ae. albopictus into new countries in the middle to late 20th Century, with ships carrying used tyres of particular importance during the 1980s and 1990s, and (2) at continental and national spatial scales, the passive transportation of Ae. albopictus in ground vehicles and to a lesser extent the trade of used tyres and maritime sea transport appear to be the major drivers of Ae. albopictus dispersal into new countries, especially in Europe. Finally, the dispersal pathways for the introduction and spread of Ae. albopictus in numerous countries remains unknown, especially from the 1990s onwards. CONCLUSIONS This review identified the main known and suspected dispersal pathways of human-mediated Ae. albopictus dispersal leading to the first introduction of Ae. albopictus into new countries and highlighted gaps in our understanding of Ae. albopictus dispersal pathways. Relevant advances in vector surveillance and genomic tracking techniques are presented and discussed in the context of improving vector surveillance.
Collapse
|
7
|
Peach DAH, Matthews BJ. The Invasive Mosquitoes of Canada: An Entomological, Medical, and Veterinary Review. Am J Trop Med Hyg 2022; 107:231-244. [PMID: 35895394 PMCID: PMC9393454 DOI: 10.4269/ajtmh.21-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/03/2022] [Indexed: 11/07/2022] Open
Abstract
Several invasive mosquitoes have become established in Canada, including important pathogen vectors such as Aedes albopictus, Ae. japonicus, and Culex pipiens. Some species have been present for decades, while others are recent arrivals. Several species present new health concerns and may result in autochthonous seasonal outbreaks of pathogens, particularly in southern Canada, that were previously restricted to imported cases. This review provides an overview of current knowledge of the biological, medical, and veterinary perspectives of these invasive species and highlights the need for increased monitoring efforts and information sharing.
Collapse
Affiliation(s)
- Daniel A. H. Peach
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
8
|
Dengue Incidence Trends and Its Burden in Major Endemic Regions from 1990 to 2019. Trop Med Infect Dis 2022; 7:tropicalmed7080180. [PMID: 36006272 PMCID: PMC9416661 DOI: 10.3390/tropicalmed7080180] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Dengue has become one of the major vector-borne diseases, which has been an important public health concern. We aimed to estimate the disease burden of dengue in major endemic regions from 1990 to 2019, and explore the impact pattern of the socioeconomic factors on the burden of dengue based on the global burden of diseases, injuries, and risk factors study 2019 (GBD 2019). METHODS Using the analytical strategies and data from the GBD 2019, we described the incidence and disability-adjusted life years (DALYs) of dengue in major endemic regions from 1990 to 2019. Furthermore, we estimated the correlation between dengue burden and socioeconomic factors, and then established an autoregressive integrated moving average (ARIMA) model to predict the epidemic trends of dengue in endemic regions. All estimates were proposed as numbers and age-standardized rates (ASR) per 100,000 population, with uncertainty intervals (UIs). The ASRs of dengue incidence were compared geographically and five regions were stratified by a sociodemographic index (SDI). RESULTS A significant rise was observed on a global scale between 1990 and 2019, with the overall age-standardized rate (ASR) increasing from 557.15 (95% UI 243.32-1212.53) per 100,000 in 1990 to 740.4 (95% UI 478.2-1323.1) per 100,000 in 2019. In 2019, the Oceania region had the highest age-standardized incidence rates per 100,000 population (3173.48 (95% UI 762.33-6161.18)), followed by the South Asia region (1740.79 (95% UI 660.93-4287.12)), and then the Southeast Asia region (1153.57 (95% UI 1049.49-1281.59)). In Oceania, South Asia, and Southeast Asia, increase trends were found in the burden of dengue fever measured by ASRs of DALY which were consistent with ASRs of dengue incidence at the national level. Most of the countries with the heaviest burden of dengue fever occurred in areas with low and medium SDI regions. However, the burden in high-middle and high-SDI countries is relatively low, especially the Solomon Islands and Tonga in Oceania, the Maldives in South Asia and Indonesia in Southeast Asia. The age distribution results of the incidence rate and disease burden of dengue fever of major endemic regions showed that the higher risk and disease burden are mainly concentrated in people under 14 or over 70 years old. The prediction by ARIMA showed that the risk of dengue fever in South and Southeast Asia is on the rise, and further prevention and control is warranted. CONCLUSIONS In view of the rapid population growth and urbanization in many dengue-endemic countries, our research results are of great significance for presenting the future trend in dengue fever. It is recommended to policy makers that specific attention needs to be paid to the negative impact of urbanization on dengue incidence and allocate more resources to the low-SDI areas and people under 14 or over 70 years old to reduce the burden of dengue fever.
Collapse
|
9
|
Ammar SE, Mclntyre M, Baker MG, Hales S. New Zealand travellers to high-risk destinations for arbovirus infection make little effort to avoid mosquito bites. J R Soc N Z 2022; 53:209-218. [PMID: 39439921 PMCID: PMC11459766 DOI: 10.1080/03036758.2022.2071951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
There has been no local transmission of arbovirus disease recorded in New Zealand to date. However, in the past two decades, there have been increasing numbers of overseas-acquired cases of arbovirus infections in New Zealand, mainly dengue, Zika, chikungunya and Ross River viruses. The repeated introduction of these viruses to the immunologically naïve New Zealand population through viraemic travellers represents a potential risk for local transmission by resident or new mosquito vectors. This study assessed the extent to which these imported arbovirus disease cases used the bite-avoidance measures recommended by the New Zealand Ministry of Health between 2001-2017. The majority of notified cases reported making little effort to avoid mosquito bites even during high-risk periods and outbreaks. This suggests that the infection of New Zealand travellers might be due to underestimation or unawareness of the risk of travel-related mosquito-borne diseases. New Zealand travellers to endemic or epidemic areas, mainly in the Asia-Pacific region, should be informed about ongoing risks according to season and epidemic activity at the destination and updated on the latest disease situation and new trends. This would reduce the likelihood of pathogen introduction and, therefore, local transmission of arbovirus infection in New Zealand.
Collapse
Affiliation(s)
- Sherif E. Ammar
- Department of Public Health, University of Otago, Wellington, New Zealand
- Institute of Environmental Science and Research (ESR), Wellington, New Zealand
| | - Mary Mclntyre
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Michael G. Baker
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Simon Hales
- Department of Public Health, University of Otago, Wellington, New Zealand
| |
Collapse
|
10
|
Wilke ABB, Vasquez C, Carvajal A, Moreno M, Petrie WD, Beier JC. Mosquito surveillance in maritime entry ports in Miami-Dade County, Florida to increase preparedness and allow the early detection of invasive mosquito species. PLoS One 2022; 17:e0267224. [PMID: 35427409 PMCID: PMC9012365 DOI: 10.1371/journal.pone.0267224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Invasive mosquito vector species have been inadvertently transported to new areas by humans for decades. Strong evidence supports that monitoring maritime, terrestrial, and aerial points of entry is an essential part of the effort to curb the invasion and establishment of invasive vector mosquito species. Miami-Dade County, Florida is an important operational hub for the cruise ship industry and leisure boats that routinely visit nearby areas in the Caribbean, and freight cargo ships transporting goods from Miami-Dade to Caribbean countries and vice versa. To deal with the increasing public health concern, we hypothesized that mosquito surveillance in small- and medium-sized maritime ports of entry in Miami-Dade is crucial to allow the early detection of invasive mosquito species. Therefore, we have selected 12 small- and medium-sized maritime ports of entry in Miami-Dade County with an increased flow of people and commodities that were not covered by the current mosquito surveillance system. Collection sites were comprised of two distinct environments, four marinas with international traffic of leisure boats, and eight maintenance and commercial freight cargo ship ports. Mosquitoes were collected weekly at each of the 12 collection sites for 24 hours for 6 weeks in the Spring and then for 6 additional weeks in the Summer using BG-Sentinel traps. A total of 32,590 mosquitoes were collected, with Culex quinquefasciatus and Aedes aegypti being the most abundant species totaling 19,987 and 11,247 specimens collected, respectively. Our results show that important mosquito vector species were present in great numbers in all of the 12 maritime ports of entry surveyed during this study. The relative abundance of Cx. quinquefasciatus and Ae. aegypti was substantially higher in the commercial freight cargo ship ports than in the marinas. These results indicate that even though both areas are conducive for the proliferation of vector mosquitoes, the port area in the Miami River is especially suitable for the proliferation of vector mosquitoes. Therefore, this potentially allows the establishment of invasive mosquito species inadvertently brought in by cargo freights.
Collapse
Affiliation(s)
- André B. B. Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Augusto Carvajal
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Maday Moreno
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - William D. Petrie
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - John C. Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| |
Collapse
|
11
|
Wilke ABB, Vasquez C, Carvajal A, Moreno M, Petrie WD, Beier JC. Evaluation of the effectiveness of BG-Sentinel and CDC light traps in assessing the abundance, richness, and community composition of mosquitoes in rural and natural areas. Parasit Vectors 2022; 15:51. [PMID: 35135589 PMCID: PMC8822692 DOI: 10.1186/s13071-022-05172-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Vector-borne diseases are a major burden to public health. Controlling mosquitoes is considered the most effective way to prevent vector-borne disease transmission. Mosquito surveillance is a core component of integrated vector management, as surveillance programs are often the cornerstone for the development of mosquito control operations. Two traps are the most commonly used for the surveillance of adult mosquitoes: Centers for Disease Control and Prevention miniature light trap (CDC light trap) and BG-Sentinel trap (BioGents, Regensburg, Germany). However, despite the importance of the BG-Sentinel trap in surveillance programs in the United States, especially in the Southern states, its effectiveness in consistently and reliably collecting mosquitoes in rural and natural areas is still unknown. We hypothesized that BG-Sentinel and CDC light traps would be more attractive to specific mosquito species present in rural and natural areas. Therefore, our objective was to compare the relative abundance, species richness, and community composition of mosquitoes collected in natural and rural areas by BG-Sentinel and CDC light traps. METHODS Mosquitoes were collected from October 2020 to March 2021 using BG-Sentinel and CDC light traps baited with dry ice, totaling 105 trap-nights. RESULTS The BG-Sentinel traps collected 195,115 mosquitoes comprising 23 species from eight genera, and the CDC light traps collected 188,594 mosquitoes comprising 23 species from eight genera. The results from the permutational multivariate analysis of variance (PERMANOVA) and generalized estimating equation model for repeated measures indicate the BG-Sentinel and CDC light traps had similar sampling power. CONCLUSION Even though BG-Sentinel traps had a slightly better performance, the difference was not statistically significant indicating that both traps are suitable to be used in mosquito surveillance in rural and natural areas.
Collapse
Affiliation(s)
- André B B Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 Northwest 14th Street, Miami, FL, 33136, USA.
| | | | | | - Maday Moreno
- Miami-Dade County Mosquito Control Division, Miami, FL, USA
| | | | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 Northwest 14th Street, Miami, FL, 33136, USA
| |
Collapse
|
12
|
Imported arboviral infections in New Zealand, 2001 to 2017: A risk factor for local transmission. Travel Med Infect Dis 2021; 41:102047. [PMID: 33819569 DOI: 10.1016/j.tmaid.2021.102047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/14/2020] [Accepted: 03/29/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND/AIMS Over the last decade and following international trends, cases of mosquito-borne arboviral infections, notably dengue fever, chikungunya and Zika, have increased among travellers arriving in New Zealand, but no locally acquired cases have been identified. Imported cases are characterised and examined to identify trends and features that might assist in reducing transmission risk from travellers. METHODS Information on traveller arrivals, notified cases and risk factors for disease acquisition were obtained from national sources. Trends in importation rates, seasonality are described and relationships of notifications with traveller arrivals were examined with a negative binomial regression model. RESULTS There was a significant increase in dengue notifications combined with the emergence of Zika and chikungunya. Most notifications were from arrivals in Auckland from Pacific Islands during summer and early autumn. CONCLUSION/IMPLICATIONS Overseas travel from New Zealand, particularly to the Pacific Islands and Southeast Asia, involves a risk of arboviral infection. The repeated introduction of arboviruses to New Zealand also increases the risk of local transmission in a country that has vector capable and vector potential mosquitoes, as well as an increasingly suitable climate for new vectors to establish.
Collapse
|
13
|
Webb CE, Porigneaux PG, Durrheim DN. Assessing the Risk of Exotic Mosquito Incursion through an International Seaport, Newcastle, NSW, Australia. Trop Med Infect Dis 2021; 6:25. [PMID: 33671150 PMCID: PMC8005993 DOI: 10.3390/tropicalmed6010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/20/2022] Open
Abstract
Exotic mosquitoes, especially container-inhabiting species such as Aedes aegypti and Aedes albopictus, pose a risk to Australia as they bring with them potentially significant pest and public health concerns. Notwithstanding the threat to public health and wellbeing, significant economic costs associated with the burden of mosquito control would fall to local authorities. Detection of these mosquitoes at airports and seaports has highlighted pathways of introduction but surveillance programs outside these first ports of entry are not routinely conducted in the majority of Australian cities. To assist local authorities to better prepare response plans for exotic mosquito incursions, an investigation was undertaken to determine the extent of habitats suitable for container-inhabiting mosquitoes in over 300 residential properties adjacent to the Port of Newcastle, Newcastle, NSW. More than 1500 water-holding containers were recorded, most commonly pot plant saucers, roof gutters, and water-holding plants (e.g., bromeliads). There were significantly more containers identified for properties classified as untidy but there was no evidence visible that property characteristics could be used to prioritise property surveys in a strategic eradication response. The results demonstrate that there is potential for local establishment of exotic mosquitoes and that considerable effort would be required to adequately survey these environments for the purpose of surveillance and eradication programs.
Collapse
Affiliation(s)
- Cameron E. Webb
- Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW 2006, Australia
- Medical Entomology, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia
| | | | - David N. Durrheim
- Hunter New England Population Health, Wallsend, NSW 2287, Australia; (P.G.P.); (D.N.D.)
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
14
|
Schmidt TL, Chung J, van Rooyen AR, Sly A, Weeks AR, Hoffmann AA. Incursion pathways of the Asian tiger mosquito (Aedes albopictus) into Australia contrast sharply with those of the yellow fever mosquito (Aedes aegypti). PEST MANAGEMENT SCIENCE 2020; 76:4202-4209. [PMID: 32592440 DOI: 10.1002/ps.5977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Understanding pest incursion pathways is critical for preventing new invasions and for stopping the transfer of alleles that reduce the efficacy of local control methods. The mosquitoes Aedes albopictus (Skuse) and Ae. aegypti (Linnaeus) are both highly invasive disease vectors, and through a series of ongoing international incursions are continuing to colonize new regions and spread insecticide resistance alleles among established populations. This study uses high-resolution molecular markers and a set of 241 reference genotypes to trace incursion pathways of Ae. albopictus into mainland Australia, where no successful invasions have yet been observed. We contrast these results with incursion pathways of Ae. aegypti, investigated previously. RESULTS Assignments successfully identified China, Japan, Singapore and Taiwan as source locations. Incursion pathways of Ae. albopictus were entirely different to those of Ae. aegypti, despite broad sympatry of these species throughout the Indo-Pacific region. Incursions of Ae. albopictus appeared to have come predominantly along marine routes from key trading locations, while Ae. aegypti was mostly linked to aerial routes from tourism hotspots. CONCLUSION These results demonstrate how genomics can help decipher otherwise cryptic incursion pathways. The inclusion of reference genotypes from the Americas may help resolve some unsuccessful assignments. While many congeneric taxa will share common incursion pathways, this study highlights that this is not always the case, and incursion pathways of important taxa should be specifically investigated. Species differences in aerial and marine incursion rates may reflect the efficacy of ongoing control programmes such as aircraft disinsection. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Thomas L Schmidt
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Jessica Chung
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
- Melbourne Bioinformatics, University of Melbourne, Parkville, VIC, Australia
| | | | - Angus Sly
- Department of Agriculture, Water and the Environment, Brisbane Airport, Brisbane, QLD, Australia
| | - Andrew R Weeks
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
- cesar Pty. Ltd, Parkville, VIC, 3052, Australia
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Schmidt TL, Chung J, Honnen AC, Weeks AR, Hoffmann AA. Population genomics of two invasive mosquitoes (Aedes aegypti and Aedes albopictus) from the Indo-Pacific. PLoS Negl Trop Dis 2020; 14:e0008463. [PMID: 32678817 PMCID: PMC7390453 DOI: 10.1371/journal.pntd.0008463] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 07/29/2020] [Accepted: 06/08/2020] [Indexed: 01/09/2023] Open
Abstract
The arbovirus vectors Aedes aegypti (yellow fever mosquito) and Ae. albopictus (Asian tiger mosquito) are both common throughout the Indo-Pacific region, where 70% of global dengue transmission occurs. For Ae. aegypti all Indo-Pacific populations are invasive, having spread from an initial native range of Africa, while for Ae. albopictus the Indo-Pacific includes invasive populations and those from the native range: putatively, India to Japan to Southeast Asia. This study analyses the population genomics of 480 of these mosquitoes sampled from 27 locations in the Indo-Pacific. We investigated patterns of genome-wide genetic differentiation to compare pathways of invasion and ongoing gene flow in both species, and to compare invasive and native-range populations of Ae. albopictus. We also tested landscape genomic hypotheses that genetic differentiation would increase with geographical distance and be lower between locations with high connectivity to human transportation routes, the primary means of dispersal at these scales. We found that genetic distances were generally higher in Ae. aegypti, with Pacific populations the most highly differentiated. The most differentiated Ae. albopictus populations were in Vanuatu, Indonesia and Sri Lanka, the latter two representing potential native-range populations and potential cryptic subspeciation respectively. Genetic distances in Ae. aegypti increased with geographical distance, while in Ae. albopictus they decreased with higher connectivity to human transportation routes. Contrary to the situation in Ae. aegypti, we found evidence of long-distance Ae. albopictus colonisation events, including colonisation of Mauritius from East Asia and of Fiji from Southeast Asia. These direct genomic comparisons indicate likely differences in dispersal ecology in these species, despite their broadly sympatric distributions and similar use of human transport to disperse. Our findings will assist biosecurity operations to trace the source of invasive material and for biocontrol operations that benefit from matching genetic backgrounds of released and local populations.
Collapse
Affiliation(s)
- Thomas L. Schmidt
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jessica Chung
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
- Melbourne Bioinformatics, University of Melbourne, Parkville, Victoria, Australia
| | - Ann-Christin Honnen
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Andrew R. Weeks
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
- cesar Pty Ltd, Parkville, Victoria, Australia
| | - Ary A. Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Cane RP, Li D, Turbitt E, Chambers GK. Molecular phylogenetic analysis of New Zealand mosquito species. NEW ZEALAND JOURNAL OF ZOOLOGY 2020. [DOI: 10.1080/03014223.2020.1770305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Rachel P. Cane
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - Dongmei Li
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
| | - Erin Turbitt
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - Geoff K. Chambers
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| |
Collapse
|
17
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar Schmidt C, Michel V, Miranda Chueca MÁ, Roberts HC, Sihvonen LH, Stahl K, Velarde A, trop A, Winckler C, Cetre‐Sossah C, Chevalier V, de Vos C, Gubbins S, Antoniou S, Broglia A, Dhollander S, Van der Stede Y. Rift Valley Fever: risk of persistence, spread and impact in Mayotte (France). EFSA J 2020; 18:e06093. [PMID: 32874301 PMCID: PMC7448016 DOI: 10.2903/j.efsa.2020.6093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Rift Valley fever (RVF) is a vector-borne disease transmitted by different mosquito species, especially Aedes and Culex genus, to animals and humans. In November 2018, RVF re-emerged in Mayotte (France) after 11 years. Up to the end of October 2019, 126 outbreaks in animals and 143 human cases were reported. RVF mortality was 0.01%, and the number of abortions reported in polymerase chain reaction (PCR)-positive ruminants was fivefold greater than the previous 7 years. Milk loss production in 2019 compared to 2015-2018 was estimated to be 18%, corresponding to an economic loss of around €191,000 in all of Mayotte. The tropical climate in Mayotte provides conditions for the presence of mosquitoes during the whole year, and illegal introductions of animals represent a continuous risk of (re)introduction of RVF. The probability of RVF virus (RVFV) persisting in Mayotte for 5 or more years was estimated to be < 10% but could be much lower if vertical transmission in vectors does not occur. Persistence of RVF by vertical transmission in Mayotte and Réunion appears to be of minor relevance compared to other pathways of re-introduction (i.e. animal movement). However, there is a high uncertainty since there is limited information about the vertical transmission of some of the major species of vectors of RVFV in Mayotte and Réunion. The only identified pathways for the risk of spread of RVF from Mayotte to other countries were by infected vectors transported in airplanes or by wind currents. For the former, the risk of introduction of RVF to continental France was estimated to 4 × 10-6 epidemic per year (median value; 95% CI: 2 × 10-8; 0.0007), and 0.001 epidemic per year to Réunion (95% CI: 4 × 10-6; 0.16). For the latter pathway, mosquitoes dispersing on the wind from Mayotte between January and April 2019 could have reached the Comoros Islands, Madagascar, Mozambique and, possibly, Tanzania. However, these countries are already endemic for RVF, and an incursion of RVFV-infected mosquitoes would have negligible impact.
Collapse
|
18
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin-Bastuji B, Rojas JLG, Schmidt CG, Michel V, Chueca MÁM, Roberts HC, Sihvonen LH, Stahl K, Calvo AV, Viltrop A, Winckler C, Bett B, Cetre-Sossah C, Chevalier V, Devos C, Gubbins S, Monaco F, Sotiria-Eleni A, Broglia A, Abrahantes JC, Dhollander S, Stede YVD, Zancanaro G. Rift Valley Fever - epidemiological update and risk of introduction into Europe. EFSA J 2020; 18:e06041. [PMID: 33020705 PMCID: PMC7527653 DOI: 10.2903/j.efsa.2020.6041] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rift Valley fever (RVF) is a vector-borne disease transmitted by a broad spectrum of mosquito species, especially Aedes and Culex genus, to animals (domestic and wild ruminants and camels) and humans. Rift Valley fever is endemic in sub-Saharan Africa and in the Arabian Peninsula, with periodic epidemics characterised by 5-15 years of inter-epizootic periods. In the last two decades, RVF was notified in new African regions (e.g. Sahel), RVF epidemics occurred more frequently and low-level enzootic virus circulation has been demonstrated in livestock in various areas. Recent outbreaks in a French overseas department and some seropositive cases detected in Turkey, Tunisia and Libya raised the attention of the EU for a possible incursion into neighbouring countries. The movement of live animals is the most important pathway for RVF spread from the African endemic areas to North Africa and the Middle East. The movement of infected animals and infected vectors when shipped by flights, containers or road transport is considered as other plausible pathways of introduction into Europe. The overall risk of introduction of RVF into EU through the movement of infected animals is very low in all the EU regions and in all MSs (less than one epidemic every 500 years), given the strict EU animal import policy. The same level of risk of introduction in all the EU regions was estimated also considering the movement of infected vectors, with the highest level for Belgium, Greece, Malta, the Netherlands (one epidemic every 228-700 years), mainly linked to the number of connections by air and sea transports with African RVF infected countries. Although the EU territory does not seem to be directly exposed to an imminent risk of RVFV introduction, the risk of further spread into countries neighbouring the EU and the risks of possible introduction of infected vectors, suggest that EU authorities need to strengthen their surveillance and response capacities, as well as the collaboration with North African and Middle Eastern countries.
Collapse
|
19
|
Van Bortel W, Petric D, Ibáñez Justicia A, Wint W, Krit M, Mariën J, Vanslembrouck A, Braks M. Assessment of the probability of entry of Rift Valley fever virus into the EU through active or passive movement of vectors. ACTA ACUST UNITED AC 2020. [DOI: 10.2903/sp.efsa.2020.en-1801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Adolfo Ibáñez Justicia
- Netherlands Food and Consumer Product Safety Authority National Reference Centre Centre for Monitoring of Vectors the Netherlands
| | - Willy Wint
- Ergo – Environmental Research Group Oxford United Kingdom
| | | | | | | | - Marieta Braks
- National Institute for Public Health and the Environment the Netherlands
| |
Collapse
|