1
|
DeWeerdt S. Even with no drug or vaccine, eradication of Guinea worm is in sight. Nature 2024:10.1038/d41586-024-02306-8. [PMID: 39026068 DOI: 10.1038/d41586-024-02306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
|
2
|
Schluth CG, Standley CJ, Bansal S, Carlson CJ. Spatial parasitology and the unmapped human helminthiases. Parasitology 2023; 150:391-399. [PMID: 36632014 PMCID: PMC10090474 DOI: 10.1017/s0031182023000045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Helminthiases are a class of neglected tropical diseases that affect at least 1 billion people worldwide, with a disproportionate impact on resource-poor areas with limited disease surveillance. Geospatial methods can offer valuable insights into the burden of these infections, particularly given that many are subject to strong ecological influences on the environmental, vector-borne or zoonotic stages of their life cycle. In this study, we screened 6829 abstracts and analysed 485 studies that use maps to document, infer or predict transmission patterns for over 200 species of parasitic worms. We found that quantitative mapping methods are increasingly used in medical parasitology, drawing on One Health surveillance data from the community scale to model geographic distributions and burdens up to the regional or global scale. However, we found that the vast majority of the human helminthiases may be entirely unmapped, with research effort focused disproportionately on a half-dozen infections that are targeted by mass drug administration programmes. Entire regions were also surprisingly under-represented in the literature, particularly southern Asia and the Neotropics. We conclude by proposing a shortlist of possible priorities for future research, including several neglected helminthiases with a burden that may be underestimated.
Collapse
Affiliation(s)
| | - Claire J. Standley
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Colin J. Carlson
- Department of Biology, Georgetown University, Washington, DC, USA
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
3
|
Guo ZY, Feng JX, Ai L, Xue JB, Liu JS, Zhang XX, Cao CL, Xu J, Xia S, Zhou XN, Chen J, Li SZ. Assessment of integrated patterns of human-animal-environment health: a holistic and stratified analysis. Infect Dis Poverty 2023; 12:17. [PMID: 36915152 PMCID: PMC10010965 DOI: 10.1186/s40249-023-01069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Data-driven research is a very important component of One Health. As the core part of the global One Health index (GOHI), the global One Health Intrinsic Drivers index (IDI) is a framework for evaluating the baseline conditions of human-animal-environment health. This study aims to assess the global performance in terms of GOH-IDI, compare it across different World Bank regions, and analyze the relationships between GOH-IDI and national economic levels. METHODS The raw data among 146 countries were collected from authoritative databases and official reports in November 2021. Descriptive statistical analysis, data visualization and manipulation, Shapiro normality test and ridge maps were used to evaluate and identify the spatial and classificatory distribution of GOH-IDI. This paper uses the World Bank regional classification and the World Bank income groups to analyse the relationship between GOH-IDI and regional economic levels, and completes the case studies of representative countries. RESULTS The performance of One Health Intrinsic Driver in 146 countries was evaluated. The mean (standard deviation, SD) score of GOH-IDI is 54.05 (4.95). The values (mean SD) of different regions are North America (60.44, 2.36), Europe and Central Asia (57.73, 3.29), Middle East and North Africa (57.02, 2.56), East Asia and Pacific (53.87, 5.22), Latin America and the Caribbean (53.75, 2.20), South Asia (52.45, 2.61) and sub-Saharan Africa (48.27, 2.48). Gross national income per capita was moderately correlated with GOH-IDI (R2 = 0.651, Deviance explained = 66.6%, P < 0.005). Low income countries have the best performance in some secondary indicators, including Non-communicable Diseases and Mental Health and Health risks. Five indicators are not statistically different at each economic level, including Animal Epidemic Disease, Animal Biodiversity, Air Quality and Climate Change, Land Resources and Environmental Biodiversity. CONCLUSIONS The GOH-IDI is a crucial tool to evaluate the situation of One Health. There are inter-regional differences in GOH-IDI significantly at the worldwide level. The best performing region for GOH-IDI was North America and the worst was sub-Saharan Africa. There is a positive correlation between the GOH-IDI and country economic status, with high-income countries performing well in most indicators. GOH-IDI facilitates researchers' understanding of the multidimensional situation in each country and invests more attention in scientific questions that need to be addressed urgently.
Collapse
Affiliation(s)
- Zhao-Yu Guo
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention (Chinese Centre for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research On Tropical Diseases, Shanghai, 200025, China
| | - Jia-Xin Feng
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention (Chinese Centre for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research On Tropical Diseases, Shanghai, 200025, China
| | - Lin Ai
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention (Chinese Centre for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research On Tropical Diseases, Shanghai, 200025, China
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing-Bo Xue
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention (Chinese Centre for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research On Tropical Diseases, Shanghai, 200025, China
| | - Jing-Shu Liu
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiao-Xi Zhang
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chun-Li Cao
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention (Chinese Centre for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research On Tropical Diseases, Shanghai, 200025, China
| | - Jing Xu
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention (Chinese Centre for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research On Tropical Diseases, Shanghai, 200025, China
| | - Shang Xia
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention (Chinese Centre for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research On Tropical Diseases, Shanghai, 200025, China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention (Chinese Centre for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research On Tropical Diseases, Shanghai, 200025, China
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin Chen
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention (Chinese Centre for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research On Tropical Diseases, Shanghai, 200025, China.
| | - Shi-Zhu Li
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention (Chinese Centre for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research On Tropical Diseases, Shanghai, 200025, China.
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Guinea Worm Disease: A Neglected Diseases on the Verge of Eradication. Trop Med Infect Dis 2022; 7:tropicalmed7110366. [PMID: 36355908 PMCID: PMC9699583 DOI: 10.3390/tropicalmed7110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Background: Dracunculiasis, also known as Guinea worm disease (GWD), is a neglected tropical disease (NTD) caused by a parasite (Dracunculus medinensis). In the past, dracunculiasis was known as “the disease of the empty granary” because of the difficulties patients had in going to work in fields or to school when affected by this disease. In tropical areas, the condition has been widespread in economically disadvantaged communities, and has been associated with reduced economic status and low levels of education. Methods: we searched PubMed, Scopus, Google Scholar, EMBASE, Cochrane Library, and WHO websites for literature addressing dracunculiasis published in the last 50 years. Results: by development and optimization of multi-layered control measures, transmission by the vector has been interrupted, but there are foci in several African countries with a high risk of compromising the results obtained in the control of this neglected disease. Conclusion: this review features state-of-the-art data on the infection prevalence, geographical distribution, diagnostics, parasite–host interactions, and the pathology of dracunculiasis. Also described are the current state and future perspectives for vector control and elimination strategies.
Collapse
|
5
|
Crump RE, Huang CI, Spencer SEF, Brown PE, Shampa C, Mwamba Miaka E, Rock KS. Modelling to infer the role of animals in gambiense human African trypanosomiasis transmission and elimination in the DRC. PLoS Negl Trop Dis 2022; 16:e0010599. [PMID: 35816487 PMCID: PMC9302778 DOI: 10.1371/journal.pntd.0010599] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/21/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Gambiense human African trypanosomiasis (gHAT) has been targeted for elimination of transmission (EoT) to humans by 2030. Whilst this ambitious goal is rapidly approaching, there remain fundamental questions about the presence of non-human animal transmission cycles and their potential role in slowing progress towards, or even preventing, EoT. In this study we focus on the country with the most gHAT disease burden, the Democratic Republic of Congo (DRC), and use mathematical modelling to assess whether animals may contribute to transmission in specific regions, and if so, how their presence could impact the likelihood and timing of EoT. By fitting two model variants-one with, and one without animal transmission-to the human case data from 2000-2016 we estimate model parameters for 158 endemic health zones of the DRC. We evaluate the statistical support for each model variant in each health zone and infer the contribution of animals to overall transmission and how this could impact predicted time to EoT. We conclude that there are 24/158 health zones where there is substantial to decisive statistical support for some animal transmission. However-even in these regions-we estimate that animals would be extremely unlikely to maintain transmission on their own. Animal transmission could hamper progress towards EoT in some settings, with projections under continuing interventions indicating that the number of health zones expected to achieve EoT by 2030 reduces from 68/158 to 61/158 if animal transmission is included in the model. With supplementary vector control (at a modest 60% tsetse reduction) added to medical screening and treatment interventions, the predicted number of health zones meeting the goal increases to 147/158 for the model including animal transmission. This is due to the impact of vector reduction on transmission to and from all hosts.
Collapse
Affiliation(s)
- Ronald E. Crump
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Ching-I Huang
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Simon E. F. Spencer
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- The Department of Statistics, The University of Warwick, Coventry, United Kingdom
| | - Paul E. Brown
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Chansy Shampa
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Kat S. Rock
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
6
|
Towards global control of parasitic diseases in the Covid-19 era: One Health and the future of multisectoral global health governance. ADVANCES IN PARASITOLOGY 2021; 114:1-26. [PMID: 34696842 PMCID: PMC8503781 DOI: 10.1016/bs.apar.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human parasitic infections—including malaria, and many neglected tropical diseases (NTDs)—have long represented a Gordian knot in global public health: ancient, persistent, and exceedingly difficult to control. With the coronavirus disease (Covid-19) pandemic substantially interrupting control programmes worldwide, there are now mounting fears that decades of progress in controlling global parasitic infections will be undone. With Covid-19 moreover exposing deep vulnerabilities in the global health system, the current moment presents a watershed opportunity to plan future efforts to reduce the global morbidity and mortality associated with human parasitic infections. In this chapter, we first provide a brief epidemiologic overview of the progress that has been made towards the control of parasitic diseases between 1990 and 2019, contrasting these fragile gains with the anticipated losses as a result of Covid-19. We then argue that the complementary aspirations of the United Nations Sustainable Development Goals (SDGs) and the World Health Organization (WHO)’s 2030 targets for parasitic disease control may be achieved by aligning programme objectives within the One Health paradigm, recognizing the interdependence between humans, animals, and the environment. In so doing, we note that while the WHO remains the preeminent international institution to address some of these transdisciplinary concerns, its underlying challenges with funding, authority, and capacity are likely to reverberate if left unaddressed. To this end, we conclude by reimagining how models of multisectoral global health governance—combining the WHO's normative and technical leadership with greater support in allied policy-making areas—can help sustain future malaria and NTD elimination efforts.
Collapse
|
7
|
Kelly-Hope LA, Molyneux DH. Quantifying conflict zones as a challenge to certification of Guinea worm eradication in Africa: a new analytical approach. BMJ Open 2021; 11:e049732. [PMID: 34353803 PMCID: PMC8344294 DOI: 10.1136/bmjopen-2021-049732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES To quantify conflict events and access across countries that remain to be certified free of transmission of Dracunculus medinensis (Guinea worm disease) or require postcertification surveillance as part of the Guinea Worm Eradication Programme (GWEP). SETTING AND PARTICIPANTS Populations living in Guinea worm affected areas across seven precertification countries and 13 postcertification sub-Saharan African countries. OUTCOME MEASURES The number of conflict events and rates per 100 000 population, the main types of conflict and actors reported to be responsible for events were summarised and mapped across all countries. Chad and Mali were presented as case studies. Guinea worm information was based on GWEP reports. Conflict data were obtained from the Armed Conflict Location and Event Data Project. Maps were created using ArcGIS V.10.7 and access was measured as regional distance and time to cities. RESULTS More than 980 000 conflict events were reported between 2000 and 2020, with a significant increase since 2018. The highest number and rates were reported in precertification Mali (n=2556; 13.0 per 100 000), South Sudan (n=2143; 19.4), Democratic Republic of Congo (n=7016; 8.1) and postcertification Nigeria (n=6903; 3.4), Central Africa Republic (n=1251; 26.4), Burkina Faso (n=2004; 9.7). Violence against civilians, protests and battles were most frequently reported with several different actors involved including Unidentified Armed Groups and Boko Haram. Chad and Mali had contracting epidemiological and conflict situations with affected regions up to 700 km from the capital or 10 hours to the nearest city. CONCLUSIONS Understanding the spatial-temporal patterns of conflict events, identifying hotspots, the actors responsible and their sphere of influence is critical for the GWEP and other public health programmes to develop practical risk assessments, deliver essential health interventions, implement innovative surveillance, determine certification and meet the goals of eradication.
Collapse
Affiliation(s)
- Louise A Kelly-Hope
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, Merseyside, UK
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
| | - David H Molyneux
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
| |
Collapse
|
8
|
Bharadwaj M, Bengtson M, Golverdingen M, Waling L, Dekker C. Diagnosing point-of-care diagnostics for neglected tropical diseases. PLoS Negl Trop Dis 2021; 15:e0009405. [PMID: 34138846 PMCID: PMC8211285 DOI: 10.1371/journal.pntd.0009405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inadequate and nonintegrated diagnostics are the Achilles' heel of global efforts to monitor, control, and eradicate neglected tropical diseases (NTDs). While treatment is often available, NTDs are endemic among marginalized populations, due to the unavailability or inadequacy of diagnostic tests that cause empirical misdiagnoses. The need of the hour is early diagnosis at the point-of-care (PoC) of NTD patients. Here, we review the status quo of PoC diagnostic tests and practices for all of the 24 NTDs identified in the World Health Organization's (WHO) 2021-2030 roadmap, based on their different diagnostic requirements. We discuss the capabilities and shortcomings of current diagnostic tests, identify diagnostic needs, and formulate prerequisites of relevant PoC tests. Next to technical requirements, we stress the importance of availability and awareness programs for establishing PoC tests that fit endemic resource-limited settings. Better understanding of NTD diagnostics will pave the path for setting realistic goals for healthcare in areas with minimal resources, thereby alleviating the global healthcare burden.
Collapse
Affiliation(s)
- Mitasha Bharadwaj
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Michel Bengtson
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Mirte Golverdingen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Loulotte Waling
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
9
|
Guagliardo SAJ, Ruiz-Tiben E, Hopkins DR, Weiss AJ, Ouakou PT, Zirimwabagabo H, Unterwegner K, Tindall D, Cama VA, Bishop H, Sapp SGH, Roy SL. Surveillance of Human Guinea Worm in Chad, 2010-2018. Am J Trop Med Hyg 2021; 105:188-195. [PMID: 34029207 PMCID: PMC8274751 DOI: 10.4269/ajtmh.20-1525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/24/2021] [Indexed: 12/31/2022] Open
Abstract
The total number of Guinea worm cases has been reduced by 99.9% since the mid-1980s when the eradication campaign began. Today, the greatest number of cases is reported from Chad. In this report, we use surveillance data collected by the Chad Guinea Worm Eradication Program to describe trends in human epidemiology. In total, 114 human cases were reported during the years 2010–2018, with highest rates of containment (i.e., water contamination prevented) in the years 2013, 2014, 2016, and 2017 (P < 0.0001). Approximately half of case-patients were female, and 65.8% of case-patients were aged 30 years or younger (mean: 26.4 years). About 34.2% of case-patients were farmers. Cases were distributed across many ethnicities, with a plurality of individuals being of the Sara Kaba ethnicity (21.3%). Most cases occurred between the end of June and the end of August and were clustered in the Chari Baguirmi (35.9%) and Moyen Chari regions (30.1%). Cases in the northern Chari River area peaked in April and in August, with no clear temporal pattern in the southern Chari River area. History of travel within Chad was reported in 7.0% of cases, and male case-patients (12.5%) were more likely than female case-patients (1.7%) to have reported a history of travel (P = 0.03). Our findings confirm that human Guinea worm is geographically disperse and rare. Although the proportion of case-patients with travel history is relatively small, this finding highlights the challenge of surveillance in mobile populations in the final stages of the global eradication campaign.
Collapse
Affiliation(s)
- Sarah Anne J Guagliardo
- 1Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia.,2Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia
| | | | - Donald R Hopkins
- 2Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia
| | - Adam J Weiss
- 2Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia
| | | | | | | | - Dillon Tindall
- 2Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia
| | - Vitaliano A Cama
- 1Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Henry Bishop
- 1Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sarah G H Sapp
- 1Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sharon L Roy
- 1Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
10
|
Standley CJ, Schermerhorn J. Reaching the "Last Mile": Fresh Approaches Needed for Guinea Worm Eradication. Am J Trop Med Hyg 2021; 105:1-2. [PMID: 33909595 PMCID: PMC8274775 DOI: 10.4269/ajtmh.21-0433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/23/2023] Open
Affiliation(s)
- Claire J. Standley
- Address correspondence to Claire J. Standley, Center for Global Health Science and Security, Georgetown University, 3900 Reservoir Road NW, Washington, DC 20057. E-mail:
| | | |
Collapse
|
11
|
One Health and Neglected Tropical Diseases-Multisectoral Solutions to Endemic Challenges. Trop Med Infect Dis 2020; 6:tropicalmed6010004. [PMID: 33383621 PMCID: PMC7838914 DOI: 10.3390/tropicalmed6010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022] Open
Abstract
One Health is defined as an approach to achieve better health outcomes for humans, animals, and the environment through collaborative and interdisciplinary efforts [...].
Collapse
|