1
|
Marinho A, Reis S, Nunes C. On the design of cell membrane-coated nanoparticles to treat inflammatory conditions. NANOSCALE HORIZONS 2024; 10:38-55. [PMID: 39499543 DOI: 10.1039/d4nh00457d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Biomimetic-based drug delivery systems (DDS) attempt to recreate the complex interactions that occur naturally between cells. Cell membrane-coated nanoparticles (CMCNPs) have been one of the main strategies in this area to prevent opsonization and clearance. Moreover, coating nanoparticles with cell membranes allows them to acquire functions and properties inherent to the mother cells. In particular, cells from bloodstream show to have specific advantages depending on the cell type to be used for that application, specifically in cases of chronic inflammation. Thus, this review focuses on the biomimetic strategies that use membranes from blood cells to target and treat inflammatory conditions.
Collapse
Affiliation(s)
- Andreia Marinho
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal.
- LAQV, REQUIMTE, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal.
| | - Cláudia Nunes
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal.
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal
| |
Collapse
|
2
|
Alcalá-Santiago Á, Toscano-Sánchez R, Márquez-López JC, González-Jurado JA, Fernández-Pachón MS, García-Villanova B, Pedroche J, Rodríguez-Martín NM. The Synergic Immunomodulatory Effect of Vitamin D and Chickpea Protein Hydrolysate in THP-1 Cells: An In Vitro Approach. Int J Mol Sci 2024; 25:12628. [PMID: 39684340 DOI: 10.3390/ijms252312628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Vitamin D (VD), a crucial micronutrient, regulates bone health and immune responses. Recent studies suggest that VD may confer protective effects against chronic inflammatory diseases. Additionally, plant-based peptides can show biological activities. Furthermore, the supplementation of protein hydrolysates with VD could potentially enhance the bioactivity of peptides, leading to synergistic effects. In this study, THP-1 cells were exposed to low concentrations of Lipopolysaccharide (LPS) to induce inflammation, followed by treatment with vitamin D at different concentrations (10, 25, or 50 nM) or a chickpea protein hydrolysate ("H30BIO") supplemented with VD. The cytotoxicity of VD was evaluated using viability assay to confirm its safety. The cytokine secretion of TNF-α, IL-1β, and IL6 was assessed in the cell supernatant, and the gene expression of TNF-α, IL-1β, IL6, IL8, CASP-1, COX2, NRF2, NF-ĸB, NLRP3, CCL2, CCR2, IP10, IL10, and RANTES was quantified by qRT-PCR. Treatment with VD alone significantly decreased the expression of the pro-inflammatory genes TNF-α and IL6, as well as their corresponding cytokine levels in the supernatants. While IL-1β gene expression remained unchanged, a reduction in its cytokine release was observed upon VD treatment. No dose-dependent effects were observed. Interestingly, the combination of VD with H30BIO led to an increase in TNF-α expression and secretion in contrast with the LPS control, coupled with a decrease in IL-1β levels. Additionally, genes such as IP10, NF-κB, CCL2, COX2, NRF2, and CASP-1 exhibited notable modulation, suggesting that the combination treatment primarily downregulates NF-κB-related gene activity. This study demonstrates a synergistic interaction between VD and H30BIO, suggesting that this combination may enhance pathways involving TNF-α, potentially aiding in the resolution and modulation of inflammation through adaptive processes. These findings open new avenues for research into the therapeutic applications of enriched protein hydrolysates with VD to manage low-grade inflammatory-related conditions.
Collapse
Affiliation(s)
- Ángela Alcalá-Santiago
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
| | - Rocío Toscano-Sánchez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, Faculty of Medicine, University of Seville, Av. Dr. Fedriani 3, 41071 Seville, Spain
| | | | - José Antonio González-Jurado
- Physical and Sport Education, Physical Performance and Sports Research Center, University Pablo de Olavide, 41013 Sevilla, Spain
| | - María-Soledad Fernández-Pachón
- Area of Nutrition and Food Sciences, Department of Molecular Biology, and Biochemistry Engineering, University Pablo de Olavide, 41013 Seville, Spain
| | - Belén García-Villanova
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Justo Pedroche
- Group of Plant Proteins, Instituto de la Grasa-CSIC, 41013 Seville, Spain
| | | |
Collapse
|
3
|
Tang X, Lu H, Tarwater PM, Silverberg DL, Schorl C, Ramratnam B. Adeno-Associated Virus (AAV)-Delivered Exosomal TAT and BiTE Molecule CD4-αCD3 Facilitate the Elimination of CD4 T Cells Harboring Latent HIV-1. Microorganisms 2024; 12:1707. [PMID: 39203549 PMCID: PMC11357122 DOI: 10.3390/microorganisms12081707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Combinatorial antiretroviral therapy (cART) has transformed HIV infection from a death sentence to a controllable chronic disease, but cannot eliminate the virus. Latent HIV-1 reservoirs are the major obstacles to cure HIV-1 infection. Previously, we engineered exosomal Tat (Exo-Tat) to reactivate latent HIV-1 from the reservoir of resting CD4+ T cells. Here, we present an HIV-1 eradication platform, which uses our previously described Exo-Tat to activate latent virus from resting CD4+ T cells guided by the specific binding domain of CD4 in interleukin 16 (IL16), attached to the N-terminus of exosome surface protein lysosome-associated membrane protein 2 variant B (Lamp2B). Cells with HIV-1 surface protein gp120 expressed on the cell membranes are then targeted for immune cytolysis by a BiTE molecule CD4-αCD3, which colocalizes the gp120 surface protein of HIV-1 and the CD3 of cytotoxic T lymphocytes. Using primary blood cells obtained from antiretroviral treated individuals, we find that this combined approach led to a significant reduction in replication-competent HIV-1 in infected CD4+ T cells in a clonal in vitro cell system. Furthermore, adeno-associated virus serotype DJ (AAV-DJ) was used to deliver Exo-Tat, IL16lamp2b and CD4-αCD3 genes by constructing them in one AAV-DJ vector (the plasmid was named pEliminator). The coculture of T cells from HIV-1 patients with Huh-7 cells infected with AAV-Eliminator viruses led to the clearance of HIV-1 reservoir cells in the in vitro experiment, which could have implications for reducing the viral reservoir in vivo, indicating that Eliminator AAV viruses have the potential to be developed into therapeutic biologics to cure HIV-1 infection.
Collapse
Affiliation(s)
- Xiaoli Tang
- Division of Infectious Diseases, Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (X.T.); (H.L.)
| | - Huafei Lu
- Division of Infectious Diseases, Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (X.T.); (H.L.)
| | - Patrick M. Tarwater
- Department of Epidemiology and Biostatistics, Texas A&M School of Public Health, College Station, TX 77843, USA;
| | - David L. Silverberg
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI 02906, USA;
| | - Christoph Schorl
- The Brown University Genomics Core, Providence, RI 02906, USA;
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02906, USA
| | - Bharat Ramratnam
- Division of Infectious Diseases, Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (X.T.); (H.L.)
- COBRE Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI 02903, USA
- Clinical Research Center of Lifespan, Providence, RI 02903, USA
| |
Collapse
|
4
|
Nuszkiewicz J, Kukulska-Pawluczuk B, Piec K, Jarek DJ, Motolko K, Szewczyk-Golec K, Woźniak A. Intersecting Pathways: The Role of Metabolic Dysregulation, Gastrointestinal Microbiome, and Inflammation in Acute Ischemic Stroke Pathogenesis and Outcomes. J Clin Med 2024; 13:4258. [PMID: 39064298 PMCID: PMC11278353 DOI: 10.3390/jcm13144258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Acute ischemic stroke (AIS) remains a major cause of mortality and long-term disability worldwide, driven by complex and multifaceted etiological factors. Metabolic dysregulation, gastrointestinal microbiome alterations, and systemic inflammation are emerging as significant contributors to AIS pathogenesis. This review addresses the critical need to understand how these factors interact to influence AIS risk and outcomes. We aim to elucidate the roles of dysregulated adipokines in obesity, the impact of gut microbiota disruptions, and the neuroinflammatory cascade initiated by lipopolysaccharides (LPS) in AIS. Dysregulated adipokines in obesity exacerbate inflammatory responses, increasing AIS risk and severity. Disruptions in the gut microbiota and subsequent LPS-induced neuroinflammation further link systemic inflammation to AIS. Advances in neuroimaging and biomarker development have improved diagnostic precision. Here, we highlight the need for a multifaceted approach to AIS management, integrating metabolic, microbiota, and inflammatory insights. Potential therapeutic strategies targeting these pathways could significantly improve AIS prevention and treatment. Future research should focus on further elucidating these pathways and developing targeted interventions to mitigate the impacts of metabolic dysregulation, microbiome imbalances, and inflammation on AIS.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Beata Kukulska-Pawluczuk
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Katarzyna Piec
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Dorian Julian Jarek
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Karina Motolko
- Student Research Club of Neurology, Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland;
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| |
Collapse
|
5
|
Hmiel L, Zhang S, Obare LM, Santana MADO, Wanjalla CN, Titanji BK, Hileman CO, Bagchi S. Inflammatory and Immune Mechanisms for Atherosclerotic Cardiovascular Disease in HIV. Int J Mol Sci 2024; 25:7266. [PMID: 39000373 PMCID: PMC11242562 DOI: 10.3390/ijms25137266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Atherosclerotic vascular disease disproportionately affects persons living with HIV (PLWH) compared to those without. The reasons for the excess risk include dysregulated immune response and inflammation related to HIV infection itself, comorbid conditions, and co-infections. Here, we review an updated understanding of immune and inflammatory pathways underlying atherosclerosis in PLWH, including effects of viral products, soluble mediators and chemokines, innate and adaptive immune cells, and important co-infections. We also present potential therapeutic targets which may reduce cardiovascular risk in PLWH.
Collapse
Affiliation(s)
- Laura Hmiel
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Suyu Zhang
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Boghuma K. Titanji
- Division of Infectious Diseases, Emory University, Atlanta, GA 30322, USA
| | - Corrilynn O. Hileman
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Shashwatee Bagchi
- Division of Infectious Diseases, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Xie Q, Tang Y, Shen L, Yang D, Zhang J, Luo Q. Immunophenotypic variations in syphilis: insights from Mendelian randomization analysis. Front Immunol 2024; 15:1380720. [PMID: 38694502 PMCID: PMC11061532 DOI: 10.3389/fimmu.2024.1380720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Background Infection with Treponema pallidum instigates complex immune responses. Prior research has suggested that persistent Treponema pallidum infection can manipulate host immune responses and circumvent host defenses. However, the precise role of immune cells in Treponema pallidum infection across different stages remains a contentious issue. Methods Utilizing summary data from genome-wide association studies, we employed a two-sample Mendelian randomization method to investigate the association between 731 immunophenotypes and syphilis. Syphilis was categorized into early and late stages in this study to establish a more robust correlation and minimize bias in database sources. Results Our findings revealed that 33, 36, and 27 immunophenotypes of peripheral blood were associated with syphilis (regardless of disease stage), early syphilis and late syphilis, respectively. Subsequent analysis demonstrated significant variations between early and late syphilis in terms of immunophenotypes. Specifically, early syphilis showcased activated, secreting, and resting regulatory T cells, whereas late syphilis was characterized by resting Treg cells. More B cells subtypes emerged in late syphilis. Monocytes in early syphilis exhibited an intermediate and non-classical phenotype, transitioning to classical in late syphilis. Early syphilis featured naive T cells, effector memory T cells, and terminally differentiated T cells, while late syphilis predominantly presented terminally differentiated T cells. Immature myeloid-derived suppressor cells were evident in early syphilis, whereas the dendritic cell immunophenotype was exclusive to late syphilis. Conclusion Multiple immunophenotypes demonstrated associations with syphilis, showcasing substantial disparities between the early and late stages of the disease. These findings hold promise for informing immunologically oriented treatment strategies, paving the way for more effective and efficient syphilis interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingqiong Luo
- Department of Clinical Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Ferreira EA, Clements JE, Veenhuis RT. HIV-1 Myeloid Reservoirs - Contributors to Viral Persistence and Pathogenesis. Curr HIV/AIDS Rep 2024; 21:62-74. [PMID: 38411842 DOI: 10.1007/s11904-024-00692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE OF REVIEW HIV reservoirs are the main barrier to cure. CD4+ T cells have been extensively studied as the primary HIV-1 reservoir. However, there is substantial evidence that HIV-1-infected myeloid cells (monocytes/macrophages) also contribute to viral persistence and pathogenesis. RECENT FINDINGS Recent studies in animal models and people with HIV-1 demonstrate that myeloid cells are cellular reservoirs of HIV-1. HIV-1 genomes and viral RNA have been reported in circulating monocytes and tissue-resident macrophages from the brain, urethra, gut, liver, and spleen. Importantly, viral outgrowth assays have quantified persistent infectious virus from monocyte-derived macrophages and tissue-resident macrophages. The myeloid cell compartment represents an important target of HIV-1 infection. While myeloid reservoirs may be more difficult to measure than CD4+ T cell reservoirs, they are long-lived, contribute to viral persistence, and, unless specifically targeted, will prevent an HIV-1 cure.
Collapse
Affiliation(s)
- Edna A Ferreira
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Rebecca T Veenhuis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
| |
Collapse
|
8
|
Obeagu EI, Obeagu GU. Utilization of immunological ratios in HIV: Implications for monitoring and therapeutic strategies. Medicine (Baltimore) 2024; 103:e37354. [PMID: 38428854 PMCID: PMC10906605 DOI: 10.1097/md.0000000000037354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection remains a significant global health concern, necessitating ongoing research and innovation in the quest for improved disease management. Traditional markers for monitoring HIV progression and the effectiveness of antiretroviral therapy have limitations in capturing the intricate immune responses and inflammatory dynamics in people with HIV. In recent years, the concept of inflammation ratios has gained prominence as a valuable tool for assessing and understanding the complex interplay between inflammation, immune function, and HIV. In this abstract, we provide an overview of the emerging field of utilizing inflammation ratios in the context of HIV and its implications for disease monitoring and therapeutic strategies. These ratios, such as the CD4/CD8 ratio, neutrophil-to-lymphocyte ratio, and monocyte-to-lymphocyte ratio, offer a more comprehensive assessment of an individual's immune status and inflammatory state. By exploring the clinical implications of inflammation ratios, including their potential to predict disease complications and guide personalized treatment approaches, this publication sheds light on the potential benefits of incorporating inflammation ratios into routine HIV care. Furthermore, we emphasize the importance of ongoing research in this field to further refine our understanding of the utility and significance of inflammation ratios in improving the lives of people with HIV.
Collapse
|
9
|
Wiche Salinas TR, Zhang Y, Gosselin A, Rosario NF, El-Far M, Filali-Mouhim A, Routy JP, Chartrand-Lefebvre C, Landay AL, Durand M, Tremblay CL, Ancuta P. Alterations in Th17 Cells and Non-Classical Monocytes as a Signature of Subclinical Coronary Artery Atherosclerosis during ART-Treated HIV-1 Infection. Cells 2024; 13:157. [PMID: 38247848 PMCID: PMC10813976 DOI: 10.3390/cells13020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Cardiovascular disease (CVD) remains an important comorbidity in people living with HIV-1 (PLWH) receiving antiretroviral therapy (ART). Our previous studies performed in the Canadian HIV/Aging Cohort Study (CHACS) (>40 years-old; Framingham Risk Score (FRS) > 5%) revealed a 2-3-fold increase in non-calcified coronary artery atherosclerosis (CAA) plaque burden, measured by computed tomography angiography scan (CTAScan) as the total (TPV) and low attenuated plaque volume (LAPV), in ART-treated PLWH (HIV+) versus uninfected controls (HIV-). In an effort to identify novel correlates of subclinical CAA, markers of intestinal damage (sCD14, LBP, FABP2); cell trafficking/inflammation (CCL20, CX3CL1, MIF, CCL25); subsets of Th17-polarized and regulatory (Tregs) CD4+ T-cells, classical/intermediate/non-classical monocytes, and myeloid/plasmacytoid dendritic cells were studied in relationship with HIV and TPV/LAPV status. The TPV detection/values coincided with higher plasma sCD14, FABP2, CCL20, MIF, CX3CL1, and triglyceride levels; lower Th17/Treg ratios; and classical monocyte expansion. Among HIV+, TPV+ versus TPV- exhibited lower Th17 frequencies, reduced Th17/Treg ratios, higher frequencies of non-classical CCR9lowHLADRhigh monocytes, and increased plasma fibrinogen levels. Finally, Th17/Treg ratios and non-classical CCR9lowHLADRhigh monocyte frequencies remained associated with TPV/LAPV after adjusting for FRS and HIV/ART duration in a logistic regression model. These findings point to Th17 paucity and non-classical monocyte abundance as novel immunological correlates of subclinical CAA that may fuel the CVD risk in ART-treated PLWH.
Collapse
Affiliation(s)
- Tomas Raul Wiche Salinas
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada; (T.R.W.S.); (Y.Z.); (C.L.T.)
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Yuwei Zhang
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada; (T.R.W.S.); (Y.Z.); (C.L.T.)
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Annie Gosselin
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Natalia Fonseca Rosario
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Mohamed El-Far
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Ali Filali-Mouhim
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Carl Chartrand-Lefebvre
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
- Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada
| | | | - Madeleine Durand
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
- Département de Médecine, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada
| | - Cécile L. Tremblay
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada; (T.R.W.S.); (Y.Z.); (C.L.T.)
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Petronela Ancuta
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada; (T.R.W.S.); (Y.Z.); (C.L.T.)
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| |
Collapse
|
10
|
Wiche Salinas TR, Zhang Y, Gosselin A, Do Rosario NF, El-Far M, Filali-Mouhim A, Routy JP, Chartrand-Lefebvre C, Landay AL, Durand M, Tremblay CL, Ancuta P. A Blood Immunological Signature of Subclinical Coronary Artery Atherosclerosis in People Living with HIV-1 Receiving Antiretroviral Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571922. [PMID: 38187644 PMCID: PMC10769180 DOI: 10.1101/2023.12.15.571922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Cardiovascular disease (CVD) remains an important co-morbidity in people living with HIV-1 (PLWH) receiving antiretroviral therapy (ART). Our previous studies performed on the Canadian HIV/Aging Cohort Study (CHACS) (>40 years-old; Framingham Risk Score (FRS) >5%), revealed a 2-3-fold increase in non-calcified coronary artery atherosclerosis (CAA) plaque burden, measured by Computed tomography angiography scan (CTAScan) as total (TPV) and low attenuated plaque volume (LAPV) in ART-treated PLWH (HIV+) versus uninfected controls (HIV-). In an effort to identify novel correlates of subclinical CAA, markers of intestinal damage (sCD14, LBP, FABP2); cell trafficking/inflammation (CCL20, CX3CL1, MIF, CCL25); subsets of Th17-polarized and regulatory (Tregs) CD4 + T-cells, classical/intermediate/non-classical monocytes, and myeloid/plasmacytoid dendritic cells, were studied in relationship with HIV and TPV/LAPV status. The TPV detection/values coincided with higher plasma sCD14, FABP2, CCL20, MIF, CX3CL1 and triglyceride levels, lower Th17/Treg ratios, and classical monocyte expansion. Among HIV + , TPV + versus TPV - exhibited lower Th17 frequencies, reduced Th17/Treg ratios, higher frequencies of non-classical CCR9 low HLADR high monocyte, and increased plasma fibrinogen levels. Finally, Th17/Treg ratios and non-classical CCR9 low HLADR high monocyte frequencies remained associated with TPV/LAPV after adjusting for FRS and HIV/ART duration in a logistic regression model. These findings point to Th17 paucity and non-classical monocyte abundance as novel immunological correlates of subclinical CAA that may fuel the CVD risk in ART-treated PLWH.
Collapse
|
11
|
Ruder AV, Wetzels SMW, Temmerman L, Biessen EAL, Goossens P. Monocyte heterogeneity in cardiovascular disease. Cardiovasc Res 2023; 119:2033-2045. [PMID: 37161473 PMCID: PMC10478755 DOI: 10.1093/cvr/cvad069] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 05/11/2023] Open
Abstract
Monocytes circulate the vasculature at steady state and are recruited to sites of inflammation where they differentiate into macrophages (MФ) to replenish tissue-resident MФ populations and engage in the development of cardiovascular disease (CVD). Monocytes display considerable heterogeneity, currently reflected by a nomenclature based on their expression of cluster of differentiation (CD) 14 and CD16, distinguishing CD14++CD16- classical (cMo), CD14++CD16+ intermediate (intMo) and CD14+CD16++ non-classical (ncMo) monocytes. Several reports point to shifted subset distributions in the context of CVD, with significant association of intMo numbers with atherosclerosis, myocardial infarction, and heart failure. However, clear indications of their causal involvement as well as their predictive value for CVD are lacking. As recent high-parameter cytometry and single-cell RNA sequencing (scRNA-Seq) studies suggest an even higher degree of heterogeneity, better understanding of the functionalities of these subsets is pivotal. Considering their high heterogeneity, surprisingly little is known about functional differences between MФ originating from monocytes belonging to different subsets, and implications thereof for CVD pathogenesis. This paper provides an overview of recent findings on monocyte heterogeneity in the context of homeostasis and disease as well as functional differences between the subsets and their potential to differentiate into MФ, focusing on their role in vessels and the heart. The emerging paradigm of monocyte heterogeneity transcending the current tripartite subset division argues for an updated nomenclature and functional studies to substantiate marker-based subdivision and to clarify subset-specific implications for CVD.
Collapse
Affiliation(s)
- Adele V Ruder
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Suzan M W Wetzels
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Lieve Temmerman
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Erik A L Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Pieter Goossens
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
12
|
Zhang W, Ruan L. Recent advances in poor HIV immune reconstitution: what will the future look like? Front Microbiol 2023; 14:1236460. [PMID: 37608956 PMCID: PMC10440441 DOI: 10.3389/fmicb.2023.1236460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Combination antiretroviral therapy has demonstrated proved effectiveness in suppressing viral replication and significantly recovering CD4+ T cell count in HIV type-1 (HIV-1)-infected patients, contributing to a dramatic reduction in AIDS morbidity and mortality. However, the factors affecting immune reconstitution are extremely complex. Demographic factors, co-infection, baseline CD4 cell level, abnormal immune activation, and cytokine dysregulation may all affect immune reconstitution. According to report, 10-40% of HIV-1-infected patients fail to restore the normalization of CD4+ T cell count and function. They are referred to as immunological non-responders (INRs) who fail to achieve complete immune reconstitution and have a higher mortality rate and higher risk of developing other non-AIDS diseases compared with those who achieve complete immune reconstitution. Heretofore, the mechanisms underlying incomplete immune reconstitution in HIV remain elusive, and INRs are not effectively treated or mitigated. This review discusses the recent progress of mechanisms and factors responsible for incomplete immune reconstitution in AIDS and summarizes the corresponding therapeutic strategies according to different mechanisms to improve the individual therapy.
Collapse
Affiliation(s)
| | - Lianguo Ruan
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
13
|
Tugizov SM. Molecular Pathogenesis of Human Immunodeficiency Virus-Associated Disease of Oropharyngeal Mucosal Epithelium. Biomedicines 2023; 11:1444. [PMID: 37239115 PMCID: PMC10216750 DOI: 10.3390/biomedicines11051444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The oropharyngeal mucosal epithelia have a polarized organization, which is critical for maintaining a highly efficient barrier as well as innate immune functions. In human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) disease, the barrier and innate immune functions of the oral mucosa are impaired via a number of mechanisms. The goal of this review was to discuss the molecular mechanisms of HIV/AIDS-associated changes in the oropharyngeal mucosa and their role in promoting HIV transmission and disease pathogenesis, notably the development of opportunistic infections, including human cytomegalovirus, herpes simplex virus, and Epstein-Barr virus. In addition, the significance of adult and newborn/infant oral mucosa in HIV resistance and transmission was analyzed. HIV/AIDS-associated changes in the oropharyngeal mucosal epithelium and their role in promoting human papillomavirus-positive and negative neoplastic malignancy are also discussed.
Collapse
Affiliation(s)
- Sharof M Tugizov
- Department of Medicine, School of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
14
|
Masson HO, Borland D, Reilly J, Telleria A, Shrivastava S, Watson M, Bustillos L, Li Z, Capps L, Kellman BP, King ZA, Richelle A, Lewis NE, Robasky K. ImmCellFie: A user-friendly web-based platform to infer metabolic function from omics data. STAR Protoc 2023; 4:102069. [PMID: 36853701 PMCID: PMC9898792 DOI: 10.1016/j.xpro.2023.102069] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/02/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Understanding cellular metabolism is important across biotechnology and biomedical research and has critical implications in a broad range of normal and pathological conditions. Here, we introduce the user-friendly web-based platform ImmCellFie, which allows the comprehensive analysis of metabolic functions inferred from transcriptomic or proteomic data. We explain how to set up a run using publicly available omics data and how to visualize the results. The ImmCellFie algorithm pushes beyond conventional statistical enrichment and incorporates complex biological mechanisms to quantify cell activity. For complete details on the use and execution of this protocol, please refer to Richelle et al. (2021).1.
Collapse
Affiliation(s)
- Helen O Masson
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
| | - David Borland
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Jason Reilly
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Adrian Telleria
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Shalki Shrivastava
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Matt Watson
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Luthfi Bustillos
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Zerong Li
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Laura Capps
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Benjamin P Kellman
- Bioinformatics and Systems Biology Program, UC San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Zachary A King
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
| | - Anne Richelle
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Nathan E Lewis
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA.
| | - Kimberly Robasky
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel H0069ll, NC 27514, USA; School of Information and Library Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Health and Informatics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Schimpel C, Passegger C, Egger S, Tam-Amersdorfer C, Strobl H. A novel 3D cell culture model to study the human small intestinal immune landscape. Eur J Immunol 2023; 53:e2250131. [PMID: 36527196 DOI: 10.1002/eji.202250131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/21/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Several subsets of mononuclear phagocytes and DCs (MDC) populate the small intestine (SI), and these cells reportedly exert specialized functions in anti-microbial immunity and tolerance. Given the specialized phenotype of these cells, differing from other MDC family members, including their putative circulating blood precursors, local intestinal factors play key instructive roles in their differentiation. We designed an SI cell culture model composed of three intestinal epithelial cell (IEC) types, including absorptive enterocytes (E cells), antigen delivering microfold (M) cells, and mucus-producing goblet (G) cells plus T lymphocytes and soluble B cell-derived factors. This model was used to study the differentiation fate of CD34+ hematopoietic progenitor cell-derived monocyte/DC precursors. Progeny cells can be analyzed after a 3-week co-culture period, mimicking the physiologic turn-over time of intestinal MDC. A dominant monocyte differentiation pathway was suppressed, in favor of partial differentiation along DC and macrophage pathways, with low percentages of cells acquired DC or macrophage markers. Moreover, E and G cells play opposing roles in CX3CR1+ vs CD103dim cell differentiation, indicating that both together might counter-balance M/DC differentiation. Thus, SI epithelial cells suppress M/DC differentiation, supporting a key role for exogenous factors in M/DC differentiation.
Collapse
Affiliation(s)
- Christa Schimpel
- Medical University of Graz, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology and Pathophysiology, Graz, Austria
| | - Christina Passegger
- Medical University of Graz, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology and Pathophysiology, Graz, Austria
| | - Simone Egger
- Medical University of Graz, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology and Pathophysiology, Graz, Austria
| | - Carmen Tam-Amersdorfer
- Medical University of Graz, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology and Pathophysiology, Graz, Austria
| | - Herbert Strobl
- Medical University of Graz, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology and Pathophysiology, Graz, Austria
| |
Collapse
|
16
|
Mysore KR, Kannanganat S, Schraw JM, Lupo PJ, Goss JA, Setchell KDR, Kheradmand F, Li XC, Shneider BL. Innate immune cell dysfunction and systemic inflammation in children with chronic liver diseases undergoing transplantation. Am J Transplant 2023; 23:26-36. [PMID: 36695617 DOI: 10.1016/j.ajt.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/19/2022] [Accepted: 09/17/2022] [Indexed: 01/12/2023]
Abstract
Advanced liver diseases (ALD) can affect immune function and compromise host defense against infections. In this study, we examined the phenotypic and functional alterations in circulating monocyte and dendritic cells (DCs) in children with ALD undergoing liver transplantation (LT). Children were stratified into 2 clusters, C1 (mild) and C2 (severe), on the basis of laboratory parameters of ALD and compared with healthy pediatric controls. Children in C2 had a significant reduction in frequencies of nonclassical monocytes and myeloid DCs. Children in C2 displayed monocyte and DC dysfunction, characterized by lower human leucocyte antigen DR expression and reduced interleukin 12 production, and had an increased incidence of infections before and after LT. Children in C2 demonstrated immune dysregulation with elevations of pro- and anti-inflammatory cytokines in plasma. Alterations of innate immune cells correlated with multiple laboratory parameters of ALD, including plasma bile acids. In vitro, monocytes cultured with specific bile acids demonstrated a dose-dependent reduction in interleukin 12 production, similar to alterations in children with ALD. In conclusion, a cohort of children with ALD undergoing LT exhibited innate immune dysfunction, which may be related to the chronic elevation of serum bile acids. Identifying at-risk patients may permit personalized management pre- and post-transplant, thereby reducing the incidence of infection-related complications.
Collapse
Affiliation(s)
- Krupa R Mysore
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; William Shearer Center for Human Immunobiology, Feigin Center, Texas Children's Hospital, Houston, Texas, USA.
| | - Sunil Kannanganat
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; William Shearer Center for Human Immunobiology, Feigin Center, Texas Children's Hospital, Houston, Texas, USA
| | - Jeremy M Schraw
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Department of Pediatrics, Center for Epidemiology and Population Health, Baylor College of Medicine, Houston, Texas, USA
| | - Philip J Lupo
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Department of Pediatrics, Center for Epidemiology and Population Health, Baylor College of Medicine, Houston, Texas, USA
| | - John A Goss
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Kenneth D R Setchell
- Department of Pathology and Laboratory Medicine, Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Farrah Kheradmand
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, Texas, USA
| | - Xian C Li
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Benjamin L Shneider
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
17
|
Liu S, Szatmary P, Lin JW, Wang Q, Sutton R, Chen L, Liu T, Huang W, Xia Q. Circulating monocytes in acute pancreatitis. Front Immunol 2022; 13:1062849. [PMID: 36578487 PMCID: PMC9791207 DOI: 10.3389/fimmu.2022.1062849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Acute pancreatitis is a common gastrointestinal disease characterized by inflammation of the exocrine pancreas and manifesting itself through acute onset of abdominal pain. It is frequently associated with organ failure, pancreatic necrosis, and death. Mounting evidence describes monocytes - phagocytic, antigen presenting, and regulatory cells of the innate immune system - as key contributors and regulators of the inflammatory response and subsequent organ failure in acute pancreatitis. This review highlights the recent advances of dynamic change of numbers, phenotypes, and functions of circulating monocytes as well as their underling regulatory mechanisms with a special focus on the role of lipid modulation during acute pancreatitis.
Collapse
Affiliation(s)
- Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jing-wen Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qiqi Wang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lu Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| |
Collapse
|
18
|
Chen M, Li M, Budai MM, Rice AP, Kimata JT, Mohan M, Wang J. Clearance of HIV-1 or SIV reservoirs by promotion of apoptosis and inhibition of autophagy: Targeting intracellular molecules in cure-directed strategies. J Leukoc Biol 2022; 112:1245-1259. [PMID: 35362118 PMCID: PMC9522917 DOI: 10.1002/jlb.4mr0222-606] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
The reservoirs of the HIV display cellular properties resembling long-lived immune memory cells that could be exploited for viral clearance. Our interest in developing a cure for HIV stems from the studies of immunologic memory against infections. We and others have found that long-lived immune memory cells employ prosurvival autophagy and antiapoptotic mechanisms to protect their longevity. Here, we describe the rationale for the development of an approach to clear HIV-1 by selective elimination of host cells harboring replication-competent HIV (SECH). While reactivation of HIV-1 in the host cells with latency reversing agents (LRAs) induces viral gene expression leading to cell death, LRAs also simultaneously up-regulate prosurvival antiapoptotic molecules and autophagy. Mechanistically, transcription factors that promote HIV-1 LTR-directed gene expression, such as NF-κB, AP-1, and Hif-1α, can also enhance the expression of cellular genes essential for cell survival and metabolic regulation, including Bcl-xL, Mcl-1, and autophagy genes. In the SECH approach, we inhibit the prosurvival antiapoptotic molecules and autophagy induced by LRAs, thereby allowing maximum killing of host cells by the induced HIV-1 proteins. SECH treatments cleared HIV-1 infections in humanized mice in vivo and in HIV-1 patient PBMCs ex vivo. SECH also cleared infections by the SIV in rhesus macaque PBMCs ex vivo. Research efforts are underway to improve the efficacy and safety of SECH and to facilitate the development of SECH as a therapeutic approach for treating people with HIV.
Collapse
Affiliation(s)
- Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Min Li
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
| | - Marietta M. Budai
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
| | - Andrew P. Rice
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jason T. Kimata
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, New York, USA
| |
Collapse
|
19
|
Vakili S, Paneru B, Guerrier CM, Miller J, Baumrin E, Forrestel A, Lynn K, Frank I, Lo Re V, Collman RG, Hill DA. Altered adipose tissue macrophage populations in people with HIV on integrase inhibitor-containing antiretroviral therapy. AIDS 2022; 36:1493-1500. [PMID: 35848549 PMCID: PMC9391287 DOI: 10.1097/qad.0000000000003278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Antiretroviral therapy (ART) extends the life of people with HIV (PWH), but these individuals are at increased risk for obesity, dyslipidemia, diabetes, and cardiovascular disease. These comorbidities may be a consequence of HIV-related chronic inflammation and/or adverse effects of ART on tissue regulatory adipose tissue macrophages (ATMs). We sought to determine the effects of HIV/ART on metabolically beneficial ATM populations and functions. DESIGN We examined subcutaneous ATMs from PWH on integrase inhibitor-containing ART ( n = 5) and uninfected persons ( n = 9). We complemented these studies with ex vivo and in vitro analyses of peripheral blood mononuclear cell (PBMC) and murine macrophage lipid metabolism and fatty acid oxidation gene expression. METHODS ATM populations were examined by flow cytometry. Macrophage lipid metabolism and fatty acid oxidation gene expression were examined by Seahorse assay and quantitative PCR. RESULTS Adipose tissue from PWH had reduced populations of metabolically activated CD9 + ATMs compared to that of uninfected controls ( P < 0.001). PBMCs of PWH had lower fatty acid metabolism compared to those of uninfected controls ( P < 0.01). Analysis of murine macrophages revealed that dolutegravir reduced lipid metabolism ( P < 0.001) and increased expression of the fatty acid beta-oxidation enzyme enoyl-CoA hydratase, short chain 1 ( P < 0.05). CONCLUSIONS We report the loss of metabolically beneficial ATM populations in PWH on ART, altered fatty acid metabolism of blood immune cells, and evidence that dolutegravir alters macrophage fatty acid metabolism. Future studies should examine direct or indirect effects and mechanisms of dolutegravir, and other integrase inhibitors and ART classes, on fatty acid beta-oxidation.
Collapse
Affiliation(s)
- Sarah Vakili
- Division of Allergy and Immunology, Children's Hospital of Philadelphia
| | - Bam Paneru
- Division of Allergy and Immunology, Children's Hospital of Philadelphia
| | | | - Jessica Miller
- Division of Allergy and Immunology, Children's Hospital of Philadelphia
| | - Emily Baumrin
- Department of Dermatology, Perelman School of Medicine
| | - Amy Forrestel
- Department of Dermatology, Perelman School of Medicine
| | - Kenneth Lynn
- Penn Center for AIDS Research, Perelman School of Medicine
| | - Ian Frank
- Penn Center for AIDS Research, Perelman School of Medicine
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine
| | - Vincent Lo Re
- Penn Center for AIDS Research, Perelman School of Medicine
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine
| | - Ronald G. Collman
- Penn Center for AIDS Research, Perelman School of Medicine
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine
| | - David A. Hill
- Division of Allergy and Immunology, Children's Hospital of Philadelphia
- Penn Center for AIDS Research, Perelman School of Medicine
- Department of Pediatrics, Institute for Diabetes, Obesity and Metabolism, and Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Gürbüz M, Aktaç Ş. Understanding the role of vitamin A and its precursors in the immune system. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Reduced Percentage of CD14 dimCD16 +SLAN + Monocytes Producing TNF and IL-12 as an Immunological Sign of CLL Progression. Int J Mol Sci 2022; 23:ijms23063029. [PMID: 35328450 PMCID: PMC8951649 DOI: 10.3390/ijms23063029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 12/07/2022] Open
Abstract
Monocytes are one of the least studied immune cells with a potentially important role in the pathogenesis of chronic lymphocytic leukemia (CLL). Nevertheless, data regarding the role of subpopulations of monocytes in the CLL microenvironment are still limited. For the very first time, this study presents an assessment of monocyte subsets divided according to SLAN and CD16 expression in CLL patients. The study involved 70 freshly diagnosed CLL patients and 35 healthy donors. Using flow cytometry, monocyte subpopulations were assessed among PBMCs. CD14+ monocytes can be divided into: “classical” (CD14+CD16−SLAN−), “intermediate” (CD14+CD16+SLAN−) and “non-classical” (CD14dimCD16+SLAN+). In our study, we noted an increased percentage of non-classical monocytes with intracellular expression of TNF and IL-12. On the other hand, among the intermediate monocytes, a significantly higher percentage of cells synthesizing anti-inflammatory IL-10 was detected. The percentage of CD14dimCD16+SLAN+ monocytes producing TNF and IL-12 decreased with the stage of CLL and inversely correlated with the expression of the prognostic factors ZAP-70 and CD38. Moreover, the percentage of CD14dimCD16+SLAN+ monocytes producing TNF and IL-12 was lower in CLL patients requiring treatment. This may indicate the beneficial effect of non-classical monocytes on the anti-tumor response.
Collapse
|
22
|
Monocyte Gene and Molecular Expression Profiles Suggest Distinct Effector and Regulatory Functions in Beninese HIV Highly Exposed Seronegative Female Commercial Sex Workers. Viruses 2022; 14:v14020361. [PMID: 35215954 PMCID: PMC8878004 DOI: 10.3390/v14020361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 11/22/2022] Open
Abstract
We have previously reported that the female genital tract (FGT) of Beninese HIV highly-exposed seronegative (HESN) commercial sex workers (CSWs), presented elevated frequencies of a myeloid HLA-DR+CD14+CD11c+ population presenting “tolerogenic” monocyte derived dendritic cells (MoDC) features. In order to assess whether a differential profile of monocytes may be involved in the generation of these genital MoDCs, we have herein characterized the blood monocyte compartment of Beninese HESNs (HIV-uninfected ≥ 10 years CSWs) and relevant controls (HIV-uninfected 2.5–5 years CSWs herein termed “early HESNs”), HIV-infected CSWs, and low-risk HIV-uninfected women from the general population. Transcriptomic analyses by RNA-Seq of total sorted blood monocytes demonstrate that in comparison to the control groups, HESNs present increased expression levels of FCGR2C, FCAR, ITGAX, ITGAM, CR2, CD68, and CD163 genes, associated with effector functions. Moreover, we found increased expression levels of genes associated with protection/control against SHIV/HIV such as CCL3, CCL4, CCL5, BHLHE40, and TNFSF13, as well as with immune regulation such as IL-10, Ahr, CD83, and the orphan nuclear receptor (NR)4A1, NR4A2, and NR4A3. Through multicolor flow cytometry analyses, we noticed that the frequencies of intermediate and non-classical monocyte populations tended to be elevated in the blood of HESNs, and exhibited increased expression levels of effector CD16, CD11c, CD11b, as well as regulatory HLA-G, IL-10, and IFN-α markers when compared to HIV-uninfected women and/or HIV-infected CSWs. This profile is compatible with that previously reported in the FGT of HESNs, and likely confers an enormous advantage in their resistance to HIV infection.
Collapse
|
23
|
Lau CY, Adan MA, Maldarelli F. Why the HIV Reservoir Never Runs Dry: Clonal Expansion and the Characteristics of HIV-Infected Cells Challenge Strategies to Cure and Control HIV Infection. Viruses 2021; 13:2512. [PMID: 34960781 PMCID: PMC8708047 DOI: 10.3390/v13122512] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Antiretroviral therapy (ART) effectively reduces cycles of viral replication but does not target proviral populations in cells that persist for prolonged periods and that can undergo clonal expansion. Consequently, chronic human immunodeficiency virus (HIV) infection is sustained during ART by a reservoir of long-lived latently infected cells and their progeny. This proviral landscape undergoes change over time on ART. One of the forces driving change in the landscape is the clonal expansion of infected CD4 T cells, which presents a key obstacle to HIV eradication. Potential mechanisms of clonal expansion include general immune activation, antigenic stimulation, homeostatic proliferation, and provirus-driven clonal expansion, each of which likely contributes in varying, and largely unmeasured, amounts to maintaining the reservoir. The role of clinical events, such as infections or neoplasms, in driving these mechanisms remains uncertain, but characterizing these forces may shed light on approaches to effectively eradicate HIV. A limited number of individuals have been cured of HIV infection in the setting of bone marrow transplant; information from these and other studies may identify the means to eradicate or control the virus without ART. In this review, we describe the mechanisms of HIV-1 persistence and clonal expansion, along with the attempts to modify these factors as part of reservoir reduction and cure strategies.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| | - Matthew A. Adan
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
- Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| |
Collapse
|
24
|
Magg T, Okano T, Koenig LM, Boehmer DFR, Schwartz SL, Inoue K, Heimall J, Licciardi F, Ley-Zaporozhan J, Ferdman RM, Caballero-Oteyza A, Park EN, Calderon BM, Dey D, Kanegane H, Cho K, Montin D, Reiter K, Griese M, Albert MH, Rohlfs M, Gray P, Walz C, Conn GL, Sullivan KE, Klein C, Morio T, Hauck F. Heterozygous OAS1 gain-of-function variants cause an autoinflammatory immunodeficiency. Sci Immunol 2021; 6:eabf9564. [PMID: 34145065 PMCID: PMC8392508 DOI: 10.1126/sciimmunol.abf9564] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
Analysis of autoinflammatory and immunodeficiency disorders elucidates human immunity and fosters the development of targeted therapies. Oligoadenylate synthetase 1 is a type I interferon-induced, intracellular double-stranded RNA (dsRNA) sensor that generates 2'-5'-oligoadenylate to activate ribonuclease L (RNase L) as a means of antiviral defense. We identified four de novo heterozygous OAS1 gain-of-function variants in six patients with a polymorphic autoinflammatory immunodeficiency characterized by recurrent fever, dermatitis, inflammatory bowel disease, pulmonary alveolar proteinosis, and hypogammaglobulinemia. To establish causality, we applied genetic, molecular dynamics simulation, biochemical, and cellular functional analyses in heterologous, autologous, and inducible pluripotent stem cell-derived macrophages and/or monocytes and B cells. We found that upon interferon-induced expression, OAS1 variant proteins displayed dsRNA-independent activity, which resulted in RNase L-mediated RNA cleavage, transcriptomic alteration, translational arrest, and dysfunction and apoptosis of monocytes, macrophages, and B cells. RNase L inhibition with curcumin modulated and allogeneic hematopoietic cell transplantation cured the disorder. Together, these data suggest that human OAS1 is a regulator of interferon-induced hyperinflammatory monocyte, macrophage, and B cell pathophysiology.
Collapse
Affiliation(s)
- Thomas Magg
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Lars M Koenig
- Division of Clinical Pharmacology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel F R Boehmer
- Division of Clinical Pharmacology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Samantha L Schwartz
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | - Kento Inoue
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Jennifer Heimall
- Department of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Francesco Licciardi
- Department of Pediatric and Public Health Sciences, University of Torino, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Julia Ley-Zaporozhan
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ronald M Ferdman
- Division of Clinical Immunology and Allergy, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Andrés Caballero-Oteyza
- Centre for Chronic Immunodeficiency (CCI) and Institute for Immunodeficiency (IFI), University Hospital Freiburg, Freiburg, Germany
| | - Esther N Park
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Brenda M Calderon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazutoshi Cho
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Hokkaido, Japan
| | - Davide Montin
- Department of Pediatric and Public Health Sciences, University of Torino, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Karl Reiter
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias Griese
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Lung Research (DZL), Munich, Germany
| | - Michael H Albert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Meino Rohlfs
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paul Gray
- Department of Immunology and Infectious Disease, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | - Kathleen E Sullivan
- Department of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
- Munich Centre for Rare Diseases (M-ZSE), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
- German Centre for Infection Research (DZIF), Munich, Germany
- Munich Centre for Rare Diseases (M-ZSE), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
25
|
Cattin A, Wacleche VS, Fonseca Do Rosario N, Marchand LR, Dias J, Gosselin A, Cohen EA, Estaquier J, Chomont N, Routy JP, Ancuta P. RALDH Activity Induced by Bacterial/Fungal Pathogens in CD16 + Monocyte-Derived Dendritic Cells Boosts HIV Infection and Outgrowth in CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:2638-2651. [PMID: 34031148 DOI: 10.4049/jimmunol.2001436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
HIV reservoirs persist in gut-homing CD4+ T cells of people living with HIV and receiving antiretroviral therapy, but the antigenic specificity of such reservoirs remains poorly documented. The imprinting for gut homing is mediated by retinoic acid (RA), a vitamin A-derived metabolite produced by dendritic cells (DCs) exhibiting RA-synthesizing (RALDH) activity. RALDH activity in DCs can be induced by TLR2 ligands, such as bacterial peptidoglycans and fungal zymosan. Thus, we hypothesized that bacterial/fungal pathogens triggering RALDH activity in DCs fuel HIV reservoir establishment/outgrowth in pathogen-reactive CD4+ T cells. Our results demonstrate that DCs derived from intermediate/nonclassical CD16+ compared with classical CD16- monocytes exhibited superior RALDH activity and higher capacity to transmit HIV infection to autologous Staphylococcus aureus-reactive T cells. Exposure of total monocyte-derived DCs (MDDCs) to S. aureus lysates as well as TLR2 (zymosan and heat-killed preparation of Listeria monocytogenes) and TLR4 (LPS) agonists but not CMV lysates resulted in a robust upregulation of RALDH activity. MDDCs loaded with S. aureus or zymosan induced the proliferation of T cells with a CCR5+integrin β7+CCR6+ phenotype and efficiently transmitted HIV infection to these T cells via RALDH/RA-dependent mechanisms. Finally, S. aureus- and zymosan-reactive CD4+ T cells of antiretroviral therapy-treated people living with HIV carried replication-competent integrated HIV-DNA, as demonstrated by an MDDC-based viral outgrowth assay. Together, these results support a model in which bacterial/fungal pathogens in the gut promote RALDH activity in MDDCs, especially in CD16+ MDDCs, and subsequently imprint CD4+ T cells with gut-homing potential and HIV permissiveness. Thus, nonviral pathogens play key roles in fueling HIV reservoir establishment/outgrowth via RALDH/RA-dependent mechanisms that may be therapeutically targeted.
Collapse
Affiliation(s)
- Amélie Cattin
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Vanessa Sue Wacleche
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | | | | | - Jonathan Dias
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Annie Gosselin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Eric A Cohen
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada.,Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Jérôme Estaquier
- Université Laval, Quebec City, Quebec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université Laval, Quebec City, Quebec, Canada
| | - Nicolas Chomont
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, Quebec, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada; and.,Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Petronela Ancuta
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; .,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Blondin-Ladrie L, Aranguren M, Doyon-Laliberté K, Poudrier J, Roger M. The Importance of Regulation in Natural Immunity to HIV. Vaccines (Basel) 2021; 9:vaccines9030271. [PMID: 33803543 PMCID: PMC8003059 DOI: 10.3390/vaccines9030271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Worldwide, most Human Immunodeficiency Virus (HIV) infections are acquired through heterosexual intercourse, and in sub-Saharan Africa, 59% of new HIV infections affect women. Vaccines and microbicides hold promise for preventing the acquisition of HIV. To this end, the study of HIV highly exposed seronegative (HESN) female commercial sex workers (CSWs), who constitute a model of natural immunity to HIV, provides an exceptional opportunity to determine important clues for the development of preventive strategies. Studies using both female genital tract (FGT) and peripheral blood samples of HESN CSWs, have allowed identifying distinct features, notably low-inflammatory patterns associated with resistance to infection. How this seemingly regulated response is achieved at the initial site of HIV infection remains unknown. One hypothesis is that populations presenting regulatory profiles contribute to the orchestration of potent anti-viral and low-inflammatory responses at the initial site of HIV transmission. Here, we view to update our knowledge regarding this issue.
Collapse
Affiliation(s)
- Laurence Blondin-Ladrie
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Matheus Aranguren
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Kim Doyon-Laliberté
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Johanne Poudrier
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
- Correspondence: (J.P.); (M.R.)
| | - Michel Roger
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
- Institut National de Santé Publique du Québec, Montréal, QC H2P1E2, Canada
- Correspondence: (J.P.); (M.R.)
| |
Collapse
|
27
|
Baseline monocyte and its classical subtype may predict efficacy of PD-1/PD-L1 inhibitor in cancers. Biosci Rep 2021; 41:227585. [PMID: 33440424 PMCID: PMC7846968 DOI: 10.1042/bsr20202613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Programmed death 1 (PD-1)/ programmed death-ligand 1 (PD-L1) inhibitor is one of the most popular immune therapies. Biomarkers for predicting response are highly needed, but no biomarkers are widely used till now. Patients and methods: From February 2018 to April 2019, pan-cancer patients treated with PD-1 or PD-L1 inhibitor as a single agent in our center were included. The benefit group included patients with partial response, complete response and stable disease, while the patients with progressive disease were classified into the nonbenefit group, according to the RECIST 1.1 criteria. Baseline peripheral blood was sampled to determine absolute monocyte count (AMC) and/or classical monocyte frequency (CMF) of peripheral blood mononuclear cells. Then, the association of the above-mentioned two biomarkers with response or progression-free survival (PFS) was evaluated. Results: In total, 107 patients enrolled in the present study. The nonbenefit group had significantly larger number of AMC than benefit group (P<0.001), and patients with higher AMC had decreased PFS time (P=0.001). Of 39 patients tested for CMF, the nonbenefit group had significantly higher CMF than benefit group (P=0.002), and patients with higher CMF had significantly decreased PFS time (P=0.002). The sensitivity of AMC and CMF was 87.9% and 85.7%, respectively, and the specificity was 44.9% and 61.1%, respectively. Multivariate analysis showed high baseline CMF and AMC were both significantly associated with decreased PFS time. Conclusion: Baseline CMF and baseline AMC can be potential pan-cancer biomarkers to predict efficacy of PD-1/PD-L1 inhibitors, especially in the PD-L1 subgroup.
Collapse
|
28
|
TLR agonists enhance responsiveness of inflammatory innate immune cells in HLA-B*57-positive HIV patients. J Mol Med (Berl) 2020; 99:147-158. [PMID: 33278000 PMCID: PMC7782382 DOI: 10.1007/s00109-020-01996-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Abstract HLA-B*57 affects the course of HIV infection. Under antiretroviral therapy, its effects cannot be explained by outstandingly efficient T cell responses alone but may also involve cells of innate immunity. Studying in vitro stimulation with Pam3CSK4, E. coli LPS-B5 and CpG-ODN-2216, we observed greater induction of IL-6/IL-1beta double-positive CD14+CD16++ monocytes as well as IFN-gamma-positive cytotoxic CD56highCD16neg NK cells in HLA-B*57- versus HLA-B*44-positive HIV patients, while TNF-alpha induction remained unchanged. Differences were not seen in the other monocyte and NK cell subsets or in HLA-matched healthy controls. Our findings show that, in virally suppressed HIV infection, HLA-B*57 is associated with enhanced responsiveness of inflammatory innate immune cells to TLR ligands, possibly contributing to increased vulnerability in sepsis. Key messages • HLA-B*57 is a host factor affecting clinical outcomes of HIV infection. • HLA-B*57 modifies inflammatory subsets of NK cells and monocytes in HIV infection. • In HLA-B*57-positive HIV patients TLR agonists induce enhanced IL-6/IL-1beta in monocytes. • NK cells from HLA-B*57 HIV patients release more IFN-gamma upon TLR costimulation. • HLA-B*57 is linked to enhanced inflammatory responsiveness to TLR ligands. Supplementary Information The online version contains supplementary material available at 10.1007/s00109-020-01996-7.
Collapse
|
29
|
Ex vivo rectal explant model reveals potential opposing roles of Natural Killer cells and Marginal Zone-like B cells in HIV-1 infection. Sci Rep 2020; 10:20154. [PMID: 33214610 PMCID: PMC7677325 DOI: 10.1038/s41598-020-76976-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
Our understanding of innate immune responses in human rectal mucosal tissues (RM) and their contributions to promoting or restricting HIV transmission is limited. We defined the RM composition of innate and innate-like cell subsets, including plasmacytoid dendritic cells; CD1c + myeloid DCs; neutrophils; macrophages; natural killer cells (NK); Marginal Zone-like B cells (MZB); γδ T cells; and mucosal-associated invariant T cells in RM from 69 HIV-negative men by flow cytometry. Associations between these cell subsets and HIV-1 replication in ex vivo RM explant challenge experiments revealed an inverse correlation between RM-NK and p24 production, in contrast to a positive association between RM-MZB and HIV replication. Comparison of RM and blood-derived MZB and NK illustrated qualitative and quantitative differences between tissue compartments. Additionally, 22 soluble molecules were measured in a subset of explant cultures (n = 26). Higher production of IL-17A, IFN-γ, IL-10, IP-10, GM-CSF, sFasL, Granzyme A, Granzyme B, Granulysin, and Perforin following infection positively correlated with HIV replication. These data show novel associations between MZB and NK cells and p24 production in RM and underscore the importance of inflammatory cytokines in mucosal HIV infection, demonstrating the likely critical role these innate immune responses play in early mucosal HIV replication in humans.
Collapse
|
30
|
Mentkowski KI, Euscher LM, Patel A, Alevriadou BR, Lang JK. Monocyte recruitment and fate specification after myocardial infarction. Am J Physiol Cell Physiol 2020; 319:C797-C806. [PMID: 32877204 DOI: 10.1152/ajpcell.00330.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Monocytes are critical mediators of the inflammatory response following myocardial infarction (MI) and ischemia-reperfusion injury. They are involved in both initiation and resolution of inflammation and play an integral role in cardiac repair. The antagonistic nature of their function is dependent on their subset heterogeneity and biphasic response following injury. New advancements in single-cell transcriptomics and mass cytometry have allowed us to identify smaller, transcriptionally distinct clusters that may have functional relevance in disease and homeostasis. Additionally, recent insights into the spatiotemporal dynamics of monocytes following ischemic injury and their subsequent interactions with the endothelium and other immune cells reveal a complex interplay between monocytes and the cardiac milieu. In this review, we highlight recent findings on monocyte functional heterogeneity, present new mechanistic insight into monocyte recruitment and fate specification following MI, and discuss promising therapeutic avenues targeting monocytes for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Kyle I Mentkowski
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York.,Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| | - Lindsey M Euscher
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York.,Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York
| | - Akshar Patel
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| | - B Rita Alevriadou
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| | - Jennifer K Lang
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York.,Department of Biomedical Engineering, University at Buffalo, Buffalo, New York.,Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York.,Veterans Affairs Western New York Healthcare System, Buffalo, New York
| |
Collapse
|
31
|
Gea-Mallorquí E, Zablocki-Thomas L, Maurin M, Jouve M, Rodrigues V, Ruffin N, Benaroch P. HIV-2-Infected Macrophages Produce and Accumulate Poorly Infectious Viral Particles. Front Microbiol 2020; 11:1603. [PMID: 32754142 PMCID: PMC7365954 DOI: 10.3389/fmicb.2020.01603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
A significant proportion of HIV-2-infected patients exhibit natural virological control that is generally absent from HIV-1-infected patients. Along with CD4+ T cells, HIV-1 targets macrophages which may contribute to viral spreading and the latent reservoir. We have studied the relationship between macrophages and HIV-2, focusing on post-entry steps. HIV-2-infected monocyte-derived macrophages (MDMs) produced substantial amounts of viral particles that were largely harbored intracellularly. New viruses assembled at the limiting membrane of internal compartments similar to virus-containing compartments (VCCs) described for HIV-1. VCCs from MDMs infected with either virus shared protein composition and morphology. Strikingly, HIV-2 Gag was mostly absent from the cytosol and almost exclusively localized to the VCCs, whereas HIV-1 Gag was distributed in both locations. Ultrastructural analyses of HIV-2-infected MDMs revealed the presence of numerous VCCs containing both immature and mature particles in the lumen. HIV-2 particles produced de novo by MDMs were poorly infectious in reporter cells and in transmission to activated T cells through a process that appeared independent of BST2 restriction. Rather than being involved in viral spreading, HIV-2-infected macrophages may represent a cell-associated source of viral antigens that can participate in the immune control of HIV-2 infection.
Collapse
Affiliation(s)
| | | | - Mathieu Maurin
- Institut Curie, PSL∗ Research University, INSERM U932, Paris, France
| | - Mabel Jouve
- Institut Curie, PSL∗ Research University, UMR3216, Paris, France
| | - Vasco Rodrigues
- Institut Curie, PSL∗ Research University, INSERM U932, Paris, France
| | - Nicolas Ruffin
- Institut Curie, PSL∗ Research University, INSERM U932, Paris, France
| | - Philippe Benaroch
- Institut Curie, PSL∗ Research University, INSERM U932, Paris, France
| |
Collapse
|
32
|
Barone M, Catani L, Ricci F, Romano M, Forte D, Auteri G, Bartoletti D, Ottaviani E, Tazzari PL, Vianelli N, Cavo M, Palandri F. The role of circulating monocytes and JAK inhibition in the infectious-driven inflammatory response of myelofibrosis. Oncoimmunology 2020; 9:1782575. [PMID: 32923146 PMCID: PMC7458658 DOI: 10.1080/2162402x.2020.1782575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Myelofibrosis (MF) is characterized by chronic inflammation and hyper-activation of the JAK-STAT pathway. Infections are one of the main causes of morbidity/mortality. Therapy with Ruxolitinib (RUX), a JAK1/2 inhibitor, may further increase the infectious risk. Monocytes are critical players in inflammation/immunity through cytokine production and release of bioactive extracellular vesicles. However, the functional behavior of MF monocytes, particularly during RUX therapy, is still unclear. In this study, we found that monocytes from JAK2V617F-mutated MF patients show an altered expression of chemokine (CCR2, CXCR3, CCR5) and cytokine (TNF-α-R, IL10-R, IL1β-R, IL6-R) receptors. Furthermore, their ability to produce and secrete free and extracellular vesicles-linked cytokines (IL1β, TNF-α, IL6, IL10) under lipopolysaccharides (LPS) stimulation is severely impaired. Interestingly, monocytes from RUX-treated patients show normal level of chemokine, IL10, IL1β, and IL6 receptors together with a restored ability to produce intracellular and to secrete extracellular vesicles-linked cytokines after LPS stimulation. Conversely, RUX therapy does not normalize TNF-R1/2 receptors expression and the LPS-driven secretion of free pro/anti-inflammatory cytokines. Accordingly, upon LPS stimulation, in vitro RUX treatment of monocytes from MF patients increases their secretion of extracellular vesicles-linked cytokines but inhibits the secretion of free pro/anti-inflammatory cytokines. In conclusion, we demonstrated that in MF the infection-driven response of circulating monocytes is defective. Importantly, RUX promotes their infection-driven cytokine production suggesting that infections following RUX therapy may not be due to monocyte failure. These findings contribute to better interpreting the immune vulnerability of MF and to envisaging strategies to improve the infection-driven immune response.
Collapse
Affiliation(s)
- Martina Barone
- Department of Experimental, Institute of Hematology "L. E A. "Seràgnoli", Diagnostic and Specialty Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Lucia Catani
- Department of Experimental, Institute of Hematology "L. E A. "Seràgnoli", Diagnostic and Specialty Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Ricci
- Immunohematology and Blood Bank, Azienda Ospedaliero-Universitaria S. Orsola-Malpighi di Bologna, Bologna, Italy
| | - Marco Romano
- School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Dorian Forte
- Department of Experimental, Institute of Hematology "L. E A. "Seràgnoli", Diagnostic and Specialty Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giuseppe Auteri
- Department of Experimental, Institute of Hematology "L. E A. "Seràgnoli", Diagnostic and Specialty Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniela Bartoletti
- Department of Experimental, Institute of Hematology "L. E A. "Seràgnoli", Diagnostic and Specialty Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Emanuela Ottaviani
- Department of Experimental, Institute of Hematology "L. E A. "Seràgnoli", Diagnostic and Specialty Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pier Luigi Tazzari
- Immunohematology and Blood Bank, Azienda Ospedaliero-Universitaria S. Orsola-Malpighi di Bologna, Bologna, Italy
| | - Nicola Vianelli
- Department of Experimental, Institute of Hematology "L. E A. "Seràgnoli", Diagnostic and Specialty Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michele Cavo
- Department of Experimental, Institute of Hematology "L. E A. "Seràgnoli", Diagnostic and Specialty Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Palandri
- Department of Experimental, Institute of Hematology "L. E A. "Seràgnoli", Diagnostic and Specialty Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
33
|
Kulkarni R, Jiang S, Birrane G, Prasad A. Lymphocyte-specific protein 1 (LSP1) regulates bone marrow stromal cell antigen 2 (BST-2)-mediated intracellular trafficking of HIV-1 in dendritic cells. FEBS Lett 2020; 594:1947-1959. [PMID: 32279313 DOI: 10.1002/1873-3468.13788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) subverts intracellular trafficking pathways to avoid its degradation and elimination, thereby enhancing its survival and spread. The molecular mechanisms involved in intracellular transport of HIV-1 are not yet fully defined. We demonstrate that the actin-binding protein lymphocyte-specific protein 1 (LSP1) interacts with the interferon-inducible protein bone marrow stromal antigen 2 (BST-2) in dendritic cells (DCs) to facilitate both endocytosis of surface-bound HIV-1 and the formation of early endosomes. Analysis of the molecular interaction between LSP1 and BST-2 reveals that the N terminus of LSP1 interacts with BST-2. Overall, we identify a novel mechanism of intracellular trafficking of HIV-1 in DCs centering on the LSP1/BST-2 complex. We also show that the HIV-1 accessory protein Vpu subverts this pathway by inducing proteasomal degradation of LSP1, augmenting cell-cell transmission of HIV-1.
Collapse
Affiliation(s)
- Rutuja Kulkarni
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shuxian Jiang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Haque S, Kodidela S, Gerth K, Hatami E, Verma N, Kumar S. Extracellular Vesicles in Smoking-Mediated HIV Pathogenesis and their Potential Role in Biomarker Discovery and Therapeutic Interventions. Cells 2020; 9:cells9040864. [PMID: 32252352 PMCID: PMC7226815 DOI: 10.3390/cells9040864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
In the last two decades, the mortality rate in people living with HIV/AIDS (PLWHA) has decreased significantly, resulting in an almost normal longevity in this population. However, a large portion of this population still endures a poor quality of life, mostly due to an increased inclination for substance abuse, including tobacco smoking. The prevalence of smoking in PLWHA is consistently higher than in HIV negative persons. A predisposition to cigarette smoking in the setting of HIV potentially leads to exacerbated HIV replication and a higher risk for developing neurocognitive and other CNS disorders. Oxidative stress and inflammation have been identified as mechanistic pathways in smoking-mediated HIV pathogenesis and HIV-associated neuropathogenesis. Extracellular vesicles (EVs), packaged with oxidative stress and inflammatory agents, show promise in understanding the underlying mechanisms of smoking-induced HIV pathogenesis via cell-cell interactions. This review focuses on recent advances in the field of EVs with an emphasis on smoking-mediated HIV pathogenesis and HIV-associated neuropathogenesis. This review also provides an overview of the potential applications of EVs in developing novel therapeutic carriers for the treatment of HIV-infected individuals who smoke, and in the discovery of novel biomarkers that are associated with HIV-smoking interactions in the CNS.
Collapse
|
35
|
Plaisance-Bonstaff K, Faia C, Wyczechowska D, Jeansonne D, Vittori C, Peruzzi F. Isolation, Transfection, and Culture of Primary Human Monocytes. J Vis Exp 2019. [PMID: 31885371 DOI: 10.3791/59967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human immunodeficiency virus (HIV) remains a major health concern despite the introduction of combined antiretroviral therapy (cART) in the mid-1990s. While antiretroviral therapy efficiently lowers systemic viral load and restores normal CD4+ T cell counts, it does not reconstitute a completely functional immune system. A dysfunctional immune system in HIV-infected individuals undergoing cART may be characterized by immune activation, early aging of immune cells, or persistent inflammation. These conditions, along with comorbid factors associated with HIV infection, add complexity to the disease, which cannot be easily reproduced in cellular and animal models. To investigate the molecular events underlying immune dysfunction in these patients, a system to culture and manipulate human primary monocytes in vitro is presented here. Specifically, the protocol allows for the culture and transfection of primary CD14+ monocytes obtained from HIV-infected individuals undergoing cART as well as from HIV-negative controls. The method involves isolation, culture, and transfection of monocytes and monocyte-derived macrophages. While commercially available kits and reagents are employed, the protocol provides important tips and optimized conditions for successful adherence and transfection of monocytes with miRNA mimics and inhibitors as well as with siRNAs.
Collapse
Affiliation(s)
- Karlie Plaisance-Bonstaff
- Department of Medicine, Louisiana State University Health Sciences Center; Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center;
| | - Celeste Faia
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center
| | | | - Duane Jeansonne
- Department of Medicine, Louisiana State University Health Sciences Center
| | - Cecilia Vittori
- Department of Medicine, Louisiana State University Health Sciences Center; Department of Biomedical and Clinical Sciences L. Sacco, University of Milan
| | - Francesca Peruzzi
- Department of Medicine, Louisiana State University Health Sciences Center; Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center;
| |
Collapse
|
36
|
Abstract
Antiretroviral therapy has largely transformed HIV infection into a chronic disease condition. As such, physicians and other providers caring for individuals living with HIV infection need to be aware of the potential cardiovascular complications of HIV infection and the nuances of how HIV infection increases the risk of cardiovascular diseases, including acute myocardial infarction, stroke, peripheral artery disease, heart failure and sudden cardiac death, as well as how to select available therapies to reduce this risk. In this Review, we discuss the epidemiology and clinical features of cardiovascular disease, with a focus on coronary heart disease, in the setting of HIV infection, which includes a substantially increased risk of myocardial infarction even when the HIV infection is well controlled. We also discuss the mechanisms underlying HIV-associated atherosclerotic cardiovascular disease, such as the high rates of traditional cardiovascular risk factors in patients with HIV infection and HIV-related factors, including the use of antiretroviral therapy and chronic inflammation in the setting of effectively treated HIV infection. Finally, we highlight available therapeutic strategies, as well as approaches under investigation, to reduce the risk of cardiovascular disease and lower inflammation in patients with HIV infection.
Collapse
Affiliation(s)
- Priscilla Y Hsue
- University of California-San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA.
| | - David D Waters
- University of California-San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| |
Collapse
|
37
|
CD16 + monocytes give rise to CD103 +RALDH2 +TCF4 + dendritic cells with unique transcriptional and immunological features. Blood Adv 2019; 2:2862-2878. [PMID: 30381402 DOI: 10.1182/bloodadvances.2018020123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/03/2018] [Indexed: 12/23/2022] Open
Abstract
Classical CD16- vs intermediate/nonclassical CD16+ monocytes differ in their homing potential and biological functions, but whether they differentiate into dendritic cells (DCs) with distinct contributions to immunity against bacterial/viral pathogens remains poorly investigated. Here, we employed a systems biology approach to identify clinically relevant differences between CD16+ and CD16- monocyte-derived DCs (MDDCs). Although both CD16+ and CD16- MDDCs acquire classical immature/mature DC markers in vitro, genome-wide transcriptional profiling revealed unique molecular signatures for CD16+ MDDCs, including adhesion molecules (ITGAE/CD103), transcription factors (TCF7L2/TCF4), and enzymes (ALDH1A2/RALDH2), whereas CD16- MDDCs exhibit a CDH1/E-cadherin+ phenotype. Of note, lipopolysaccharides (LPS) upregulated distinct transcripts in CD16+ (eg, CCL8, SIGLEC1, MIR4439, SCIN, interleukin [IL]-7R, PLTP, tumor necrosis factor [TNF]) and CD16- MDDCs (eg, MMP10, MMP1, TGM2, IL-1A, TNFRSF11A, lysosomal-associated membrane protein 1, MMP8). Also, unique sets of HIV-modulated genes were identified in the 2 subsets. Further gene set enrichment analysis identified canonical pathways that pointed to "inflammation" as the major feature of CD16+ MDDCs at immature stage and on LPS/HIV exposure. Finally, functional validations and meta-analysis comparing the transcriptome of monocyte and MDDC subsets revealed that CD16+ vs CD16- monocytes preserved their superior ability to produce TNF-α and CCL22, as well as other sets of transcripts (eg, TCF4), during differentiation into DC. These results provide evidence that monocyte subsets are transcriptionally imprinted/programmed with specific differentiation fates, with intermediate/nonclassical CD16+ monocytes being precursors for pro-inflammatory CD103+RALDH2+TCF4+ DCs that may play key roles in mucosal immunity homeostasis/pathogenesis. Thus, alterations in the CD16+ /CD16- monocyte ratios during pathological conditions may dramatically influence the quality of MDDC-mediated immunity.
Collapse
|
38
|
Srivorakul S, Guntawang T, Kochagul V, Photichai K, Sittisak T, Janyamethakul T, Boonprasert K, Khammesri S, Langkaphin W, Punyapornwithaya V, Chuammitri P, Thitaram C, Pringproa K. Possible roles of monocytes/macrophages in response to elephant endotheliotropic herpesvirus (EEHV) infections in Asian elephants (Elephas maximus). PLoS One 2019; 14:e0222158. [PMID: 31491031 PMCID: PMC6730851 DOI: 10.1371/journal.pone.0222158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Elephant endotheliotropic herpesvirus-hemorrhagic disease (EEHV-HD) is the primary cause of acute, highly fatal, hemorrhagic diseases in young Asian elephants. Although monocytopenia is frequently observed in EEHV-HD cases, the role monocytes play in EEHV-disease pathogenesis is unknown. This study seeks to explain the responses of monocytes/macrophages in the pathogenesis of EEHV-HD. Samples of blood, frozen tissues, and formalin-fixed, paraffin-embedded (FFPE) tissues from EEHV1A-HD, EEHV4-HD, co-infected EEHV1A and 4-HD, and EEHV-negative calves were analyzed. Peripheral blood mononuclear cells (PBMCs) from the persistent EEHV4-infected and EEHV-negative calves were also studied. The results showed increased infiltration of Iba-1-positive macrophages in the inflamed tissues of the internal organs of elephant calves with EEHV-HD. In addition, cellular apoptosis also increased in the tissues of elephants with EEHV-HD, especially in the PBMCs, compared to the EEHV-negative control. In the PBMCs of persistent EEHV4-infected elephants, cytokine mRNA expression was high, particularly up-regulation of TNF-α and IFN-γ. Moreover, viral particles were observed in the cytoplasm of the persistent EEHV4-infected elephant monocytes. Our study demonstrated for the first time that apoptosis of the PBMCs increased in cases of EEHV-HD. Furthermore, this study showed that monocytes may serve as a vehicle for viral dissemination during EEHV infection in Asian elephants.
Collapse
Affiliation(s)
- Saralee Srivorakul
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thunyamas Guntawang
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Varankpicha Kochagul
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kornravee Photichai
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Tidaratt Sittisak
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Khajohnpat Boonprasert
- Center of Excellence in Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Veerasak Punyapornwithaya
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phongsakorn Chuammitri
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchote Thitaram
- Center of Excellence in Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Companion Animals and Wildlife Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
39
|
Cattin A, Wiche Salinas TR, Gosselin A, Planas D, Shacklett B, Cohen EA, Ghali MP, Routy JP, Ancuta P. HIV-1 is rarely detected in blood and colon myeloid cells during viral-suppressive antiretroviral therapy. AIDS 2019; 33:1293-1306. [PMID: 30870200 PMCID: PMC6686847 DOI: 10.1097/qad.0000000000002195] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aim of this study was to explore the contribution of blood and colon myeloid cells to HIV persistence during antiretroviral therapy (ART). DESIGN Leukapheresis was collected from HIV-infected individuals with undetectable plasma viral load during ART (HIV + ART; n = 15) and viremics untreated (HIV+; n = 6). Rectal sigmoid biopsies were collected from n = 8 HIV+ART. METHODS Myeloid cells (total monocytes (Mo), CD16/CD16 Mo, CD1c dendritic cells) and CD4 T cells were isolated by magnetic-activated cell sorting (MACS) and/or fluorescence-activated cell sorting (FACS) from peripheral blood. Matched myeloid and CCR6CD4 T cells were isolated from blood and rectal biopsies by FACS. Levels of early (RU5 primers), late (Gag primers) and/or integrated HIV-DNA (Alu/HIV primers) were quantified by nested real-time PCR. Replication-competent HIV was amplified by co-culturing cells from HIV-positive individuals with CD3/CD28-activated CD4 T cells from uninfected donors. RESULTS Early/late but not integrated HIV reverse transcripts were detected in blood myeloid subsets of four out of 10 HIV+ART; in contrast, integrated HIV-DNA was exclusively detected in CD4 T cells. In rectal biopsies, late HIV reverse transcripts were detected in myeloid cells and CCR6CD4 T cells from one out of eight and seven out of eight HIV+ART individuals, respectively. Replication-competent HIV was outgrown from CD4 T cells but not from myeloid of untreated/ART-treated HIV-positive individuals. CONCLUSION In contrast to CD4 T cells, blood and colon myeloid cells carry detectable HIV only in a small fraction of HIV+ART individuals. This is consistent with the documented resistance of Mo to HIV infection and the rapid turnover of Mo-derived macrophages in the colon. Future assessment of multiple lymphoid and nonlymphoid tissues is required to include/exclude myeloid cells as relevant HIV reservoirs during ART.
Collapse
Affiliation(s)
- Amélie Cattin
- CHUM-Research Centre, Montréal, Qc, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
| | - Tomas Raul Wiche Salinas
- CHUM-Research Centre, Montréal, Qc, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
| | | | - Delphine Planas
- CHUM-Research Centre, Montréal, Qc, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
| | | | - Eric A. Cohen
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
- Institut de Recherche Clinique de Montréal, Montréal, Qc, Canada
| | - Maged P. Ghali
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, Canada
| | - Jean-Pierre Routy
- Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service and Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Petronela Ancuta
- CHUM-Research Centre, Montréal, Qc, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
| |
Collapse
|
40
|
Derakhshani S, Kurz A, Japtok L, Schumacher F, Pilgram L, Steinke M, Kleuser B, Sauer M, Schneider-Schaulies S, Avota E. Measles Virus Infection Fosters Dendritic Cell Motility in a 3D Environment to Enhance Transmission to Target Cells in the Respiratory Epithelium. Front Immunol 2019; 10:1294. [PMID: 31231395 PMCID: PMC6560165 DOI: 10.3389/fimmu.2019.01294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/21/2019] [Indexed: 12/16/2022] Open
Abstract
Transmission of measles virus (MV) from dendritic to airway epithelial cells is considered as crucial to viral spread late in infection. Therefore, pathways and effectors governing this process are promising targets for intervention. To identify these, we established a 3D respiratory tract model where MV transmission by infected dendritic cells (DCs) relied on the presence of nectin-4 on H358 lung epithelial cells. Access to recipient cells is an important prerequisite for transmission, and we therefore analyzed migration of MV-exposed DC cultures within the model. Surprisingly, enhanced motility toward the epithelial layer was observed for MV-infected DCs as compared to their uninfected siblings. This occurred independently of factors released from H358 cells indicating that MV infection triggered cytoskeletal remodeling associated with DC polarization enforced velocity. Accordingly, the latter was also observed for MV-infected DCs in collagen matrices and was particularly sensitive to ROCK inhibition indicating infected DCs preferentially employed the amoeboid migration mode. This was also implicated by loss of podosomes and reduced filopodial activity both of which were retained in MV-exposed uninfected DCs. Evidently, sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) as produced in response to virus-infection in DCs contributed to enhanced velocity because this was abrogated upon inhibition of sphingosine kinase activity. These findings indicate that MV infection promotes a push-and-squeeze fast amoeboid migration mode via the SphK/S1P system characterized by loss of filopodia and podosome dissolution. Consequently, this enables rapid trafficking of virus toward epithelial cells during viral exit.
Collapse
Affiliation(s)
| | - Andreas Kurz
- Department for Biotechnology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Lukasz Japtok
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Fabian Schumacher
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Lisa Pilgram
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Maria Steinke
- Fraunhofer Institute for Silicate Research ISC, Chair of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Markus Sauer
- Department for Biotechnology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | | | - Elita Avota
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
41
|
Ikeda T, Molan AM, Jarvis MC, Carpenter MA, Salamango DJ, Brown WL, Harris RS. HIV-1 restriction by endogenous APOBEC3G in the myeloid cell line THP-1. J Gen Virol 2019; 100:1140-1152. [PMID: 31145054 DOI: 10.1099/jgv.0.001276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
HIV-1 replication in CD4-positive T lymphocytes requires counteraction of multiple different innate antiviral mechanisms. Macrophage cells are also thought to provide a reservoir for HIV-1 replication but less is known in this cell type about virus restriction and counteraction mechanisms. Many studies have combined to demonstrate roles for APOBEC3D, APOBEC3F, APOBEC3G and APOBEC3H in HIV-1 restriction and mutation in CD4-positive T lymphocytes, whereas the APOBEC enzymes involved in HIV-1 restriction in macrophages have yet to be delineated fully. We show that multiple APOBEC3 genes including APOBEC3G are expressed in myeloid cell lines such as THP-1. Vif-deficient HIV-1 produced from THP-1 is less infectious than Vif-proficient virus, and proviral DNA resulting from such Vif-deficient infections shows strong G to A mutation biases in the dinucleotide motif preferred by APOBEC3G. Moreover, Vif mutant viruses with selective sensitivity to APOBEC3G show Vif null-like infectivity levels and similarly strong APOBEC3G-biased mutation spectra. Importantly, APOBEC3G-null THP-1 cells yield Vif-deficient particles with significantly improved infectivities and proviral DNA with background levels of G to A hypermutation. These studies combine to indicate that APOBEC3G is the main HIV-1 restricting APOBEC3 family member in THP-1 cells.
Collapse
Affiliation(s)
- Terumasa Ikeda
- 2 Institute for Molecular Virology, Minneapolis, MN 55455, USA.,3 Center for Genome Engineering, Minneapolis, MN 55455, USA.,5 Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA.,1 Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA.,4 Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amy M Molan
- 4 Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,2 Institute for Molecular Virology, Minneapolis, MN 55455, USA.,3 Center for Genome Engineering, Minneapolis, MN 55455, USA.,1 Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA
| | - Matthew C Jarvis
- 3 Center for Genome Engineering, Minneapolis, MN 55455, USA.,1 Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA.,4 Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,2 Institute for Molecular Virology, Minneapolis, MN 55455, USA
| | - Michael A Carpenter
- 3 Center for Genome Engineering, Minneapolis, MN 55455, USA.,1 Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA.,4 Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,2 Institute for Molecular Virology, Minneapolis, MN 55455, USA.,5 Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel J Salamango
- 1 Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA.,4 Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,2 Institute for Molecular Virology, Minneapolis, MN 55455, USA.,3 Center for Genome Engineering, Minneapolis, MN 55455, USA
| | - William L Brown
- 4 Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,3 Center for Genome Engineering, Minneapolis, MN 55455, USA.,2 Institute for Molecular Virology, Minneapolis, MN 55455, USA.,1 Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA
| | - Reuben S Harris
- 3 Center for Genome Engineering, Minneapolis, MN 55455, USA.,1 Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA.,4 Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,2 Institute for Molecular Virology, Minneapolis, MN 55455, USA.,5 Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
42
|
Guo N, Liu L, Yang X, Song T, Li G, Li L, Jiang T, Gao Y, Zhang T, Su B, Wu H. Immunological Changes in Monocyte Subsets and Their Association With Foxp3 + Regulatory T Cells in HIV-1-Infected Individuals With Syphilis: A Brief Research Report. Front Immunol 2019; 10:714. [PMID: 31024549 PMCID: PMC6465566 DOI: 10.3389/fimmu.2019.00714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
The incidence of syphilis has increased dramatically in men who have sex with men (MSM), especially those with HIV-1 infection. Treponema pallidum and HIV-1 are bidirectionally synergistic, accelerating disease progression reciprocally in co-infected individuals. We have shown that monocytes have different effects on T helper cells at different stages of HIV-1 infection. However, the immunological changes in the three monocyte subsets and in regulatory T cells (Tregs), and the associations between these cell types during syphilis infection among HIV-1-infected MSM remain unclear. Herein, we used cell staining methods to explore changes in monocyte subsets and Tregs and any associations between these cells. We found that the frequency of classical monocytes was higher in the rapid plasma reagin (RPR+) group than in the healthy controls (HCs) and the chronic HIV-1 infection (CHI) plus RPR+ (CHI&RPR+) group. The frequencies of Foxp3+CD25+CD45RA+ and Foxp3+Helios+CD45RA+ Tregs were significantly higher in the RPR+, CHI, and CHI&RPR+ groups than in HCs, whereas the frequency of CD45RA+ Tregs was lower in the CHI&RPR+ group than in CHI group. The frequencies of Foxp3+CD25+CD45RO+ and Foxp3+Helios+CD45RO+ Tregs were lower in the RPR+, CHI, and CHI&RPR+ groups than in HCs. The frequency of intermediate monocytes was inversely correlated with the frequency of CD45RA+ Tregs and positively correlated with the frequency of CD45RO+ Tregs. These results demonstrate for the first time that intermediate monocytes control the differentiation of Treg subsets in Treponema pallidum/HIV-1 co-infections. These findings provide new insights into an immunological mechanism involving monocytes/Tregs in HIV-infected individuals with syphilis.
Collapse
Affiliation(s)
- Na Guo
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Lifeng Liu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Xiaodong Yang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Ting Song
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Guanxin Li
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Li Li
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Taiyi Jiang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Yanqing Gao
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| |
Collapse
|
43
|
Licciardi PV, Tan EL, Li P, Ng OT. Pneumococcal vaccination for HIV-infected individuals in Singapore. PROCEEDINGS OF SINGAPORE HEALTHCARE 2019. [DOI: 10.1177/2010105818773773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Susceptibility to infections with pneumococcal bacteria ( Streptococcus pneumoniae) is substantially higher among human immunodeficiency virus (HIV)-infected individuals, and accounts for a significant burden of morbidity and healthcare costs. Pneumococcal vaccination is recommended in most countries for HIV-infected adults. Current policy in Singapore and Australia recommends the use of the 23-valent pneumococcal polysaccharide vaccine (PPSV23) as a booster dose following the use of 13-valent pneumococcal conjugate vaccine (PCV13). Despite this, adherence to this policy has been suboptimal in Singapore. This may be related to the fact that PPSV23 has not been shown to have any impact on pneumococcal carriage (the necessary prerequisite for disease development). PPSV23 has also been associated with immune hyporesponsiveness, raising concerns over the use of this vaccine globally and, in particular, in high-risk populations. The lack of data from studies comparing PCV13 and PPSV23 has also contributed to the suboptimal uptake of pneumococcal vaccines by healthcare professionals for HIV-infected individuals. This review article discusses the key issues and importance of rigorous pneumococcal vaccination programmes for HIV-infected individuals. Current recommendations for pneumococcal vaccination of HIV-infected individuals in Singapore should be adopted more readily to reduce the burden of pneumococcal disease in this high-risk group.
Collapse
Affiliation(s)
- Paul V Licciardi
- Pneumococcal Research Group, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Australia
| | - Eng Lee Tan
- Centre for Biomedical & Life Sciences, Singapore Polytechnic, Singapore
- Department of Paediatrics, University Children’s Medical Institute, National University Hospital, Singapore
| | - Peng Li
- Centre for Biomedical & Life Sciences, Singapore Polytechnic, Singapore
| | - Oon Tek Ng
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
44
|
Lhuillier C, Galluzzi L. Preface: Dendritic cells: Master regulators of innate and adaptive immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:xi-xvi. [PMID: 31759435 DOI: 10.1016/s1937-6448(19)30114-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Claire Lhuillier
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Department of Dermatology, Yale School of Medicine, New Haven, CT, United States; Université de Paris, Paris, France.
| |
Collapse
|
45
|
Lhuillier C, Galluzzi L. Preface-Dendritic cells: Master regulators of innate and adaptive immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:ix-xiv. [PMID: 31810557 DOI: 10.1016/s1937-6448(19)30095-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Claire Lhuillier
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Department of Dermatology, Yale School of Medicine, New Haven, CT, United States; Université Paris Descartes, Paris, France.
| |
Collapse
|
46
|
García-Culebras A, Durán-Laforet V, Peña-Martínez C, Ballesteros I, Pradillo JM, Díaz-Guzmán J, Lizasoain I, Moro MA. Myeloid cells as therapeutic targets in neuroinflammation after stroke: Specific roles of neutrophils and neutrophil-platelet interactions. J Cereb Blood Flow Metab 2018; 38:2150-2164. [PMID: 30129391 PMCID: PMC6282223 DOI: 10.1177/0271678x18795789] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ischemic brain injury causes a local inflammatory response, involving the activation of resident brain cells such as microglia and the recruitment of infiltrating immune cells. Increasing evidence supports that plasticity of the myeloid cell lineage is determinant for the specific role of these cells on stroke outcome, from initiation and maintenance to resolution of post-ischemic inflammation. The aim of this review is to summarize some of the key characteristics of these cells and the mechanisms for their recruitment into the injured brain through interactions with platelets, endothelial cells and other leukocytes. Also, we discuss the existence of different leukocyte subsets in the ischemic tissue and, specifically, the impact of different myeloid phenotypes on stroke outcome, with special emphasis on neutrophils and their interplay with platelets. Knowledge of these cellular phenotypes and interactions may pave the way to new therapies able to promote protective immune responses and tissue repair after cerebral ischemia.
Collapse
Affiliation(s)
- Alicia García-Culebras
- 1 Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain.,2 Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,3 Instituto Universitario de Investigación en Neuroquímica (IUIN), UCM, Madrid, Spain
| | - Violeta Durán-Laforet
- 1 Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain.,2 Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,3 Instituto Universitario de Investigación en Neuroquímica (IUIN), UCM, Madrid, Spain
| | - Carolina Peña-Martínez
- 1 Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain.,2 Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,3 Instituto Universitario de Investigación en Neuroquímica (IUIN), UCM, Madrid, Spain
| | - Iván Ballesteros
- 4 Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús M Pradillo
- 1 Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain.,2 Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,3 Instituto Universitario de Investigación en Neuroquímica (IUIN), UCM, Madrid, Spain
| | - Jaime Díaz-Guzmán
- 2 Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,5 Servicio de Neurología, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Ignacio Lizasoain
- 1 Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain.,2 Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,3 Instituto Universitario de Investigación en Neuroquímica (IUIN), UCM, Madrid, Spain
| | - María A Moro
- 1 Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain.,2 Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,3 Instituto Universitario de Investigación en Neuroquímica (IUIN), UCM, Madrid, Spain
| |
Collapse
|
47
|
Paquin-Proulx D, Greenspun BC, Kitchen SM, Saraiva Raposo RA, Nixon DF, Grayfer L. Human interleukin-34-derived macrophages have increased resistance to HIV-1 infection. Cytokine 2018; 111:272-277. [PMID: 30241016 DOI: 10.1016/j.cyto.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
The establishment of latent HIV-1 reservoirs in terminally differentiated cells represents a major impediment to the success of antiretroviral therapies. Notably, macrophages (Mϕs) are susceptible to HIV-1 infection and recent evidence suggests that they may be involved in long-term HIV-1 persistence. While the extensive functional heterogeneity seen across the Mϕ cell lineage parallels the spectrum of HIV-1 susceptibility reported across these cell subsets, the facets of Mϕ HIV-1 resistance and susceptibility remain to be fully defined. Notably, the differentiation of most Mϕ subsets depends on signaling through the macrophage colony-stimulating factor receptor (M-CSFR), which in addition to M-CSF, is now known to bind the unrelated interleukin-34 (IL-34) cytokine. The biological need for two M-CSFR ligands awaits full elucidation. Here, we report that Mϕs differentiated from human peripheral blood monocytes with IL-34 are substantially more resistant to HIV-1 infection than M-CSF-derived Mϕs. Moreover, while both Mϕ subsets express comparable surface protein levels of the HIV-1 receptor and co-receptor, CD4 and CCR5 respectively, the IL-34-Mϕs express significantly greater levels of pertinent restriction factor genes, potentially accounting for their greater resistance to HIV-1 infection than that observed in M-CSF-Mϕs. Together, our findings underline previously unexplored differentiation pathways resulting in HIV-1-susceptible and resistant Mϕ subsets and pave the way for further research that may overcome one of the last major hurdles in developing more successful antiretroviral therapy.
Collapse
Affiliation(s)
- Dominic Paquin-Proulx
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Benjamin C Greenspun
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Shannon M Kitchen
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Rui André Saraiva Raposo
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Douglas F Nixon
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Leon Grayfer
- Department of Biological Sciences, The George Washington University, Washington, DC, USA.
| |
Collapse
|