1
|
Al-Zebeeby A, Abbas AH, Alsaegh HA, Alaraji FS. The First Record of an Aggressive Form of Ocular Tumour Enhanced by Marek's Disease Virus Infection in Layer Flock in Al-Najaf, Iraq. Vet Med Int 2024; 2024:1793189. [PMID: 39376215 PMCID: PMC11458278 DOI: 10.1155/2024/1793189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024] Open
Abstract
Marek's disease (MD) is a highly infectious poultry illness with a tendency to form tumours in peripheral nerves and internal organs of affected birds. Tumours accompany MD, mostly caused by oncogenic Gallid alpha herpesvirus 2 (MD Herpes virus serotype I). Studies on avian tumours associated with MD infection are limited in Iraq. In the presented study, the positive samples of ocular tumour were 168 out of 282 MD positive samples, which accomplished in farm suffered from an unexpectedly high mortality rate. We investigated a rapidly developed tumour mass that was observed in an MD-vaccinated layer flock that showed obvious clinical signs of MD, accompanied by forming a small lump in one eye at age 21 weeks, which developed to a big lump at week 28 of age, leading to death. The diagnosis MD infection was confirmed by a Polymerase Chain Reaction (PCR) amplification of a specific region of the target gene meq of the causative agent, followed by Sanger sequencing and BLASTn search of the sequence against the NCBI nucleic acid database, resulted in Gallid alpha herpes virus 2 strain, and according to the phylogenetic analysis, the sequence from this study was uniquely clustered in its own branch in the tree. Histopathological examination of the ocular tumour core revealed aggregation of neoplastic cells and haemorrhage that replaced the normal eye tissue, as well as early tumour formation in internal organs such as the lung and liver. In addition, abnormal lesions are susceptible to tumours in the gizzard and spleen. To our knowledge, this is the first record of an aggressive MD virus infection-mediated ocular tumour in a layer flock in Al-Najaf province, Iraq.
Collapse
Affiliation(s)
- Aoula Al-Zebeeby
- Department of Pathology and Poultry DiseasesFaculty of Veterinary MedicineUniversity of Kufa, Al-Najaf Al-Ashraf, Kufa, Iraq
| | - Ali Hadi Abbas
- Department of Veterinary MicrobiologyFaculty of Veterinary MedicineUniversity of Kufa, Al-Najaf Al-Ashraf, Kufa, Iraq
| | - Haider Abas Alsaegh
- Department of Pathology and Poultry DiseasesFaculty of Veterinary MedicineUniversity of Kufa, Al-Najaf Al-Ashraf, Kufa, Iraq
| | - Furkan Sabbar Alaraji
- Department of Pathology and Poultry DiseasesFaculty of Veterinary MedicineUniversity of Kufa, Al-Najaf Al-Ashraf, Kufa, Iraq
| |
Collapse
|
2
|
Bertzbach LD, Kohn M, You Y, Kossak L, Sabsabi MA, Kheimar A, Härtle S, Kaufer BB. In vitro infection of primary chicken lymphocytes with Marek's disease virus. STAR Protoc 2023; 4:102343. [PMID: 37270781 DOI: 10.1016/j.xpro.2023.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that infects immune cells and causes a deadly lymphoproliferative disease in chickens. Cytokines and monoclonal antibodies promote the survival of chicken lymphocytes in vitro. Here, we describe protocols for the isolation, maintenance, and efficient MDV infection of primary chicken lymphocytes and lymphocyte cell lines. This facilitates the investigation of key aspects of the MDV life cycle in the primary target cells of viral replication, latency, genome integration, and reactivation. For complete details on the use and execution of this protocol, please refer to Schermuly et al.,1 Bertzbach et al. (2019),2 and You et al.3 For a comprehensive background on MDV, please see Osterrieder et al.4 and Bertzbach et al. (2020).5.
Collapse
Affiliation(s)
- Luca D Bertzbach
- Freie Universität Berlin, Institute of Virology, 14163 Berlin, Germany; Leibniz Institute of Virology (LIV), Department of Viral Transformation, 20251 Hamburg, Germany
| | - Marina Kohn
- Ludwig-Maximilians-Universität, Department for Veterinary Sciences, 82152 Planegg/Martinsried, Germany
| | - Yu You
- Freie Universität Berlin, Institute of Virology, 14163 Berlin, Germany
| | - Lisa Kossak
- Freie Universität Berlin, Institute of Virology, 14163 Berlin, Germany
| | | | - Ahmed Kheimar
- Freie Universität Berlin, Institute of Virology, 14163 Berlin, Germany; Sohag University, Faculty of Veterinary Medicine, Department of Poultry Diseases, 82524 Sohag, Egypt
| | - Sonja Härtle
- Ludwig-Maximilians-Universität, Department for Veterinary Sciences, 82152 Planegg/Martinsried, Germany.
| | - Benedikt B Kaufer
- Freie Universität Berlin, Institute of Virology, 14163 Berlin, Germany; Freie Universität Berlin, Veterinary Centre for Resistance Research (TZR), 14163 Berlin, Germany.
| |
Collapse
|
3
|
Volkening JD, Spatz SJ, Ponnuraj N, Akbar H, Arrington JV, Vega-Rodriguez W, Jarosinski KW. Viral proteogenomic and expression profiling during productive replication of a skin-tropic herpesvirus in the natural host. PLoS Pathog 2023; 19:e1011204. [PMID: 37289833 PMCID: PMC10284419 DOI: 10.1371/journal.ppat.1011204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/21/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
Efficient transmission of herpesviruses is essential for dissemination in host populations; however, little is known about the viral genes that mediate transmission, mostly due to a lack of natural virus-host model systems. Marek's disease is a devastating herpesviral disease of chickens caused by Marek's disease virus (MDV) and an excellent natural model to study skin-tropic herpesviruses and transmission. Like varicella zoster virus that causes chicken pox in humans, the only site where infectious cell-free MD virions are efficiently produced is in epithelial skin cells, a requirement for host-to-host transmission. Here, we enriched for heavily infected feather follicle epithelial skin cells of live chickens to measure both viral transcription and protein expression using combined short- and long-read RNA sequencing and LC/MS-MS bottom-up proteomics. Enrichment produced a previously unseen breadth and depth of viral peptide sequencing. We confirmed protein translation for 84 viral genes at high confidence (1% FDR) and correlated relative protein abundance with RNA expression levels. Using a proteogenomic approach, we confirmed translation of most well-characterized spliced viral transcripts and identified a novel, abundant isoform of the 14 kDa transcript family via IsoSeq transcripts, short-read intron-spanning sequencing reads, and a high-quality junction-spanning peptide identification. We identified peptides representing alternative start codon usage in several genes and putative novel microORFs at the 5' ends of two core herpesviral genes, pUL47 and ICP4, along with strong evidence of independent transcription and translation of the capsid scaffold protein pUL26.5. Using a natural animal host model system to examine viral gene expression provides a robust, efficient, and meaningful way of validating results gathered from cell culture systems.
Collapse
Affiliation(s)
| | - Stephen J. Spatz
- US National Poultry Research Laboratory, ARS, USDA, Athens, Georgia, United States of America
| | - Nagendraprabhu Ponnuraj
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Haji Akbar
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Justine V. Arrington
- Protein Sciences Facility, Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Widaliz Vega-Rodriguez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Keith W. Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
4
|
Warren WC, Rice ES, Meyer A, Hearn CJ, Steep A, Hunt HD, Monson MS, Lamont SJ, Cheng HH. The immune cell landscape and response of Marek's disease resistant and susceptible chickens infected with Marek's disease virus. Sci Rep 2023; 13:5355. [PMID: 37005445 PMCID: PMC10067856 DOI: 10.1038/s41598-023-32308-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Genetically resistant or susceptible chickens to Marek's disease (MD) have been widely used models to identify the molecular determinants of these phenotypes. However, these prior studies lacked the basic identification and understanding of immune cell types that could be translated toward improved MD control. To gain insights into specific immune cell types and their responses to Marek's disease virus (MDV) infection, we used single-cell RNA sequencing (scRNAseq) on splenic cells from MD resistant and susceptible birds. In total, 14,378 cells formed clusters that identified various immune cell types. Lymphocytes, specifically T cell subtypes, were the most abundant with significant proportional changes in some subtypes upon infection. The largest number of differentially expressed genes (DEG) response was seen in granulocytes, while macrophage DEGs differed in directionality by subtype and line. Among the most DEG in almost all immune cell types were granzyme and granulysin, both associated with cell-perforating processes. Protein interactive network analyses revealed multiple overlapping canonical pathways within both lymphoid and myeloid cell lineages. This initial estimation of the chicken immune cell type landscape and its accompanying response will greatly aid efforts in identifying specific cell types and improving our knowledge of host response to viral infection.
Collapse
Affiliation(s)
- Wesley C Warren
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA.
| | - Edward S Rice
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Ashley Meyer
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Cari J Hearn
- Avian Disease and Oncology Laboratory, USDA, ARS, USNPRC, East Lansing, MI, USA
| | - Alec Steep
- Department of Human Genetics Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Henry D Hunt
- Avian Disease and Oncology Laboratory, USDA, ARS, USNPRC, East Lansing, MI, USA
| | - Melissa S Monson
- Department of Animal Science, Iowa State University, Ames, IA, USA
- Food Safety and Enteric Pathogens Research Unit, USDA, ARS, NADC, Ames, IA, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Hans H Cheng
- Avian Disease and Oncology Laboratory, USDA, ARS, USNPRC, East Lansing, MI, USA.
| |
Collapse
|
5
|
Jiang B, Wang J, Cao M, Jin H, Liu W, Cheng J, Zhou L, Xu J, Li Y. Differential Replication and Cytokine Response between Vaccine and Very Virulent Marek's Disease Viruses in Spleens and Bursas during Latency and Reactivation. Viruses 2022; 15:6. [PMID: 36680047 PMCID: PMC9864003 DOI: 10.3390/v15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Marek's disease virus (MDV) infection results in Marek's disease (MD) in chickens, a lymphoproliferative and oncogenic deadly disease, leading to severe economic losses. The spleen and bursa are the most important lymphoid and major target organs for MDV replication. The immune response elicited by MDV replication in the spleen and bursa is critical for the formation of latent MDV infection and reactivation. However, the mechanism of the host immune response induced by MDV in these key lymphoid organs during the latent and reactivation infection phases is not well understood. In the study, we focused on the replication dynamics of a vaccine MDV strain MDV/CVI988 and a very virulent MDV strain MDV/RB1B in the spleen and bursa in the latent and reactivation infection phases (7-28 days post-inoculation [dpi]), as well as the expression of some previously characterized immune-related molecules. The results showed that the replication ability of MDV/RB1B was significantly stronger than that of MDV/CVI988 within 28 days post-infection, and the replication levels of both MDV strains in the spleen were significantly higher than those in the bursa. During the latent and reactivation phase of MDV infection (7-28 dpi), the transcriptional upregulation of chicken IL-1β, IL6, IL-8L1 IFN-γ and PML in the spleen and bursa induced by MDV/RB1B infection was overall stronger than that of MDV/CVI988. However, compared to MDV/RB1Binfection, MDV/CVI988 infection resulted in a more effective transcriptional activation of CCL4 in the latent infection phase (7-14 dpi), which may be a characteristic distinguishing MDV vaccine strain from the very virulent strain.
Collapse
Affiliation(s)
- Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mengyao Cao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Huan Jin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Wenxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Jing Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Linyi Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Jian Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
6
|
Role of Epitranscriptomic and Epigenetic Modifications during the Lytic and Latent Phases of Herpesvirus Infections. Microorganisms 2022; 10:microorganisms10091754. [PMID: 36144356 PMCID: PMC9503318 DOI: 10.3390/microorganisms10091754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Herpesviruses are double-stranded DNA viruses occurring at a high prevalence in the human population and are responsible for a wide array of clinical manifestations and diseases, from mild to severe. These viruses are classified in three subfamilies (Alpha-, Beta- and Gammaherpesvirinae), with eight members currently known to infect humans. Importantly, all herpesviruses can establish lifelong latent infections with symptomatic or asymptomatic lytic reactivations. Accumulating evidence suggest that chemical modifications of viral RNA and DNA during the lytic and latent phases of the infections caused by these viruses, are likely to play relevant roles in key aspects of the life cycle of these viruses by modulating and regulating their replication, establishment of latency and evasion of the host antiviral response. Here, we review and discuss current evidence regarding epitranscriptomic and epigenetic modifications of herpesviruses and how these can influence their life cycles. While epitranscriptomic modifications such as m6A are the most studied to date and relate to positive effects over the replication of herpesviruses, epigenetic modifications of the viral genome are generally associated with defense mechanisms of the host cells to suppress viral gene transcription. However, herpesviruses can modulate these modifications to their own benefit to persist in the host, undergo latency and sporadically reactivate.
Collapse
|
7
|
Abstract
Circular RNAs (circRNAs) are a recently rediscovered class of functional noncoding RNAs that are involved in gene regulation and cancer development. Next-generation sequencing approaches identified circRNA fragments and sequences underlying circularization events in virus-induced cancers. In the present study, we performed viral circRNA expression analysis and full-length sequencing in infections with Marek’s disease virus (MDV), which serves as a model for herpesvirus-induced tumorigenesis. We established inverse PCRs to identify and characterize circRNA expression from the repeat regions of the MDV genome during viral replication, latency, and reactivation. We identified a large variety of viral circRNAs through precise mapping of full-length circular transcripts and detected matching sequences with several viral genes. Hot spots of circRNA expression included the transcriptional unit of the major viral oncogene encoding the Meq protein and the latency-associated transcripts (LATs). Moreover, we performed genome-wide bioinformatic analyses to extract back-splice junctions from lymphoma-derived samples. Using this strategy, we found that circRNAs were abundantly expressed in vivo from the same key virulence genes. Strikingly, the observed back-splice junctions do not follow a unique canonical pattern, compatible with the U2-dependent splicing machinery. Numerous noncanonical junctions were observed in viral circRNA sequences characterized from in vitro and in vivo infections. Given the importance of the genes involved in the transcription of these circRNAs, our study contributes to our understanding and complexity of this deadly pathogen. IMPORTANCE Circular RNAs (circRNAs) were rediscovered in recent years both in physiological and pathological contexts, such as in cancer. Viral circRNAs are encoded by at least two human herpesviruses, the Epstein Barr virus and the Kaposi’s Sarcoma-associated herpesvirus, both associated with the development of lymphoma. Marek’s disease virus (MDV) is a well-established animal model to study virus-induced lymphoma but circRNA expression has not been reported for MDV yet. Our study provided the first evidence of viral circRNAs that were expressed at key steps of the MDV lifecycle using genome-wide analyses of circRNAs. These circRNAs were primarily found in transcriptional units that corresponded to the major MDV virulence factors. In addition, we established a bioinformatics pipeline that offers a new tool to identify circular RNAs in other herpesviruses. This study on the circRNAs provided important insights into major MDV virulence genes and herpesviruses-mediated gene dysregulation.
Collapse
|
8
|
Identification of Marek's disease virus pUL56 homologue and analysis of critical amino acid stretches indispensable for its intracellular localization. Virus Res 2022; 313:198741. [PMID: 35271885 DOI: 10.1016/j.virusres.2022.198741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
Marek's disease virus (MDV) is considered a unique member of the Alphaherpesvirinae subfamily that induces rapid onset of T cell lymphoma in chickens. Compared with other conserved UL56 gene homologues of herpesviruses, little is known about the roles of MDV UL56 gene, while recent studies of mammalian herpesvirus pUL56 proteins have revealed their involvement in promoting ubiquitination of the Nedd4 (neural precursor cell expressed developmentally down-regulated protein 4) -like E3 ubiquitin ligases for proteasomal degradation and in modulating host immune responses. To determine the expression kinetics of UL56 gene products, chicken embryo fibroblasts were infected with very virulent or attenuated MDV strain and analyzed by quantitative PCR and Western blotting. During the time course of infection, the levels of UL56 mRNA transcripts increased consistently. At the translational level, the pUL56 protein encoded by UL56 gene was expressed in the size of 32 kDa, which emerged as early as 12 h post-infection (hpi) but otherwise began to wane at 72 hpi thereafter. With the treatment of viral DNA synthesis inhibitors, the pUL56 expression was significantly reduced, featuring the dynamics of a late (γ)-gene product. By confocal imaging, pUL56 was found to reside in the Golgi compartment. Both the L-domain motifs and the C-terminal tail-anchored transmembrane were essential for its intracellular localization. Noticeably, pUL56 co-localized with a truncated mutant of the chicken Nedd4-like family protein harboring only the WW domains; however, co-immunoprecipitation assay established no direct interaction between them, and the ectopic expression of pUL56 did not alter the abundance of endogenous Nedd4-like protein. Overall, the present study provides a caveat that the pUL56 homologues of different herpesviruses with structural similarities might vary in expression patterns and probably in functional consequences. For this reason, further investigation should be encouraged to focus on the potential association between UL56 gene and MDV pathogenesis in the context of engineered viral mutants.
Collapse
|
9
|
You Y, Vychodil T, Aimola G, Previdelli RL, Göbel TW, Bertzbach LD, Kaufer BB. A Cell Culture System to Investigate Marek's Disease Virus Integration into Host Chromosomes. Microorganisms 2021; 9:microorganisms9122489. [PMID: 34946091 PMCID: PMC8706938 DOI: 10.3390/microorganisms9122489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/02/2023] Open
Abstract
Marek’s disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes a devastating neoplastic disease in chickens. MDV has been shown to integrate its genome into the telomeres of latently infected and tumor cells, which is crucial for efficient tumor formation. Telomeric repeat arrays present at the ends of the MDV genome facilitate this integration into host telomeres; however, the integration mechanism remains poorly understood. Until now, MDV integration could only be investigated qualitatively upon infection of chickens. To shed further light on the integration mechanism, we established a quantitative integration assay using chicken T cell lines, the target cells for MDV latency and transformation. We optimized the infection conditions and assessed the establishment of latency in these T cells. The MDV genome was efficiently maintained over time, and integration was confirmed in these cells by fluorescence in situ hybridization (FISH). To assess the role of the two distinct viral telomeric repeat arrays in the integration process, we tested various knockout mutants in our in vitro integration assay. Efficient genome maintenance and integration was thereby dependent on the presence of the telomeric repeat arrays in the virus genome. Taken together, we developed and validated a novel in vitro integration assay that will shed light on the integration mechanism of this highly oncogenic virus into host telomeres.
Collapse
Affiliation(s)
- Yu You
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (Y.Y.); (T.V.); (G.A.); (R.L.P.)
| | - Tereza Vychodil
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (Y.Y.); (T.V.); (G.A.); (R.L.P.)
| | - Giulia Aimola
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (Y.Y.); (T.V.); (G.A.); (R.L.P.)
| | - Renato L. Previdelli
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (Y.Y.); (T.V.); (G.A.); (R.L.P.)
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Thomas W. Göbel
- Institute for Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilian University Munich, 80539 Munich, Germany;
| | - Luca D. Bertzbach
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (Y.Y.); (T.V.); (G.A.); (R.L.P.)
- Department of Viral Transformation, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany
- Correspondence: (L.D.B.); (B.B.K.)
| | - Benedikt B. Kaufer
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (Y.Y.); (T.V.); (G.A.); (R.L.P.)
- Correspondence: (L.D.B.); (B.B.K.)
| |
Collapse
|
10
|
Marek's disease virus prolongs survival of primary chicken B-cells by inducing a senescence-like phenotype. PLoS Pathog 2021; 17:e1010006. [PMID: 34673841 PMCID: PMC8562793 DOI: 10.1371/journal.ppat.1010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/02/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Marek’s disease virus (MDV) is an alphaherpesvirus that causes immunosuppression and deadly lymphoma in chickens. Lymphoid organs play a central role in MDV infection in animals. B-cells in the bursa of Fabricius facilitate high levels of MDV replication and contribute to dissemination at early stages of infection. Several studies investigated host responses in bursal tissue of MDV-infected chickens; however, the cellular responses specifically in bursal B-cells has never been investigated. We took advantage of our recently established in vitro infection system to decipher the cellular responses of bursal B-cells to infection with a very virulent MDV strain. Here, we demonstrate that MDV infection extends the survival of bursal B-cells in culture. Microarray analyses revealed that most cytokine/cytokine-receptor-, cell cycle- and apoptosis-associated genes are significantly down-regulated in these cells. Further functional assays validated these strong effects of MDV infections on cell cycle progression and thus, B-cell proliferation. In addition, we confirmed that MDV infections protect B-cells from apoptosis and trigger an accumulation of the autophagy marker Lc3-II. Taken together, our data indicate that MDV-infected bursal B-cells show hallmarks of a senescence-like phenotype, leading to a prolonged B-cell survival. This study provides an in-depth analysis of bursal B-cell responses to MDV infection and important insights into how the virus extends the survival of these cells. Upon MDV entry via the respiratory tract, B-cells are among the first cells to be infected in the lung and allow an efficient amplification of the virus. B-cells ensure the transmission of the virus to activated T-cells in which it replicates and ultimately transforms CD4-positive T-cells. Although playing a pivotal role in the MDV life cycle, the response of B-cells to MDV is currently not fully understood. Here, by using an in vitro infection model of primary bursal B-cells, we show that MDV infection leads to a prolonged B-cell survival resulting from decreased cell proliferation, protection from apoptosis and activation of autophagy. Our study provides new insights into the B-cell response to MDV infection, demonstrating that MDV triggers a senescence-like phenotype in B-cells that could potentiate their role in MDV pathogenesis.
Collapse
|
11
|
Hale AE, Moorman NJ. The Ends Dictate the Means: Promoter Switching in Herpesvirus Gene Expression. Annu Rev Virol 2021; 8:201-218. [PMID: 34129370 DOI: 10.1146/annurev-virology-091919-072841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpesvirus gene expression is dynamic and complex, with distinct complements of viral genes expressed at specific times in different infection contexts. These complex patterns of viral gene expression arise in part from the integration of multiple cellular and viral signals that affect the transcription of viral genes. The use of alternative promoters provides an increased level of control, allowing different promoters to direct the transcription of the same gene in response to distinct temporal and contextual cues. While once considered rare, herpesvirus alternative promoter usage was recently found to be far more pervasive and impactful than previously thought. Here we review several examples of promoter switching in herpesviruses and discuss the functional consequences on the transcriptional and post-transcriptional regulation of viral gene expression.
Collapse
Affiliation(s)
- Andrew E Hale
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
12
|
Liao Y, Bajwa K, Al-Mahmood M, Gimeno IM, Reddy SM, Lupiani B. The role of Meq-vIL8 in regulating Marek's disease virus pathogenesis. J Gen Virol 2021; 102. [PMID: 33236979 DOI: 10.1099/jgv.0.001528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Marek's disease virus (MDV) is a highly cell-associated oncogenic alphaherpesvirus that causes T cell lymphoma in chickens. MDV-encoded Meq and vIL8 proteins play important roles in transformation and early cytolytic infection, respectively. Previous studies identified a spliced transcript, meq-vIL8, formed by alternative splicing of meq and vIL8 genes in MDV lymphoblastoid tumour cells. To determine the role of Meq-vIL8 in MDV pathogenesis, we generated a recombinant MDV (MDV-meqΔSD) by mutating the splice donor site in the meq gene to abrogate the expression of Meq-vIL8. As expected, our results show that MDV-meqΔSD virus grows similarly to the parental and revertant viruses in cell culture, suggesting that Meq-vIL8 is dispensable for MDV growth in vitro. We further characterized the pathogenic properties of MDV-meqΔSD virus in chickens. Our results show that lack of Meq-vIL8 did not affect virus replication during the early cytolytic phase, as determined by immunohistochemistry analysis and/or viral genome copy number, but significantly enhanced viral DNA load in the late phase of infection in the spleen and brain of infected chickens. In addition, we observed that abrogation of Meq-vIL8 expression reduced the mean death time and increased the prevalence of persistent neurological disease, common features of highly virulent strains of MDV, in inoculated chickens. In conclusion, our study shows that Meq-vIL8 is an important virulence factor of MDV.
Collapse
Affiliation(s)
- Yifei Liao
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Kanika Bajwa
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Mohammad Al-Mahmood
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Isabel M Gimeno
- North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, North Carolina 27607, USA
| | - Sanjay M Reddy
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Blanca Lupiani
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
13
|
The Marek's Disease Virus Unique Gene MDV082 Is Dispensable for Virus Replication but Contributes to a Rapid Disease Onset. J Virol 2021; 95:e0013121. [PMID: 34011541 DOI: 10.1128/jvi.00131-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus of chickens that causes lymphomas in various organs. Most MDV genes are conserved among herpesviruses, while others are unique to MDV and may contribute to pathogenesis and/or tumor formation. High transcript levels of the MDV-specific genes MDV082, RLORF11, and SORF6 were recently detected in lytically infected cells; however, it remained elusive if the respective proteins are expressed and if they play a role in MDV pathogenesis. In this study, we first addressed if these proteins are expressed by inserting FLAG tags at their N or C termini. We could demonstrate that among the three genes tested, MDV082 is the only gene that encodes a protein and is expressed very late in MDV plaques in vitro. To investigate the role of this novel MDV082 protein in MDV pathogenesis, we generated a recombinant virus that lacks expression of the MDV082 protein. Our data revealed that the MDV082 protein contributes to the rapid onset of Marek's disease but is not essential for virus replication, spread, and tumor formation. Taken together, this study sheds light on the expression of MDV-specific genes and unravels the role of the late protein MDV082 in MDV pathogenesis. IMPORTANCE MDV is a highly oncogenic alphaherpesvirus that causes Marek's disease in chickens. The virus causes immense economic losses in the poultry industry due to the high morbidity and mortality, but also the cost of the vaccination. MDV encodes over 100 genes that are involved in various processes of the viral life cycle. Functional characterization of MDV genes is an essential step toward understanding the complex virus life cycle and MDV pathogenesis. Here, we have identified a novel protein encoded by MDV082 and two potential noncoding RNAs (RLORF11 and SORF6). The novel MDV082 protein is not needed for efficient MDV replication and tumor formation. However, our data demonstrate that the MDV082 protein is involved in the rapid onset of Marek's disease.
Collapse
|
14
|
You Y, Hagag IT, Kheimar A, Bertzbach LD, Kaufer BB. Characterization of a Novel Viral Interleukin 8 (vIL-8) Splice Variant Encoded by Marek's Disease Virus. Microorganisms 2021; 9:microorganisms9071475. [PMID: 34361910 PMCID: PMC8303658 DOI: 10.3390/microorganisms9071475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 11/24/2022] Open
Abstract
Marek’s disease virus (MDV) is a highly cell-associated oncogenic alphaherpesvirus that causes lymphomas in various organs in chickens. Like other herpesviruses, MDV has a large and complex double-stranded DNA genome. A number of viral transcripts are generated by alternative splicing, a process that drastically extends the coding capacity of the MDV genome. One of the spliced genes encoded by MDV is the viral interleukin 8 (vIL-8), a CXC chemokine that facilitates the recruitment of MDV target cells and thereby plays an important role in MDV pathogenesis and tumorigenesis. We recently identified a novel vIL-8 exon (vIL-8-E3′) by RNA-seq; however, it remained elusive whether the protein containing the vIL-8-E3′ is expressed and what role it may play in MDV replication and/or pathogenesis. To address these questions, we first generated recombinant MDV harboring a tag that allows identification of the spliced vIL-8-E3′ protein, revealing that it is indeed expressed. We subsequently generated knockout viruses and could demonstrate that the vIL-8-E3′ protein is dispensable for MDV replication as well as secretion of the functional vIL-8 chemokine. Finally, infection of chickens with this vIL-8-E3′ knockout virus revealed that the protein is not important for MDV replication and pathogenesis in vivo. Taken together, our study provides novel insights into the splice forms of the CXC chemokine of this highly oncogenic alphaherpesvirus.
Collapse
Affiliation(s)
- Yu You
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (Y.Y.); (I.T.H.); (A.K.)
| | - Ibrahim T. Hagag
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (Y.Y.); (I.T.H.); (A.K.)
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed Kheimar
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (Y.Y.); (I.T.H.); (A.K.)
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Sohag University, Sohag 82424, Egypt
| | - Luca D. Bertzbach
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (Y.Y.); (I.T.H.); (A.K.)
- Department of Viral Transformation, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany
- Correspondence: (L.D.B.); (B.B.K.)
| | - Benedikt B. Kaufer
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (Y.Y.); (I.T.H.); (A.K.)
- Correspondence: (L.D.B.); (B.B.K.)
| |
Collapse
|
15
|
Latest Insights into Unique Open Reading Frames Encoded by Unique Long (UL) and Short (US) Regions of Marek's Disease Virus. Viruses 2021; 13:v13060974. [PMID: 34070255 PMCID: PMC8225041 DOI: 10.3390/v13060974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022] Open
Abstract
Marek’s disease virus (MDV) is an oncogenic avian alphaherpesvirus whose genome consists of unique long (UL) and short (US) regions that are flanked by inverted repeat regions. More than 100 open reading frames (ORFs) have been annotated in the MDV genome, and are involved in various aspects of MDV biology and pathogenesis. Within UL and US regions of MDV, there are several unique ORFs, some of which have recently been shown to be important for MDV replication and pathogenesis. In this review, we will summarize the current knowledge on these ORFs and compare their location in different MDV strains.
Collapse
|
16
|
Halabi S, Ghosh M, Stevanović S, Rammensee HG, Bertzbach LD, Kaufer BB, Moncrieffe MC, Kaspers B, Härtle S, Kaufman J. The dominantly expressed class II molecule from a resistant MHC haplotype presents only a few Marek's disease virus peptides by using an unprecedented binding motif. PLoS Biol 2021; 19:e3001057. [PMID: 33901176 PMCID: PMC8101999 DOI: 10.1371/journal.pbio.3001057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/06/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Viral diseases pose major threats to humans and other animals, including the billions of chickens that are an important food source as well as a public health concern due to zoonotic pathogens. Unlike humans and other typical mammals, the major histocompatibility complex (MHC) of chickens can confer decisive resistance or susceptibility to many viral diseases. An iconic example is Marek's disease, caused by an oncogenic herpesvirus with over 100 genes. Classical MHC class I and class II molecules present antigenic peptides to T lymphocytes, and it has been hard to understand how such MHC molecules could be involved in susceptibility to Marek's disease, given the potential number of peptides from over 100 genes. We used a new in vitro infection system and immunopeptidomics to determine peptide motifs for the 2 class II molecules expressed by the MHC haplotype B2, which is known to confer resistance to Marek's disease. Surprisingly, we found that the vast majority of viral peptide epitopes presented by chicken class II molecules arise from only 4 viral genes, nearly all having the peptide motif for BL2*02, the dominantly expressed class II molecule in chickens. We expressed BL2*02 linked to several Marek's disease virus (MDV) peptides and determined one X-ray crystal structure, showing how a single small amino acid in the binding site causes a crinkle in the peptide, leading to a core binding peptide of 10 amino acids, compared to the 9 amino acids in all other reported class II molecules. The limited number of potential T cell epitopes from such a complex virus can explain the differential MHC-determined resistance to MDV, but raises questions of mechanism and opportunities for vaccine targets in this important food species, as well as providing a basis for understanding class II molecules in other species including humans.
Collapse
Affiliation(s)
- Samer Halabi
- University of Cambridge, Department of Pathology, Cambridge, United Kingdom
- University of Edinburgh, Institute for Immunology and Infection Research, Edinburgh, United Kingdom
| | - Michael Ghosh
- University of Tübingen, Department of Immunology, Institute of Cell Biology, Tübingen, Germany
| | - Stefan Stevanović
- University of Tübingen, Department of Immunology, Institute of Cell Biology, Tübingen, Germany
| | - Hans-Georg Rammensee
- University of Tübingen, Department of Immunology, Institute of Cell Biology, Tübingen, Germany
| | | | | | | | - Bernd Kaspers
- Ludwig Maximillians University, Veterinary Faculty, Planegg, Germany
| | - Sonja Härtle
- Ludwig Maximillians University, Veterinary Faculty, Planegg, Germany
| | - Jim Kaufman
- University of Cambridge, Department of Pathology, Cambridge, United Kingdom
- University of Edinburgh, Institute for Immunology and Infection Research, Edinburgh, United Kingdom
- University of Cambridge, Department of Veterinary Medicine, Cambridge, United Kingdom
| |
Collapse
|
17
|
Marek's Disease Virus Requires Both Copies of the Inverted Repeat Regions for Efficient In Vivo Replication and Pathogenesis. J Virol 2021; 95:JVI.01256-20. [PMID: 33115875 DOI: 10.1128/jvi.01256-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Marek's disease virus (MDV) is an oncogenic alphaherpesvirus of chickens. The MDV genome consists of two unique regions that are both flanked by inverted repeat regions. These repeats harbor several genes involved in virus replication and pathogenesis, but it remains unclear why MDV and other herpesviruses harbor these large sequence duplications. In this study, we set to determine if both copies of these repeat regions are required for MDV replication and pathogenesis. Our results demonstrate that MDV mutants lacking the entire internal repeat region (ΔIRLS) efficiently replicate and spread from cell-to-cell in vitro However, ΔIRLS replication was severely impaired in infected chickens and the virus caused significantly less frequent disease and tumors compared to the controls. In addition, we also generated recombinant viruses that harbor a deletion of most of the internal repeat region, leaving only short terminal sequences behind (ΔIRLS-HR). These remaining homologous sequences facilitated rapid restoration of the deleted repeat region, resulting in a virus that caused disease and tumors comparable to the wild type. Therefore, ΔIRLS-HR represents an excellent platform for rapid genetic manipulation of the virus genome in the repeat regions. Taken together, our study demonstrates that MDV requires both copies of the repeats for efficient replication and pathogenesis in its natural host.IMPORTANCE Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that infects chickens and causes losses in the poultry industry of up to $2 billion per year. The virus is also widely used as a model to study alphaherpesvirus pathogenesis and virus-induced tumor development in a natural host. MDV and most other herpesviruses harbor direct or inverted repeats regions in their genome. However, the role of these sequence duplications in MDV remains elusive and has never been investigated in a natural virus-host model for any herpesvirus. Here, we demonstrate that both copies of the repeats are needed for efficient MDV replication and pathogenesis in vivo, while replication was not affected in cell culture. With this, we further dissect herpesvirus genome biology and the role of repeat regions in Marek's disease virus replication and pathogenesis.
Collapse
|
18
|
Conradie AM, Bertzbach LD, Trimpert J, Patria JN, Murata S, Parcells MS, Kaufer BB. Distinct polymorphisms in a single herpesvirus gene are capable of enhancing virulence and mediating vaccinal resistance. PLoS Pathog 2020; 16:e1009104. [PMID: 33306739 PMCID: PMC7758048 DOI: 10.1371/journal.ppat.1009104] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/23/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Modified-live herpesvirus vaccines are widely used in humans and animals, but field strains can emerge that have a higher virulence and break vaccinal protection. Since the introduction of the first vaccine in the 1970s, Marek’s disease virus overcame the vaccine barrier by the acquisition of numerous genomic mutations. However, the evolutionary adaptations in the herpesvirus genome responsible for the vaccine breaks have remained elusive. Here, we demonstrate that point mutations in the multifunctional meq gene acquired during evolution can significantly alter virulence. Defined mutations found in highly virulent strains also allowed the virus to overcome innate cellular responses and vaccinal protection. Concomitantly, the adaptations in meq enhanced virus shedding into the environment, likely providing a selective advantage for the virus. Our study provides the first experimental evidence that few point mutations in a single herpesviral gene result in drastically increased virulence, enhanced shedding, and escape from vaccinal protection. Viruses can acquire mutations during evolution that alter their virulence. An example of a virus that has shown repeated shifts to higher virulence in response to more efficacious vaccines is the oncogenic Marek’s disease virus (MDV) that infects chickens. Until now, it remained unknown which mutations in the large virus genome are responsible for this increase in virulence. We could demonstrate that very few amino acid changes in the meq oncogene of MDV can significantly alter the virulence of the virus. In addition, these changes also allow the virus to overcome vaccinal protection and enhance the shedding into the environment. Taken together, our data provide fundamental insights into evolutionary changes that allow this deadly veterinary pathogen to evolve towards greater virulence.
Collapse
Affiliation(s)
| | | | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Joseph N. Patria
- Department of Biological Sciences, University of Delaware, Newark, United States of America
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mark S. Parcells
- Department of Animal and Food Sciences, University of Delaware, Newark, United States of America
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
19
|
Hagag IT, Wight DJ, Bartsch D, Sid H, Jordan I, Bertzbach LD, Schusser B, Kaufer BB. Abrogation of Marek's disease virus replication using CRISPR/Cas9. Sci Rep 2020; 10:10919. [PMID: 32616820 PMCID: PMC7331644 DOI: 10.1038/s41598-020-67951-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Marek's disease virus (MDV) is a highly cell-associated alphaherpesvirus that causes deadly lymphomas in chickens. While vaccination protects against clinical symptoms, MDV field strains can still circulate in vaccinated flocks and continuously evolve towards greater virulence. MDV vaccines do not provide sterilizing immunity, allowing the virus to overcome vaccine protection, and has increased the need for more potent vaccines or alternative interventions. In this study, we addressed if the CRISPR/Cas9 system can protect cells from MDV replication. We first screened a number of guide RNAs (gRNAs) targeting essential MDV genes for their ability to prevent virus replication. Single gRNAs significantly inhibited virus replication, but could result in the emergence of escape mutants. Strikingly, combining two or more gRNAs completely abrogated virus replication and no escape mutants were observed upon serial passaging. Our study provides the first proof-of-concept, demonstrating that the CRISPR/Cas9 system can be efficiently used to block MDV replication. The presented findings lay the foundation for future research to completely protect chickens from this deadly pathogen.
Collapse
Affiliation(s)
- Ibrahim T Hagag
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, El-Tagneed St. 114, Zagazig, 44511, Egypt
| | - Darren J Wight
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Denise Bartsch
- Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Hicham Sid
- Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Ingo Jordan
- ProBioGen AG, Herbert-Bayer-Straße 8, 13086, Berlin, Germany
| | - Luca D Bertzbach
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Benjamin Schusser
- Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Str. 1, 85354, Freising, Germany.
| | - Benedikt B Kaufer
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.
| |
Collapse
|
20
|
Sadigh Y, Tahiri-Alaoui A, Spatz S, Nair V, Ribeca P. Pervasive Differential Splicing in Marek's Disease Virus can Discriminate CVI-988 Vaccine Strain from RB-1B Very Virulent Strain in Chicken Embryonic Fibroblasts. Viruses 2020; 12:E329. [PMID: 32197378 PMCID: PMC7150913 DOI: 10.3390/v12030329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Marek's disease is a major scourge challenging poultry health worldwide. It is caused by the highly contagious Marek's disease virus (MDV), an alphaherpesvirus. Here, we showed that, similar to other members of its Herpesviridae family, MDV also presents a complex landscape of splicing events, most of which are uncharacterised and/or not annotated. Quite strikingly, and although the biological relevance of this fact is unknown, we found that a number of viral splicing isoforms are strain-specific, despite the close sequence similarity of the strains considered: very virulent RB-1B and vaccine CVI-988. We validated our findings by devising an assay that discriminated infections caused by the two strains in chicken embryonic fibroblasts on the basis of the presence of some RNA species. To our knowledge, this study is the first to accomplish such a result, emphasizing how relevant a comprehensive picture of the viral transcriptome is to fully understand viral pathogenesis.
Collapse
Affiliation(s)
- Yashar Sadigh
- Avian Viral Oncogenesis, The Pirbright Institute, Ash Road, Woking GU24 0NF, UK;
| | - Abdessamad Tahiri-Alaoui
- Clinical BioManufacturing Facility, The Jenner Institute, University of Oxford, Old Road, Headington, Oxford OX3 7JT, UK;
| | - Stephen Spatz
- US National Poultry Research Center, 934 College Station Road, Athens, GA 30605, USA;
| | - Venugopal Nair
- Avian Viral Oncogenesis, The Pirbright Institute, Ash Road, Woking GU24 0NF, UK;
| | - Paolo Ribeca
- Integrative Biology and Bioinformatics, The Pirbright Institute, Ash Road, Woking GU24 0NF, UK
- Biomathematics and Statistics Scotland (BioSS), James Clerk Maxwell Building, Peter Guthrie Tait Road, The King’s Buildings, Edinburgh EH9 3FD, UK
| |
Collapse
|
21
|
Bertzbach LD, Conradie AM, You Y, Kaufer BB. Latest Insights into Marek's Disease Virus Pathogenesis and Tumorigenesis. Cancers (Basel) 2020; 12:cancers12030647. [PMID: 32164311 PMCID: PMC7139298 DOI: 10.3390/cancers12030647] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/14/2022] Open
Abstract
Marek’s disease virus (MDV) infects chickens and causes one of the most frequent cancers in animals. Over 100 years of research on this oncogenic alphaherpesvirus has led to a profound understanding of virus-induced tumor development. Live-attenuated vaccines against MDV were the first that prevented cancer and minimized the losses in the poultry industry. Even though the current gold standard vaccine efficiently protects against clinical disease, the virus continuously evolves towards higher virulence. Emerging field strains were able to overcome the protection provided by the previous two vaccine generations. Research over the last few years revealed important insights into the virus life cycle, cellular tropism, and tumor development that are summarized in this review. In addition, we discuss recent data on the MDV transcriptome, the constant evolution of this highly oncogenic virus towards higher virulence, and future perspectives in MDV research.
Collapse
|
22
|
Bertzbach LD, Harlin O, Härtle S, Fehler F, Vychodil T, Kaufer BB, Kaspers B. IFNα and IFNγ Impede Marek's Disease Progression. Viruses 2019; 11:v11121103. [PMID: 31795203 PMCID: PMC6950089 DOI: 10.3390/v11121103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
Marek’s disease virus (MDV) is an alphaherpesvirus that causes Marek’s disease, a malignant lymphoproliferative disease of domestic chickens. While MDV vaccines protect animals from clinical disease, they do not provide sterilizing immunity and allow field strains to circulate and evolve in vaccinated flocks. Therefore, there is a need for improved vaccines and for a better understanding of innate and adaptive immune responses against MDV infections. Interferons (IFNs) play important roles in the innate immune defenses against viruses and induce upregulation of a cellular antiviral state. In this report, we quantified the potent antiviral effect of IFNα and IFNγ against MDV infections in vitro. Moreover, we demonstrate that both cytokines can delay Marek’s disease onset and progression in vivo. Additionally, blocking of endogenous IFNα using a specific monoclonal antibody, in turn, accelerated disease. In summary, our data reveal the effects of IFNα and IFNγ on MDV infection and improve our understanding of innate immune responses against this oncogenic virus.
Collapse
Affiliation(s)
- Luca D. Bertzbach
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (L.D.B.); (T.V.)
| | - Olof Harlin
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80539 Munich, Germany; (O.H.); (S.H.)
| | - Sonja Härtle
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80539 Munich, Germany; (O.H.); (S.H.)
| | | | - Tereza Vychodil
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (L.D.B.); (T.V.)
| | - Benedikt B. Kaufer
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (L.D.B.); (T.V.)
- Correspondence: (B.B.K.); (B.K.)
| | - Bernd Kaspers
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80539 Munich, Germany; (O.H.); (S.H.)
- Correspondence: (B.B.K.); (B.K.)
| |
Collapse
|
23
|
Bertzbach LD, van Haarlem DA, Härtle S, Kaufer BB, Jansen CA. Marek's Disease Virus Infection of Natural Killer Cells. Microorganisms 2019; 7:microorganisms7120588. [PMID: 31757008 PMCID: PMC6956363 DOI: 10.3390/microorganisms7120588] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are key players in the innate immune response. They kill virus-infected cells and are crucial for the induction of adaptive immune responses. Marek’s disease virus (MDV) is a highly contagious alphaherpesvirus that causes deadly T cell lymphomas in chickens. Host resistance to MDV is associated with differences in NK cell responses; however, the exact role of NK cells in the control of MDV remains unknown. In this study, we assessed if MDV can infect NK cells and alter their activation. Surprisingly, we could demonstrate that primary chicken NK cells are very efficiently infected with very virulent RB-1B MDV and the live-attenuated CVI988 vaccine. Flow cytometry analysis revealed that both RB-1B and CVI988 enhance NK cell degranulation and increase interferon gamma (IFNγ) production in vitro. In addition, we could show that the MDV Eco Q-encoded oncogene (meq) contributes to the induction of NK cell activation using meq knockout viruses. Taken together, our data revealed for the first time that NK cells are efficiently infectable with MDV and that this oncogenic alphaherpesvirus enhances NK cell degranulation and increased IFNγ production in vitro.
Collapse
Affiliation(s)
- Luca D. Bertzbach
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Daphne A. van Haarlem
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands;
| | - Sonja Härtle
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80539 Munich, Germany;
| | - Benedikt B. Kaufer
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany;
- Correspondence: (B.B.K.); (C.A.J.)
| | - Christine A. Jansen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands;
- Correspondence: (B.B.K.); (C.A.J.)
| |
Collapse
|