1
|
Chaudhary V, Kajla P, Lather D, Chaudhary N, Dangi P, Singh P, Pandiselvam R. Bacteriophages: a potential game changer in food processing industry. Crit Rev Biotechnol 2024; 44:1325-1349. [PMID: 38228500 DOI: 10.1080/07388551.2023.2299768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/16/2023] [Accepted: 10/03/2023] [Indexed: 01/18/2024]
Abstract
In the food industry, despite the widespread use of interventions such as preservatives and thermal and non-thermal processing technologies to improve food safety, incidences of foodborne disease continue to happen worldwide, prompting the search for alternative strategies. Bacteriophages, commonly known as phages, have emerged as a promising alternative for controlling pathogenic bacteria in food. This review emphasizes the potential applications of phages in biological sciences, food processing, and preservation, with a particular focus on their role as biocontrol agents for improving food quality and preservation. By shedding light on recent developments and future possibilities, this review highlights the significance of phages in the food industry. Additionally, it addresses crucial aspects such as regulatory status and safety concerns surrounding the use of bacteriophages. The inclusion of up-to-date literature further underscores the relevance of phage-based strategies in reducing foodborne pathogenic bacteria's presence in both food and the production environment. As we look ahead, new phage products are likely to be targeted against emerging foodborne pathogens. This will further advance the efficacy of approaches that are based on phages in maintaining the safety and security of food.
Collapse
Affiliation(s)
- Vandana Chaudhary
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Deepika Lather
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Nisha Chaudhary
- Department of Food Science and Technology, College of Agriculture, Agriculture University, Jodhpur, Rajasthan, India
| | - Priya Dangi
- Department of Food and Nutrition and Food Technology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Punit Singh
- Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University Mathura, Mathura, Uttar Pradesh, India
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| |
Collapse
|
2
|
Wang H, Yang Y, Xu Y, Chen Y, Zhang W, Liu T, Chen G, Wang K. Phage-based delivery systems: engineering, applications, and challenges in nanomedicines. J Nanobiotechnology 2024; 22:365. [PMID: 38918839 PMCID: PMC11197292 DOI: 10.1186/s12951-024-02576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Bacteriophages (phages) represent a unique category of viruses with a remarkable ability to selectively infect host bacteria, characterized by their assembly from proteins and nucleic acids. Leveraging their exceptional biological properties and modifiable characteristics, phages emerge as innovative, safe, and efficient delivery vectors. The potential drawbacks associated with conventional nanocarriers in the realms of drug and gene delivery include a lack of cell-specific targeting, cytotoxicity, and diminished in vivo transfection efficiency. In contrast, engineered phages, when employed as cargo delivery vectors, hold the promise to surmount these limitations and attain enhanced delivery efficacy. This review comprehensively outlines current strategies for the engineering of phages, delineates the principal types of phages utilized as nanocarriers in drug and gene delivery, and explores the application of phage-based delivery systems in disease therapy. Additionally, an incisive analysis is provided, critically examining the challenges confronted by phage-based delivery systems within the domain of nanotechnology. The primary objective of this article is to furnish a theoretical reference that contributes to the reasoned design and development of potent phage-based delivery systems.
Collapse
Affiliation(s)
- Hui Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Ying Yang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yan Xu
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yi Chen
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Wenjie Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2145, Australia.
| | - Gang Chen
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China.
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| |
Collapse
|
3
|
Wu LY, Wijesekara Y, Piedade GJ, Pappas N, Brussaard CPD, Dutilh BE. Benchmarking bioinformatic virus identification tools using real-world metagenomic data across biomes. Genome Biol 2024; 25:97. [PMID: 38622738 PMCID: PMC11020464 DOI: 10.1186/s13059-024-03236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND As most viruses remain uncultivated, metagenomics is currently the main method for virus discovery. Detecting viruses in metagenomic data is not trivial. In the past few years, many bioinformatic virus identification tools have been developed for this task, making it challenging to choose the right tools, parameters, and cutoffs. As all these tools measure different biological signals, and use different algorithms and training and reference databases, it is imperative to conduct an independent benchmarking to give users objective guidance. RESULTS We compare the performance of nine state-of-the-art virus identification tools in thirteen modes on eight paired viral and microbial datasets from three distinct biomes, including a new complex dataset from Antarctic coastal waters. The tools have highly variable true positive rates (0-97%) and false positive rates (0-30%). PPR-Meta best distinguishes viral from microbial contigs, followed by DeepVirFinder, VirSorter2, and VIBRANT. Different tools identify different subsets of the benchmarking data and all tools, except for Sourmash, find unique viral contigs. Performance of tools improved with adjusted parameter cutoffs, indicating that adjustment of parameter cutoffs before usage should be considered. CONCLUSIONS Together, our independent benchmarking facilitates selecting choices of bioinformatic virus identification tools and gives suggestions for parameter adjustments to viromics researchers.
Collapse
Affiliation(s)
- Ling-Yi Wu
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Yasas Wijesekara
- Institute of Bioinformatics, University Medicine Greifswald, Felix Hausdorff Str. 8, 17475, Greifswald, Germany
| | - Gonçalo J Piedade
- Department Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, PO Box 59, Texel, 1790 AB, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Nikolaos Pappas
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Corina P D Brussaard
- Department Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, PO Box 59, Texel, 1790 AB, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
4
|
Yang D, Xiang Y, Song F, Li H, Ji X. Phage therapy: A renewed approach against oral diseases caused by Enterococcus faecalis infections. Microb Pathog 2024; 189:106574. [PMID: 38354990 DOI: 10.1016/j.micpath.2024.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/16/2024]
Abstract
Antibiotics play an important role in the treatment of infectious diseases. Long-term overuse or misuse of antibiotics, however, has triggered the global crisis of antibiotic resistance, bringing challenges to treating clinical infection. Bacteriophages (phages) are the viruses infecting bacterial cells. Due to high host specificity, high bactericidal activity, and good biosafety, phages have been used as natural alternative antibacterial agents to fight against multiple drug-resistant bacteria. Enterococcus faecalis is the main species detected in secondary persistent infection caused by failure of root canal therapy. Due to strong tolerance and the formation of biofilm, E. faecalis can survive the changes in pH, temperature, and osmotic pressure in the mouth and thus is one of the main causes of periapical lesions. This paper summarizes the advantages of phage therapy, its applications in treating oral diseases caused by E. faecalis infections, and the challenges it faces. It offers a new perspective on phage therapy in oral diseases.
Collapse
Affiliation(s)
- Dan Yang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yingying Xiang
- Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650031, China
| | - Fei Song
- Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Haiyan Li
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiuling Ji
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
5
|
Maan M, Goyal H, Joshi S, Barman P, Sharma S, Kumar R, Saini A. DP1, a multifaceted synthetic peptide: Mechanism of action, activity and clinical potential. Life Sci 2024; 340:122458. [PMID: 38266815 DOI: 10.1016/j.lfs.2024.122458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
AIMS Microbial infections remain a leading cause of mortality worldwide, with Staphylococcus aureus (S. aureus) being a prominent etiological agent, responsible for causing persistent bacterial infections in humans. It is a nosocomial, opportunistic pathogen, capable to propagate within the bloodstream and withstand therapeutic interventions. In the current study, a novel, indigenously designed synthetic antimicrobial peptide (sAMP) has been evaluated for its antimicrobial potential to inhibit the growth and proliferation of S. aureus. MAIN METHODS The sAMP, designed peptide (DP1) was evaluated for its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against a panel of pathogenic bacterial strains. Membrane mechanistic studies were performed by measuring membrane conductivity via dielectric spectroscopy and visualizing changes in bacterial membrane structure through field emission scanning electron microscopy (FE-SEM). Further, DP1 was tested for its in vivo antimicrobial potential in an S. aureus-induced systemic infection model. KEY FINDINGS The results indicated that DP1 has the potential to inhibit the growth and proliferation of a broad spectrum of Gram-positive, Gram-negative and multidrug-resistant (MDR) bacterial strains. Strong bactericidal effect attributed to change in electrical conductivity of the bacterial cells leading to membrane disruption was observed through dielectric spectroscopy and FE-SEM micrographs. Further, in the in vivo murine systemic infection study, 50 % reduction in S. aureus bioburden was observed within 1 day of the administration of DP1. SIGNIFICANCE The results indicate that DP1 is a multifaceted peptide with potent bactericidal, antioxidant and therapeutic properties. It holds significance as a novel drug candidate to effectively combat S. aureus-mediated systemic infections.
Collapse
Affiliation(s)
- Mayank Maan
- Department of Biophysics, Panjab University, Chandigarh, U.T. 160014, India
| | - Hemant Goyal
- Department of Biophysics, Panjab University, Chandigarh, U.T. 160014, India
| | - Shubhi Joshi
- Department of Biophysics, Panjab University, Chandigarh, U.T. 160014, India
| | - Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Chandigarh, U.T. 160014, India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Chandigarh, U.T. 160014, India
| | - Rajesh Kumar
- Department of Physics, Panjab University, Chandigarh, U.T. 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Chandigarh, U.T. 160014, India.
| |
Collapse
|
6
|
Oliveira A, Dias C, Oliveira R, Almeida C, Fuciños P, Sillankorva S, Oliveira H. Paving the way forward: Escherichia coli bacteriophages in a One Health approach. Crit Rev Microbiol 2024; 50:87-104. [PMID: 36608263 DOI: 10.1080/1040841x.2022.2161869] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
Escherichia coli is one of the most notorious pathogens for its ability to adapt, colonize, and proliferate in different habitats through a multitude of acquired virulence factors. Its presence affects the food-processing industry and causes food poisoning, being also a major economic burden for the food, agriculture, and health sectors. Bacteriophages are emerging as an appealing strategy to mitigate bacterial pathogens, including specific E. coli pathovars, without exerting a deleterious effect on humans and animals. This review globally analyzes the applied research on E. coli phages for veterinary, food, and human use. It starts by describing the pathogenic E. coli pathotypes and their relevance in human and animal context. The idea that phages can be used as a One Health approach to control and interrupt the transmission routes of pathogenic E. coli is sustained through an exhaustive revision of the recent literature. The emerging phage formulations, genetic engineering and encapsulation technologies are also discussed as a means of improving phage-based control strategies, with a particular focus on E. coli pathogens.
Collapse
Affiliation(s)
- Ana Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Carla Dias
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Ricardo Oliveira
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Carina Almeida
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Pablo Fuciños
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Sanna Sillankorva
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga, Portugal
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
7
|
Kazaka T, Zrelovs N, Akopjana I, Bogans J, Jansons J, Dislers A, Kazaks A. Recombinant design of the enzymatically active domain of phage Enc34 endolysin to improve its activity against Gram-negative bacteria. FEMS Microbiol Lett 2024; 371:fnae103. [PMID: 39673269 DOI: 10.1093/femsle/fnae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/29/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
Endolysins are bacteriophage-encoded peptidoglycan-degrading enzymes with potential applications for treating multidrug-resistant bacterial infections. While exogenously applied endolysins are active against Gram-positive bacteria in their native form, Gram-negative bacteria are protected from such activity of most native endolysins by an outer membrane. However, it was shown that recombinant endolysins can be designed to efficiently lyse Gram-negative bacteria from without as well. During our previous efforts, we purified and structurally characterized the enzymatically active domain (EAD) of phage Enc34 endolysin. In this work, we investigated the lytic potential of products resulting from different variants of fusions involving this EAD with a panel of selected antimicrobial peptides. A set of constructs was generated and expressed in Escherichia coli cells. While most such recombinant proteins accumulated intracellularly, some of them could lyse cells from within and appear in the expression medium. The fusion protein variants produced were purified and tested for their bactericidal activity against Gram-negative bacteria. The best candidate caused rapid degradation of E. coli XL1-Blue cells during the first minutes after addition, reducing the viable cell count more than three-fold. We believe that these results might be helpful in the design of new antibacterial tools.
Collapse
Affiliation(s)
- Tatjana Kazaka
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Nikita Zrelovs
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Andris Dislers
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| |
Collapse
|
8
|
Yang Y, Chen IA. Visualization of Engineered M13 Phages Bound to Bacterial Targets by Transmission Electron Microscopy. Methods Mol Biol 2024; 2793:175-183. [PMID: 38526731 PMCID: PMC11296667 DOI: 10.1007/978-1-0716-3798-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The filamentous phage M13 is one of the most well-studied and characterized phages, particularly since it was introduced as a scaffold for phage display, a technique to express and evolve fusion proteins on the M13 phage's coat to study protein or peptide binding interactions. Since phages can be engineered or evolved to specifically bind to a variety of targets, engineered M13 phages have been explored for applications such as drug delivery, biosensing, and cancer therapy, among others. Specifically, with the rising challenge of antimicrobial resistance among bacteria, chimeric M13 phages have been explored both as detection and therapeutic agents due to the flexibility in tuning target specificity. Transmission electron microscopy (TEM) is a powerful tool enabling researchers to directly visualize and characterize binding of phages to bacterial surfaces. However, the filamentous phage structure poses a challenge for this technique, as the phages have similar morphology to bacterial structures such as pili. In order to differentiate between bacterial structures and the filamentous phages, here we describe a protocol to prepare TEM samples of engineered M13 phages bound to bacterial cells, in which the phage virions have been specifically labeled by decoration of the major capsid proteins with gold nanoparticles. This protocol enables clear visualization and unambiguous identification of attached filamentous phages within the context of bacterial cells expressing numerous pili.
Collapse
Affiliation(s)
- Yanxi Yang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Mahmud MR, Tamanna SK, Akter S, Mazumder L, Akter S, Hasan MR, Acharjee M, Esti IZ, Islam MS, Shihab MMR, Nahian M, Gulshan R, Naser S, Pirttilä AM. Role of bacteriophages in shaping gut microbial community. Gut Microbes 2024; 16:2390720. [PMID: 39167701 PMCID: PMC11340752 DOI: 10.1080/19490976.2024.2390720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Phages are the most diversified and dominant members of the gut virobiota. They play a crucial role in shaping the structure and function of the gut microbial community and consequently the health of humans and animals. Phages are found mainly in the mucus, from where they can translocate to the intestinal organs and act as a modulator of gut microbiota. Understanding the vital role of phages in regulating the composition of intestinal microbiota and influencing human and animal health is an emerging area of research. The relevance of phages in the gut ecosystem is supported by substantial evidence, but the importance of phages in shaping the gut microbiota remains unclear. Although information regarding general phage ecology and development has accumulated, detailed knowledge on phage-gut microbe and phage-human interactions is lacking, and the information on the effects of phage therapy in humans remains ambiguous. In this review, we systematically assess the existing data on the structure and ecology of phages in the human and animal gut environments, their development, possible interaction, and subsequent impact on the gut ecosystem dynamics. We discuss the potential mechanisms of prophage activation and the subsequent modulation of gut bacteria. We also review the link between phages and the immune system to collect evidence on the effect of phages on shaping the gut microbial composition. Our review will improve understanding on the influence of phages in regulating the gut microbiota and the immune system and facilitate the development of phage-based therapies for maintaining a healthy and balanced gut microbiota.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Molecular Systems Biology, Faculty of Technology, University of Turku, Turku, Finland
| | - Md. Saidul Islam
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Md. Nahian
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Rubaiya Gulshan
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Sadia Naser
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | |
Collapse
|
10
|
Bhowmik P, Modi B, Roy P, Chowdhury A. Strategies to combat Gram-negative bacterial resistance to conventional antibacterial drugs: a review. Osong Public Health Res Perspect 2023; 14:333-346. [PMID: 37920891 PMCID: PMC10626324 DOI: 10.24171/j.phrp.2022.0323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/11/2023] [Accepted: 08/15/2023] [Indexed: 11/04/2023] Open
Abstract
The emergence of antimicrobial resistance raises the fear of untreatable diseases. Antimicrobial resistance is a multifaceted and dynamic phenomenon that is the cumulative result of different factors. While Gram-positive pathogens, such as methicillin-resistant Staphylococcus aureus and Clostridium difficile, were previously the most concerning issues in the field of public health, Gram-negative pathogens are now of prime importance. The World Health Organization's priority list of pathogens mostly includes multidrug-resistant Gram-negative organisms particularly carbapenem-resistant Enterobacterales, carbapenem-resistant Pseudomonas aeruginosa, and extensively drug-resistant Acinetobacter baumannii. The spread of Gram-negative bacterial resistance is a global issue, involving a variety of mechanisms. Several strategies have been proposed to control resistant Gram-negative bacteria, such as the development of antimicrobial auxiliary agents and research into chemical compounds with new modes of action. Another emerging trend is the development of naturally derived antibacterial compounds that aim for targets novel areas, including engineered bacteriophages, probiotics, metal-based antibacterial agents, odilorhabdins, quorum sensing inhibitors, and microbiome-modifying agents. This review focuses on the current status of alternative treatment regimens against multidrug-resistant Gram-negative bacteria, aiming to provide a snapshot of the situation and some information on the broader context.
Collapse
Affiliation(s)
- Priyanka Bhowmik
- Department of Biological Sciences, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Barkha Modi
- Department of Microbiology, Techno India University, Kolkata, India
| | - Parijat Roy
- Department of Biological Sciences, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Antarika Chowdhury
- Department of Biological Sciences, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| |
Collapse
|
11
|
Zhao X, Li C, Yang H, Wei H, Li Y. Antibacterial Activity of a Lysin LysP53 against Streptococcus mutans. J Dent Res 2023; 102:1231-1240. [PMID: 37698342 DOI: 10.1177/00220345231182675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Dental caries is a common disease affecting quality of life globally. In the present study, we found that a bacteriophage lysin LysP53 against Acinetobacter baumannii possesses selective activity on Streptococcus mutans, the main etiological agent of dental caries, even in low pH caries microenvironments, whereas only minor LysP53 activity was detected against Streptococcus sanguinis, Streptococcus oralis, and Streptococcus mitis. Testing activity against S. mutans planktonic cells showed that 4 μM LysP53 could kill more than 84% of S. mutans within 1 min in buffer with optimal pHs ranging from 4.0 to 6.5. Daily application of LysP53 on biofilms formed in BHI medium supplemented or not with sucrose could reduce exopolysaccharides, expression of genes related to acid resistance and adhesion, and the number of live bacteria in the biofilms. LysP53 treatment also showed similar effects as 0.12% chlorhexidine in preventing enamel demineralization due to S. mutans biofilms, as well as effective removal of S. mutans colonization of tooth surfaces in mice without observed toxic effects. Because of its selective activity against main cariogenic bacteria and good activity in low pH caries microenvironments, it is advantageous to use LysP53 as an active agent for preventing caries.
Collapse
Affiliation(s)
- X Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - C Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - H Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - H Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Y Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
12
|
Wang L, Dekker M, Heising J, Zhao L, Fogliano V. Food matrix design can influence the antimicrobial activity in the food systems: A narrative review. Crit Rev Food Sci Nutr 2023; 64:8963-8989. [PMID: 37154045 DOI: 10.1080/10408398.2023.2205937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Antimicrobial agents are safe preservatives having the ability to protect foods from microbial spoilage and extend their shelf life. Many factors, including antimicrobials' chemical features, storage environments, delivery methods, and diffusion in foods, can affect their antimicrobial activities. The physical-chemical characteristics of the food itself play an important role in determining the efficacy of antimicrobial agents in foods; however the mechanisms behind it have not been fully explored. This review provides new insights and comprehensive knowledge regarding the impacts of the food matrix, including the food components and food (micro)structures, on the activities of antimicrobial agents. Studies of the last 10 years regarding the influences of the food structure on the effects of antimicrobial agents against the microorganisms' growth were summarized. The mechanisms underpinning the loss of the antimicrobial agents' activity in foods are proposed. Finally, some strategies/technologies to improve the protection of antimicrobial agents in specific food categories are discussed.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, PR China
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Matthijs Dekker
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Jenneke Heising
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, PR China
| | - Vincenzo Fogliano
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
13
|
Arivarasan VK. Unlocking the potential of phages: Innovative approaches to harnessing bacteriophages as diagnostic tools for human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:133-149. [PMID: 37770168 DOI: 10.1016/bs.pmbts.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Phages, viruses that infect bacteria, have been explored as promising tools for the detection of human disease. By leveraging the specificity of phages for their bacterial hosts, phage-based diagnostic tools can rapidly and accurately detect bacterial infections in clinical samples. In recent years, advances in genetic engineering and biotechnology have enabled the development of more sophisticated phage-based diagnostic tools, including those that express reporter genes or enzymes, or target specific virulence factors or antibiotic resistance genes. However, despite these advancements, there are still challenges and limitations to the use of phage-based diagnostic tools, including concerns over phage safety and efficacy. This review aims to provide a comprehensive overview of the current state of phage-based diagnostic tools, including their advantages, limitations, and potential for future development. By addressing these issues, we hope to contribute to the ongoing efforts to develop safe and effective phage-based diagnostic tools for the detection of human disease.
Collapse
Affiliation(s)
- Vishnu Kirthi Arivarasan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
14
|
Khambhati K, Bhattacharjee G, Gohil N, Dhanoa GK, Sagona AP, Mani I, Bui NL, Chu D, Karapurkar JK, Jang SH, Chung HY, Maurya R, Alzahrani KJ, Ramakrishna S, Singh V. Phage engineering and phage-assisted CRISPR-Cas delivery to combat multidrug-resistant pathogens. Bioeng Transl Med 2023; 8:e10381. [PMID: 36925687 PMCID: PMC10013820 DOI: 10.1002/btm2.10381] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/30/2022] [Accepted: 07/16/2022] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance ranks among the top threats to humanity. Due to the frequent use of antibiotics, society is facing a high prevalence of multidrug resistant pathogens, which have managed to evolve mechanisms that help them evade the last line of therapeutics. An alternative to antibiotics could involve the use of bacteriophages (phages), which are the natural predators of bacterial cells. In earlier times, phages were implemented as therapeutic agents for a century but were mainly replaced with antibiotics, and considering the menace of antimicrobial resistance, it might again become of interest due to the increasing threat of antibiotic resistance among pathogens. The current understanding of phage biology and clustered regularly interspaced short palindromic repeats (CRISPR) assisted phage genome engineering techniques have facilitated to generate phage variants with unique therapeutic values. In this review, we briefly explain strategies to engineer bacteriophages. Next, we highlight the literature supporting CRISPR-Cas9-assisted phage engineering for effective and more specific targeting of bacterial pathogens. Lastly, we discuss techniques that either help to increase the fitness, specificity, or lytic ability of bacteriophages to control an infection.
Collapse
Affiliation(s)
- Khushal Khambhati
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Gargi Bhattacharjee
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Nisarg Gohil
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Gurneet K. Dhanoa
- School of Life SciencesUniversity of Warwick, Gibbet Hill CampusCoventryUnited Kindgom
| | - Antonia P. Sagona
- School of Life SciencesUniversity of Warwick, Gibbet Hill CampusCoventryUnited Kindgom
| | - Indra Mani
- Department of MicrobiologyGargi College, University of DelhiNew DelhiIndia
| | - Nhat Le Bui
- Center for Biomedicine and Community HealthInternational School, Vietnam National UniversityHanoiVietnam
| | - Dinh‐Toi Chu
- Center for Biomedicine and Community HealthInternational School, Vietnam National UniversityHanoiVietnam
- Faculty of Applied SciencesInternational School, Vietnam National UniversityHanoiVietnam
| | | | - Su Hwa Jang
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulSouth Korea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulSouth Korea
| | - Hee Yong Chung
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulSouth Korea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulSouth Korea
- College of MedicineHanyang UniversitySeoulSouth Korea
| | - Rupesh Maurya
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories SciencesCollege of Applied Medical Sciences, Taif UniversityTaifSaudi Arabia
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulSouth Korea
- College of MedicineHanyang UniversitySeoulSouth Korea
| | - Vijai Singh
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| |
Collapse
|
15
|
Zhou Z, Zhou S, Zhang X, Zeng S, Xu Y, Nie W, Zhou Y, Xu T, Chen P. Quaternary Ammonium Salts: Insights into Synthesis and New Directions in Antibacterial Applications. Bioconjug Chem 2023; 34:302-325. [PMID: 36748912 DOI: 10.1021/acs.bioconjchem.2c00598] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The overuse of antibiotics has led to the emergence of a large number of antibiotic-resistant genes in bacteria, and increasing evidence indicates that a fungicide with an antibacterial mechanism different from that of antibiotics is needed. Quaternary ammonium salts (QASs) are a biparental substance with good antibacterial properties that kills bacteria through simple electrostatic adsorption and insertion into cell membranes/altering of cell membrane permeability. Therefore, the probability of bacteria developing drug resistance is greatly reduced. In this review, we focus on the synthesis and application of single-chain QASs, double-chain QASs, heterocyclic QASs, and gemini QASs (GQASs). Some possible structure-function relationships of QASs are also summarized. As such, we hope this review will provide insight for researchers to explore more applications of QASs in the field of antimicrobials with the aim of developing systems for clinical applications.
Collapse
Affiliation(s)
- Zhenyang Zhou
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Shuguang Zhou
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 236000, China
| | - Xiran Zhang
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Shaohua Zeng
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Ying Xu
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Wangyan Nie
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Yifeng Zhou
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Pengpeng Chen
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
16
|
Anyaegbunam NJ, Anekpo CC, Anyaegbunam ZKG, Doowuese Y, Chinaka CB, Odo OJ, Sharndama HC, Okeke OP, Mba IE. The resurgence of phage-based therapy in the era of increasing antibiotic resistance: From research progress to challenges and prospects. Microbiol Res 2022; 264:127155. [PMID: 35969943 DOI: 10.1016/j.micres.2022.127155] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/23/2022]
Abstract
Phage therapy was implemented almost a century ago but was subsequently abandoned when antibiotics emerged. However, the rapid emergence of drug-resistant, which has brought to the limelight situation reminiscent of the pre-antibiotic era, coupled with the unavailability of new drugs, has triggered the quest for an alternative therapeutic approach, and this has led to the rebirth of phage-derived therapy. Phages are viruses that infect and replicate in bacterial cells. Phage therapy, especially phage-derived proteins, is being given considerable attention among scientists as an antimicrobial agent. They are used alone or in combination with other biomaterials for improved biological activity. Over the years, much has been learned about the genetics and diversity of bacteriophages. Phage cocktails are currently being exploited for treating several infectious diseases as preliminary studies involving animal models and clinical trials show promising therapeutic efficacy. However, despite its numerous advantages, this approach has several challenges and unaddressed limitations. Addressing these issues requires lots of creativity and innovative ideas from interdisciplinary fields. However, with all available indications, phage therapy could hold the solution in this era of increasing antibiotic resistance. This review discussed the potential use of phages and phage-derived proteins in treating drug-resistant bacterial infections. Finally, we highlight the progress, challenges, and knowledge gaps and evaluate key questions requiring prompt attention for the full clinical application of phage therapy.
Collapse
Affiliation(s)
| | - Chijioke Chinedu Anekpo
- Department of Ear Nose and Throat (ENT), College of Medicine, Enugu state University of Science and Technology, Enugu, Nigeria
| | - Zikora Kizito Glory Anyaegbunam
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria Nsukka, Nigeria; Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Yandev Doowuese
- Department of Microbiology, Federal University of Health Sciences, Otukpo, Nigeria
| | | | | | | | | | | |
Collapse
|
17
|
Qin S, Liu Y, Chen Y, Hu J, Xiao W, Tang X, Li G, Lin P, Pu Q, Wu Q, Zhou C, Wang B, Gao P, Wang Z, Yan A, Nadeem K, Xia Z, Wu M. Engineered Bacteriophages Containing Anti-CRISPR Suppress Infection of Antibiotic-Resistant P. aeruginosa. Microbiol Spectr 2022; 10:e0160222. [PMID: 35972246 PMCID: PMC9602763 DOI: 10.1128/spectrum.01602-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022] Open
Abstract
The therapeutic use of bacteriophages (phages) provides great promise for treating multidrug-resistant (MDR) bacterial infections. However, an incomplete understanding of the interactions between phages and bacteria has negatively impacted the application of phage therapy. Here, we explored engineered anti-CRISPR (Acr) gene-containing phages (EATPs, eat Pseudomonas) by introducing Type I anti-CRISPR (AcrIF1, AcrIF2, and AcrIF3) genes into the P. aeruginosa bacteriophage DMS3/DMS3m to render the potential for blocking P. aeruginosa replication and infection. In order to achieve effective antibacterial activities along with high safety against clinically isolated MDR P. aeruginosa through an anti-CRISPR immunity mechanism in vitro and in vivo, the inhibitory concentration for EATPs was 1 × 108 PFU/mL with a multiplicity of infection value of 0.2. In addition, the EATPs significantly suppressed the antibiotic resistance caused by a highly antibiotic-resistant PA14 infection. Collectively, these findings provide evidence that engineered phages may be an alternative, viable approach by which to treat patients with an intractable bacterial infection, especially an infection by clinically MDR bacteria that are unresponsive to conventional antibiotic therapy. IMPORTANCE Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic Gram-negative bacterium that causes severe infection in immune-weakened individuals, especially patients with cystic fibrosis, burn wounds, cancer, or chronic obstructive pulmonary disease (COPD). Treating P. aeruginosa infection with conventional antibiotics is difficult due to its intrinsic multidrug resistance. Engineered bacteriophage therapeutics, acting as highly viable alternative treatments of multidrug-resistant (MDR) bacterial infections, have great potential to break through the evolutionary constraints of bacteriophages to create next-generation antimicrobials. Here, we found that engineered anti-CRISPR (Acr) gene-containing phages (EATPs, eat Pseudomonas) display effective antibacterial activities along with high safety against clinically isolated MDR P. aeruginosa through an anti-CRISPR immunity mechanism in vitro and in vivo. EATPs also significantly suppressed the antibiotic resistance caused by a highly antibiotic-resistant PA14 infection, which may provide novel insight toward developing bacteriophages to treat patients with intractable bacterial infections, especially infections by clinically MDR bacteria that are unresponsive to conventional antibiotic therapy.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Yongan Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinrong Hu
- West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Qun Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Chuanmin Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Biao Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Pan Gao
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Shatin, Hong Kong SAR
| | - Khan Nadeem
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
18
|
Demirci S, Essawi K, Germino-Watnick P, Liu X, Hakami W, Tisdale JF. Advances in CRISPR Delivery Methods: Perspectives and Challenges. CRISPR J 2022; 5:660-676. [PMID: 36260301 PMCID: PMC9835311 DOI: 10.1089/crispr.2022.0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
With the advent of new genome editing technologies and the emphasis placed on their optimization, the genetic and phenotypic correction of a plethora of diseases sit on the horizon. Ideally, genome editing approaches would provide long-term solutions through permanent disease correction instead of simply treating patients symptomatically. Although various editing machinery options exist, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated protein) editing technique has emerged as the most popular due to its high editing efficiency, simplicity, and affordability. However, while CRISPR technology is gradually being perfected, optimization is futile without accessible, effective, and safe delivery to the desired cell or tissue. Therefore, it is important that scientists simultaneously focus on inventing and improving delivery modalities for editing machinery as well. In this review, we will discuss the critical details of viral and nonviral delivery systems, including payload, immunogenicity, efficacy in delivery, clinical application, and future directions.
Collapse
Affiliation(s)
- Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA; and College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,Address correspondence to: Selami Demirci, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA,
| | - Khaled Essawi
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA; and College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,Department of Medical Laboratory Science, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Paula Germino-Watnick
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA; and College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Xiong Liu
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA; and College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Waleed Hakami
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA; and College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,Address correspondence to: John F. Tisdale, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA,
| |
Collapse
|
19
|
Prolongation of Fate of Bacteriophages In Vivo by Polylactic-Co-Glycolic-Acid/Alginate-Composite Encapsulation. Antibiotics (Basel) 2022; 11:antibiotics11091264. [PMID: 36140043 PMCID: PMC9495427 DOI: 10.3390/antibiotics11091264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
With concern growing over antibiotics resistance, the use of bacteriophages to combat resistant bacteria has been suggested as an alternative strategy with which to enable the selective control of targeted pathogens. One major challenge that restrains the therapeutic application of bacteriophages as antibacterial agents is their short lifespan, which limits their antibacterial effect in vivo. Here, we developed a polylactic-co-glycolic acid (PLGA)/alginate-composite microsphere for increasing the lifespan of bacteriophages in vivo. The alginate matrix in PLGA microspheres encapsulated the bacteriophages and protected them against destabilization by an organic solvent. Encapsulated bacteriophages were detected in the tissue for 28 days post-administration, while the bacteriophages administered without advanced encapsulation survived in vivo for only 3–5 days. The bacteriophages with extended fate showed prophylaxis against the bacterial pathogens for 28 days post-administration. This enhanced prophylaxis is presumed to have originated from the diminished immune response against these encapsulated bacteriophages because of their controlled release. Collectively, composite encapsulation has prophylactic potential against bacterial pathogens that threaten food safety and public health.
Collapse
|
20
|
Ababi M, Tridgett M, Osgerby A, Jaramillo A. Scarless Recombineering of Phage in Lysogenic State. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2479:1-9. [PMID: 35583728 DOI: 10.1007/978-1-0716-2233-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We present a scarless recombineering-based method for introducing multiple point mutations into the genome of a temperate phage. The method uses the λ Red recombineering system to promote exogenous ssDNA oligos to anneal on the prophage lagging strand during host genome replication. DNA repair is suppressed by inducing the expression of a dominant-negative mutant protein of the methyl-directed mismatch repair system. Screening for recombinant cells without a selection marker is feasible due to its high recombination frequency, estimated as more than 40% after six cycles. The method enables scarless editing of the genome of a bacteriophage in 4-5 days.
Collapse
Affiliation(s)
- Maria Ababi
- Warwick Medical School, University of Warwick, Coventry, UK.,School of Life Sciences, University of Warwick, Coventry, UK
| | | | - Alexander Osgerby
- School of Life Sciences, University of Warwick, Coventry, UK.,Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Alfonso Jaramillo
- School of Life Sciences, University of Warwick, Coventry, UK. .,De novo Synthetic Biology Lab, I2SysBio, CSIC-University of Valencia, Paterna, Spain.
| |
Collapse
|
21
|
Kim J, Kim JC, Ahn J. Assessment of bacteriophage-encoded endolysin as a potent antimicrobial agent against antibiotic-resistant Salmonella Typhimurium. Microb Pathog 2022; 168:105576. [PMID: 35561980 DOI: 10.1016/j.micpath.2022.105576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
Abstract
This study was designed to evaluate the potential of using newly purified Salmonella phage-encoded endolysin LysPB32 as novel antibiotic alternative. The endolysin LysPB32 was characterized by analyzing pH and thermal stability, lytic spectrum, antimicrobial activity, and mutant frequency against Salmonella Typhimurium KCCM 40253 (STKCCM), S. Typhimurium ATCC 19585 (STATCC), S. Typhimurium CCARM 8009 (STCCARM), Klebsiella pneumoniae ATCC 23357 (KPATCC), K. pneumoniae CCARM 10237 (KPCCARM), Pseudomonas aeruginosa ATCC 27853 (PAATCC), Listeria monocytogenes ATCC 1911 (LMATCC), Staphylococcus aureus ATCC 25923 (SAATCC), and S. aureus CCARM 3080 (SACCARM). The molecular weight of LysPB32 is 17 kDa that was classified as N-acetyl-β-d-muramidase. The optimum activity of LysPB32 against the outer membrane (OM) permeabilized STKCCM, STATCC, and STCCARM was observed at 37 °C and pH 6.5. LysPB32 had a broad spectrum of muralytic activity against antibiotic-sensitive STKCCM (41 mOD/min), STATCC (32 mOD/min), and SBKACC (25 mOD/min) and antibiotic-resistant STCCARM (35 mOD/min) and KPCCARM (31 mOD/min). The minimum inhibitory concentrations (MICs) of polymyxin B against STKCCM, STCCARM, and STATCC were decreased by 4-, 4-, and 8-folds, respectively, when treated with LysPB32. The combination of LysPB32 and polymyxin B effectively inhibited the growth of STKCCM, STCCARM, and STATCC after 24 h of incubation at 37 °C, showing 4.9-, 4.4-, and 3.3-log reductions, respectively. The mutant frequency was low in STKCCM, STCCARM, and STATCC treated with combination of LysPB32-polymyxin B system. The results suggest the LysPB32-polymyxin system can be a potential candidate for alternative therapeutic agent to control antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jin-Chul Kim
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Juhee Ahn
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
22
|
Cernooka E, Rumnieks J, Zrelovs N, Tars K, Kazaks A. Diversity of the lysozyme fold: structure of the catalytic domain from an unusual endolysin encoded by phage Enc34. Sci Rep 2022; 12:5005. [PMID: 35322067 PMCID: PMC8943055 DOI: 10.1038/s41598-022-08765-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Endolysins are bacteriophage-encoded peptidoglycan-degrading enzymes with potential applications for treatment of multidrug-resistant bacterial infections. Hafnia phage Enc34 encodes an unusual endolysin with an N-terminal enzymatically active domain and a C-terminal transmembrane domain. The catalytic domain of the endolysin belongs to the conserved protein family PHA02564 which has no recognizable sequence similarity to other known endolysin types. Turbidity reduction assays indicate that the Enc34 enzyme is active against peptidoglycan from a variety of Gram-negative bacteria including the opportunistic pathogen Pseudomonas aeruginosa PAO1. The crystal structure of the catalytic domain of the Enc34 endolysin shows a distinctive all-helical architecture that distantly resembles the α-lobe of the lysozyme fold. Conserved catalytically important residues suggest a shared evolutionary history between the Enc34 endolysin and GH73 and GH23 family glycoside hydrolases and propose a molecular signature for substrate cleavage for a large group of peptidoglycan-degrading enzymes.
Collapse
Affiliation(s)
- Elina Cernooka
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia
| | - Janis Rumnieks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia
| | - Nikita Zrelovs
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia.,Faculty of Biology, University of Latvia, Jelgavas 1, Riga, 1004, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia.
| |
Collapse
|
23
|
Skwarczynski M, Bashiri S, Yuan Y, Ziora ZM, Nabil O, Masuda K, Khongkow M, Rimsueb N, Cabral H, Ruktanonchai U, Blaskovich MAT, Toth I. Antimicrobial Activity Enhancers: Towards Smart Delivery of Antimicrobial Agents. Antibiotics (Basel) 2022; 11:412. [PMID: 35326875 PMCID: PMC8944422 DOI: 10.3390/antibiotics11030412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
The development of effective treatments against infectious diseases is an extensive and ongoing process due to the rapid adaptation of bacteria to antibiotic-based therapies. However, appropriately designed activity enhancers, including antibiotic delivery systems, can increase the effectiveness of current antibiotics, overcoming antimicrobial resistance and decreasing the chance of contributing to further bacterial resistance. The activity/delivery enhancers improve drug absorption, allow targeted antibiotic delivery, improve their tissue and biofilm penetration and reduce side effects. This review provides insights into various antibiotic activity enhancers, including polymer, lipid, and silver-based systems, designed to reduce the adverse effects of antibiotics and improve formulation stability and efficacy against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sahra Bashiri
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ye Yuan
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zyta M Ziora
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Osama Nabil
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Keita Masuda
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Natchanon Rimsueb
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
24
|
Bacteriophage protein Gp46 is a cross-species inhibitor of nucleoid-associated HU proteins. Proc Natl Acad Sci U S A 2022; 119:2116278119. [PMID: 35193978 PMCID: PMC8892312 DOI: 10.1073/pnas.2116278119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Histone-like protein from Escherichia coli strain U93 (HU) protein is the most abundant nucleoid-associated protein in bacteria, which plays a fundamental role in chromosomal compaction and organization. It is essential for most bacteria as well as Apicomplexans, thus an important target for the development of antimicrobial and antimalaria drugs. We report Gp46 as a phage protein HU inhibitor. It inhibits HU of Bacillus subtilis by occupying its DNA binding site, thus preventing chromosome segregation during cell division. As key residues for the interaction are highly conserved, Gp46 interacts with HUs of a broad range of pathogens, including many pathogenic bacteria and Apicomplexan parasites like Plasmodium falciparum. Thus, this cross-species property could benefit antibiotic and antimalaria drug development that targets HU. The architectural protein histone-like protein from Escherichia coli strain U93 (HU) is the most abundant bacterial DNA binding protein and highly conserved among bacteria and Apicomplexan parasites. It not only binds to double-stranded DNA (dsDNA) to maintain DNA stability but also, interacts with RNAs to regulate transcription and translation. Importantly, HU is essential to cell viability for many bacteria; hence, it is an important antibiotic target. Here, we report that Gp46 from bacteriophage SPO1 of Bacillus subtilis is an HU inhibitor whose expression prevents nucleoid segregation and causes filamentous morphology and growth defects in bacteria. We determined the solution structure of Gp46 and revealed a striking negatively charged surface. An NMR-derived structural model for the Gp46–HU complex shows that Gp46 occupies the DNA binding motif of the HU and therefore, occludes DNA binding, revealing a distinct strategy for HU inhibition. We identified the key residues responsible for the interaction that are conserved among HUs of bacteria and Apicomplexans, including clinically significant Mycobacterium tuberculosis, Acinetobacter baumannii, and Plasmodium falciparum, and confirm that Gp46 can also interact with these HUs. Our findings provide detailed insight into a mode of HU inhibition that provides a useful foundation for the development of antibacteria and antimalaria drugs.
Collapse
|
25
|
A phage cocktail in controlling phage resistance development in multidrug resistant Aeromonas hydrophila with great therapeutic potential. Microb Pathog 2021; 162:105374. [PMID: 34968644 DOI: 10.1016/j.micpath.2021.105374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 10/19/2022]
Abstract
Aeromonas hydrophila (A. hydrophila) is an opportunistic pathogen of fish-human-livestock, which poses a threat to the development of aquaculture. Lytic phage has long been considered as an effective bactericidal agent. However, the rapid development of phage resistance seriously hinders the continuous application of lytic phages. In our study, a new bacteriophage vB_ AhaP_PZL-Ah8 was isolated from sewage and its characteristics and genome were investigated. Phage vB_ AhaP_PZL-Ah8 has been classified as the member of the Podoviridae family, which exhibited the latent period was about 30 min. As revealed from the genomic sequence analysis, vB_ AhaP_PZL-Ah8 covered a double-stranded genome of 40,855 bp (exhibiting 51.89% G + C content), with encoding 52 predicted open reading frames (ORFs). The results suggested that the combination of vB_ AhaP_PZL-Ah8 and another A. hydrophila phage vB_ AhaP_PZL-Ah1 could improve the therapeutic efficacy both in vitro and in vivo. The resistance mutation frequency of A. hydrophila cells infected with the mixture phage (vB_ AhaP_PZL-Ah8+ vB_ AhaP_PZL-Ah1) was significantly lower than cells treated with single phage (P <0.01). Phage therapy in vivo showed that the survival rate in the mixture phage treatment group was significantly higher than that in single phage treatment group.
Collapse
|
26
|
Yeh TK, Jean SS, Lee YL, Lu MC, Ko WC, Lin HJ, Liu PY, Hsueh PR. Bacteriophages and phage-delivered CRISPR-Cas system as antibacterial therapy. Int J Antimicrob Agents 2021; 59:106475. [PMID: 34767917 DOI: 10.1016/j.ijantimicag.2021.106475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/22/2021] [Accepted: 10/30/2021] [Indexed: 12/22/2022]
Abstract
Multidrug-resistant (MDR) bacterial infections in humans are increasing worldwide. The global spread of antimicrobial resistance poses a considerable threat to human health. Phage therapy is a promising approach to combat MDR bacteria. An increasing number of reports have been published on phage therapy and the successful application of antibacterials derived using this method. Additionally, the CRISPR-Cas system has been used to develop antimicrobials with bactericidal effects in vivo. The CRISPR-Cas system can be delivered into target bacteria in various ways, with phage-based vectors being reported as an effective method. In this review, we briefly summarise the results of randomised control trials on bacteriophage therapy. Moreover, we integrated mechanisms of the CRISPR-Cas system antimicrobials in a schematic diagram and consolidated the research on phage-delivered CRISPR-Cas system antimicrobials.
Collapse
Affiliation(s)
- Ting-Kuang Yeh
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shio-Shin Jean
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Emergency Medicine and Critical Care Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Lin Lee
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Min-Chi Lu
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine and Center for Infection Control, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsueh-Ju Lin
- Department of Medical Research, Taichung Veterans General Hospital, Tachung, Taiwan
| | - Po-Yu Liu
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, National Taiwan University, Taipei, Taiwan; Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; PhD Programme for Aging, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
27
|
Schroven K, Aertsen A, Lavigne R. Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation. FEMS Microbiol Rev 2021; 45:5902850. [PMID: 32897318 DOI: 10.1093/femsre/fuaa041] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Bacteria-infecting viruses (phages) and their hosts maintain an ancient and complex relationship. Bacterial predation by lytic phages drives an ongoing phage-host arms race, whereas temperate phages initiate mutualistic relationships with their hosts upon lysogenization as prophages. In human pathogens, these prophages impact bacterial virulence in distinct ways: by secretion of phage-encoded toxins, modulation of the bacterial envelope, mediation of bacterial infectivity and the control of bacterial cell regulation. This review builds the argument that virulence-influencing prophages hold extensive, unexplored potential for biotechnology. More specifically, it highlights the development potential of novel therapies against infectious diseases, to address the current antibiotic resistance crisis. First, designer bacteriophages may serve to deliver genes encoding cargo proteins which repress bacterial virulence. Secondly, one may develop small molecules mimicking phage-derived proteins targeting central regulators of bacterial virulence. Thirdly, bacteria equipped with phage-derived synthetic circuits which modulate key virulence factors could serve as vaccine candidates to prevent bacterial infections. The development and exploitation of such antibacterial strategies will depend on the discovery of other prophage-derived, virulence control mechanisms and, more generally, on the dissection of the mutualistic relationship between temperate phages and bacteria, as well as on continuing developments in the synthetic biology field.
Collapse
Affiliation(s)
- Kaat Schroven
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| |
Collapse
|
28
|
Nainu F, Permana AD, Djide NJN, Anjani QK, Utami RN, Rumata NR, Zhang J, Emran TB, Simal-Gandara J. Pharmaceutical Approaches on Antimicrobial Resistance: Prospects and Challenges. Antibiotics (Basel) 2021; 10:981. [PMID: 34439031 PMCID: PMC8388863 DOI: 10.3390/antibiotics10080981] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
The rapid increase in pathogenic microorganisms with antimicrobial resistant profiles has become a significant public health problem globally. The management of this issue using conventional antimicrobial preparations frequently results in an increase in pathogen resistance and a shortage of effective antimicrobials for future use against the same pathogens. In this review, we discuss the emergence of AMR and argue for the importance of addressing this issue by discovering novel synthetic or naturally occurring antibacterial compounds and providing insights into the application of various drug delivery approaches, delivered through numerous routes, in comparison with conventional delivery systems. In addition, we discuss the effectiveness of these delivery systems in different types of infectious diseases associated with antimicrobial resistance. Finally, future considerations in the development of highly effective antimicrobial delivery systems to combat antimicrobial resistance are presented.
Collapse
Affiliation(s)
- Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
| | - Nana Juniarti Natsir Djide
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
| | - Qonita Kurnia Anjani
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Rifka Nurul Utami
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
- Institute of Pharmaceutical Science, King’s College of London, London SE1 9NH, UK
| | - Nur Rahma Rumata
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo–Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
29
|
Abstract
Viruses are the most abundant biological entity on Earth, infect cellular organisms from all domains of life, and are central players in the global biosphere. Over the last century, the discovery and characterization of viruses have progressed steadily alongside much of modern biology. In terms of outright numbers of novel viruses discovered, however, the last few years have been by far the most transformative for the field. Advances in methods for identifying viral sequences in genomic and metagenomic datasets, coupled to the exponential growth of environmental sequencing, have greatly expanded the catalog of known viruses and fueled the tremendous growth of viral sequence databases. Development and implementation of new standards, along with careful study of the newly discovered viruses, have transformed and will continue to transform our understanding of microbial evolution, ecology, and biogeochemical cycles, leading to new biotechnological innovations across many diverse fields, including environmental, agricultural, and biomedical sciences.
Collapse
Affiliation(s)
- Lee Call
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; ,
| | - Stephen Nayfach
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; ,
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; ,
| |
Collapse
|
30
|
Froissart R, Brives C. Evolutionary biology and development model of medicines: A necessary 'pas de deux' for future successful bacteriophage therapy. J Evol Biol 2021; 34:1855-1866. [PMID: 34288190 DOI: 10.1111/jeb.13904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/29/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
The increase in frequency of multidrug-resistant bacteria worldwide is largely the result of the massive use of antibiotics in the second half of the 20th century. These relatively recent changes in human societies revealed the great evolutionary capacities of bacteria towards drug resistance. In this article, we hypothesize that the success of future antibacterial strategies lies in taking into account both these evolutionary processes and the way human activities influence them. Faced with the increasing prevalence of multidrug-resistant bacteria and the scarcity of new antibacterial chemical molecules, the use of bacteriophages is considered as a complementary and/or alternative therapy. After presenting the evolutionary capacities of bacteriophages and bacteria, we show how the development model currently envisaged (based on the classification of bacteriophages as medicinal products similar to antibacterial chemical molecules) ignores the evolutionary processes inherent in bacteriophage therapy. This categorization imposes to bacteriophage therapy a specific conception of what a treatment and a therapeutic scheme should be as well as its mode of production and prescription. We argue that a new development model is needed that would allow the use of therapeutic bacteriophages fully adapted (after in vitro 'bacteriophage training') to the aetiologic bacteria and/or aimed at rendering bacteria either avirulent or antibiotic-susceptible ('bacteriophage steering'). To not repeat the mistakes made with antibiotics, we must now think about and learn from the ways in which the materialities of microbes (e.g. evolutionary capacities of both bacteriophages and bacteria) are intertwined with those of societies.
Collapse
Affiliation(s)
- Rémy Froissart
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | | |
Collapse
|
31
|
Munteanu AC, Uivarosi V. Ruthenium Complexes in the Fight against Pathogenic Microorganisms. An Extensive Review. Pharmaceutics 2021; 13:874. [PMID: 34199283 PMCID: PMC8232020 DOI: 10.3390/pharmaceutics13060874] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
The widespread use of antibiotics has resulted in the emergence of drug-resistant populations of microorganisms. Clearly, one can see the need to develop new, more effective, antimicrobial agents that go beyond the explored 'chemical space'. In this regard, their unique modes of action (e.g., reactive oxygen species (ROS) generation, redox activation, ligand exchange, depletion of substrates involved in vital cellular processes) render metal complexes as promising drug candidates. Several Ru (II/III) complexes have been included in, or are currently undergoing, clinical trials as anticancer agents. Based on the in-depth knowledge of their chemical properties and biological behavior, the interest in developing new ruthenium compounds as antibiotic, antifungal, antiparasitic, or antiviral drugs has risen. This review will discuss the advantages and disadvantages of Ru (II/III) frameworks as antimicrobial agents. Some aspects regarding the relationship between their chemical structure and mechanism of action, cellular localization, and/or metabolism of the ruthenium complexes in bacterial and eukaryotic cells are discussed as well. Regarding the antiviral activity, in light of current events related to the Covid-19 pandemic, the Ru (II/III) compounds used against SARS-CoV-2 (e.g., BOLD-100) are also reviewed herein.
Collapse
Affiliation(s)
- Alexandra-Cristina Munteanu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
32
|
Chung IY, Kim BO, Han JH, Park J, Kang HK, Park Y, Cho YH. A phage protein-derived antipathogenic peptide that targets type IV pilus assembly. Virulence 2021; 12:1377-1387. [PMID: 34008466 PMCID: PMC8143254 DOI: 10.1080/21505594.2021.1926411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Phage-inspired antibacterial discovery is a new approach that recruits phages in search for antibacterials with new molecular targets, in that phages are the biological entities well adapted to hijack host bacterial physiology in favor of their own thrive. We previously observed that phage-mediated twitching motility inhibition was effective to control the acute infections caused by Pseudomonas aeruginosa and that the motility inhibition was attributed to the delocalization of PilB, the type IV pilus (TFP) assembly ATPase by binding of the 136-amino acid (aa) phage protein, Tip. Here, we created a series of truncated and point-mutant Tip proteins to identify the critical residues in the Tip bioactivity: N-terminal 80-aa residues were dispensable for the Tip activity; we identified that Asp82, Leu84, and Arg85 are crucial in the Tip function. Furthermore, a synthetic 15-aa peptide (P1) that corresponds to Leu73 to Ala87 is shown to suffice for PilB delocalization, twitching inhibition, and virulence attenuation upon exogenous administration. The transgenic flies expressing the 15-aa peptide were resistant to P. aeruginosa infections as well. Taken together, this proof-of-concept study reveals a new antipathogenic peptide hit targeting bacterial motility and provides an insight into antibacterial discovery targeting TFP assembly.
Collapse
Affiliation(s)
- In-Young Chung
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam-si, Korea
| | - Bi-O Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam-si, Korea
| | - Ju-Hyun Han
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam-si, Korea
| | - Jonggwan Park
- Department of Biomedical Science, Chosun University, Gwangju, Korea
| | - Hee Kyoung Kang
- Department of Biomedical Science, Chosun University, Gwangju, Korea
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju, Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam-si, Korea
| |
Collapse
|
33
|
Hassan AY, Lin JT, Ricker N, Anany H. The Age of Phage: Friend or Foe in the New Dawn of Therapeutic and Biocontrol Applications? Pharmaceuticals (Basel) 2021; 14:199. [PMID: 33670836 PMCID: PMC7997343 DOI: 10.3390/ph14030199] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Extended overuse and misuse of antibiotics and other antibacterial agents has resulted in an antimicrobial resistance crisis. Bacteriophages, viruses that infect bacteria, have emerged as a legitimate alternative antibacterial agent with a wide scope of applications which continue to be discovered and refined. However, the potential of some bacteriophages to aid in the acquisition, maintenance, and dissemination of negatively associated bacterial genes, including resistance and virulence genes, through transduction is of concern and requires deeper understanding in order to be properly addressed. In particular, their ability to interact with mobile genetic elements such as plasmids, genomic islands, and integrative conjugative elements (ICEs) enables bacteriophages to contribute greatly to bacterial evolution. Nonetheless, bacteriophages have the potential to be used as therapeutic and biocontrol agents within medical, agricultural, and food processing settings, against bacteria in both planktonic and biofilm environments. Additionally, bacteriophages have been deployed in developing rapid, sensitive, and specific biosensors for various bacterial targets. Intriguingly, their bioengineering capabilities show great promise in improving their adaptability and effectiveness as biocontrol and detection tools. This review aims to provide a balanced perspective on bacteriophages by outlining advantages, challenges, and future steps needed in order to boost their therapeutic and biocontrol potential, while also providing insight on their potential role in contributing to bacterial evolution and survival.
Collapse
Affiliation(s)
- Ahmad Y. Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada;
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Janet T. Lin
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Nicole Ricker
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada;
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
34
|
Aitolo GL, Adeyemi OS, Afolabi BL, Owolabi AO. Neisseria gonorrhoeae Antimicrobial Resistance: Past to Present to Future. Curr Microbiol 2021; 78:867-878. [PMID: 33528603 DOI: 10.1007/s00284-021-02353-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 01/10/2021] [Indexed: 11/27/2022]
Abstract
Neisseria gonorrhoeae (gonococcus) is a Gram-negative bacterium that causes gonorrhoea-a sexually transmitted disease. This gonococcus has progressively developed resistance to most of the available antimicrobials. Only a few countries around the world have been able to run extensive surveillance programmes on gonococcal infection and antimicrobial resistance, raising a global concern. Thus, this review focuses on the mechanisms of resistance to recommended antimicrobials in the past and present time. The approaches by the scientific community in the development of novel technologies such as whole-genome sequencing to predict antimicrobial resistance, track gonococcal transmission, as well as, introduce new therapeutics like Solithromycin, Zoliflodacin, and Gepotidacin were also discussed.
Collapse
Affiliation(s)
- Georgina L Aitolo
- Department of Microbiology, Landmark University, Omu-Aran, Kwara State, Nigeria.
| | - Oluyomi S Adeyemi
- Professor of Biochemistry Medicinal Biochemistry, Infectious Diseases, Nanomedicine & Toxicology Laboratory, Department of Biochemistry, Landmark University, Omu-Aran, Kwara State, Nigeria
| | | | | |
Collapse
|
35
|
Penziner S, Schooley RT, Pride DT. Animal Models of Phage Therapy. Front Microbiol 2021; 12:631794. [PMID: 33584632 PMCID: PMC7876411 DOI: 10.3389/fmicb.2021.631794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/11/2021] [Indexed: 01/21/2023] Open
Abstract
Amidst the rising tide of antibiotic resistance, phage therapy holds promise as an alternative to antibiotics. Most well-designed studies on phage therapy exist in animal models. In order to progress to human clinical trials, it is important to understand what these models have accomplished and determine how to improve upon them. Here we provide a review of the animal models of phage therapy in Western literature and outline what can be learned from them in order to bring phage therapy closer to becoming a feasible alternative to antibiotics in clinical practice.
Collapse
Affiliation(s)
- Samuel Penziner
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Robert T Schooley
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - David T Pride
- Department of Medicine, University of California, San Diego, San Diego, CA, United States.,Department of Pathology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
36
|
Royer S, Morais AP, da Fonseca Batistão DW. Phage therapy as strategy to face post-antibiotic era: a guide to beginners and experts. Arch Microbiol 2021; 203:1271-1279. [PMID: 33474609 DOI: 10.1007/s00203-020-02167-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/20/2020] [Accepted: 12/27/2020] [Indexed: 01/05/2023]
Abstract
Interest in the therapeutic use of bacteriophages (phages) has emerged in recent years, driven mainly by the antimicrobial resistance crisis. This review aimed to summarize some important studies addressing the use of phages as a therapeutic alternative for multiresistant bacterial infections. To this end, a literature search was conducted to address the efficacy and versatility of phage therapy, the advantages and disadvantages of its use, and potential limitations for the application of phage therapy that need to be overcome, especially in Western countries. Thus, this review highlights that phage therapy may be a promising route in the treatment of infections caused by multidrug-resistant pathogens and that a combined approach has the potential to prolong the life of the current available antimicrobials. In addition, standardized clinical trials using monoclonal or polyclonal phages, alone or in combination with antimicrobials, are crucial to determine the real potential of these treatments in clinical practice.
Collapse
Affiliation(s)
- Sabrina Royer
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil. .,Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil.
| | - Aléxia Pinheiro Morais
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil.,Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | | |
Collapse
|
37
|
cDNA-Derived RNA Phage Assembly Reveals Critical Residues in the Maturation Protein of the Pseudomonas aeruginosa Leviphage PP7. J Virol 2021; 95:JVI.01643-20. [PMID: 33177196 DOI: 10.1128/jvi.01643-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022] Open
Abstract
PP7 is a leviphage, with a single-stranded RNA genome, that infects Pseudomonas aeruginosa PAO1. A reverse genetic system for PP7 was previously created by using reverse-transcribed cDNA (PP7O) from a virion-derived RNA genome. Here, we have found that the PP7O cDNA contained 20 nucleotide differences from the PP7 genome sequence deposited in the database. We created another reverse genetic system exploiting chemically synthesized cDNA (PP7S) based on the database sequence. Unlike PP7O, which yielded infectious PP7 virions, PP7S-derived particles were incapable of plaque formation on PAO1 cells, which was restored in the PAO1 cells expressing the maturation protein (MP) from PP7O Using this reverse genetic system, we revealed two amino acid residues involved in the known roles of MP (i.e., adsorption and genome replication), fortuitously providing a lesson that the viral RNA genome sequencing needs functional verification, possibly by a reverse genetic system.IMPORTANCE The biological significance of RNA phages has been largely ignored, ironically, because few studies have focused on RNA phages. As an initial attempt to properly represent RNA phages in the phageome, we previously created, by using reverse-transcribed cDNA, a reverse genetic system for the small RNA phage PP7, which infects the opportunistic human pathogen Pseudomonas aeruginosa We report another system by using chemically synthesized cDNA based on the database genome that has 20 nucleotide differences from the previous cDNA. Investigation of those cDNA-derived phage virions revealed that two amino acids of the maturation protein are crucial for the normal phage lifecycle at different steps. Our study provides insight into the molecular basis for the RNA phage lifecycle and a lesson that the RNA genome sequencing needs to be carefully validated by cDNA-based phage assembly systems.
Collapse
|
38
|
Fage C, Lemire N, Moineau S. Delivery of CRISPR-Cas systems using phage-based vectors. Curr Opin Biotechnol 2020; 68:174-180. [PMID: 33360715 DOI: 10.1016/j.copbio.2020.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance has spread quickly on a worldwide scale, reducing therapeutic options for bacterial infections. CRISPR-Cas is an adaptive immune system found in many prokaryotes that can be designed to target bacterial genomes, leading to cell death. Repurposing the CRISPR-Cas system as a therapeutic strategy offers an attractive way to overcome antimicrobial resistance. However, this strategy requires efficient vectors for the CRISPR-Cas system to reach the bacterial genomes. Engineered phages offer an attractive option as cargo delivery vectors. In this review, we discuss the production of phage-based vectors and the relevance of using repurposed CRISPR-Cas systems as antimicrobials. We also discuss recent progress in phage engineering that can potentially overcome the limitations and increase the efficiency of CRISPR-Cas delivery.
Collapse
Affiliation(s)
- Clément Fage
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada; Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, Canada
| | - Nicolas Lemire
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada; Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada; Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, Canada; Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
39
|
Paczesny J, Bielec K. Application of Bacteriophages in Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1944. [PMID: 33003494 PMCID: PMC7601235 DOI: 10.3390/nano10101944] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
Bacteriophages (phages for short) are viruses, which have bacteria as hosts. The single phage body virion, is a colloidal particle, often possessing a dipole moment. As such, phages were used as perfectly monodisperse systems to study various physicochemical phenomena (e.g., transport or sedimentation in complex fluids), or in the material science (e.g., as scaffolds). Nevertheless, phages also execute the life cycle to multiply and produce progeny virions. Upon completion of the life cycle of phages, the host cells are usually destroyed. Natural abilities to bind to and kill bacteria were a starting point for utilizing phages in phage therapies (i.e., medical treatments that use phages to fight bacterial infections) and for bacteria detection. Numerous applications of phages became possible thanks to phage display-a method connecting the phenotype and genotype, which allows for selecting specific peptides or proteins with affinity to a given target. Here, we review the application of bacteriophages in nanoscience, emphasizing bio-related applications, material science, soft matter research, and physical chemistry.
Collapse
Affiliation(s)
- Jan Paczesny
- Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | | |
Collapse
|
40
|
Phage-based target discovery and its exploitation towards novel antibacterial molecules. Curr Opin Biotechnol 2020; 68:1-7. [PMID: 33007632 DOI: 10.1016/j.copbio.2020.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/05/2023]
Abstract
The deeply intertwined evolutionary history between bacteriophages and bacteria has endowed phages with highly specific mechanisms to hijack bacterial cell metabolism for their propagation. Here, we present a comprehensive, phage-driven strategy to reveal novel antibacterial targets by the exploitation of phage-bacteria interactions. This strategy will enable the design of small molecules, which mimic the inhibitory phage proteins, and allow the subsequent hit-to-lead development of these antimicrobial compounds. This proposed small molecule approach is distinct from phage therapy and phage enzyme-based antimicrobials and may produce a more sustainable generation of new antibiotics that exploit novel bacterial targets and act in a pathogen-specific manner.
Collapse
|
41
|
Gutiérrez B, Domingo-Calap P. Phage Therapy in Gastrointestinal Diseases. Microorganisms 2020; 8:microorganisms8091420. [PMID: 32947790 PMCID: PMC7565598 DOI: 10.3390/microorganisms8091420] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal tract microbiota plays a key role in the regulation of the pathogenesis of several gastrointestinal diseases. In particular, the viral fraction, composed essentially of bacteriophages, influences homeostasis by exerting a selective pressure on the bacterial communities living in the tract. Gastrointestinal inflammatory diseases are mainly induced by bacteria, and have risen due to the emergence of antibiotic resistant strains. In the lack of effective treatments, phage therapy has been proposed as a clinical alternative to restore intestinal eubiosis, thanks to its immunomodulatory and bactericidal effect against bacterial pathogens, such as Clostridioides difficile in ulcerative colitis and invasive adherent Escherichia coli in Crohn’s disease. In addition, genetically modified temperate phages could be used to suppress the transcription of bacterial virulence factors. In this review, we will highlight the latest advances in research in the field, as well as the clinical trials based on phage therapy in the area of gastroenterology.
Collapse
Affiliation(s)
- Beatriz Gutiérrez
- Department of Genetics, Universitat de València, 46100 Valencia, Spain;
| | - Pilar Domingo-Calap
- Department of Genetics, Universitat de València, 46100 Valencia, Spain;
- Institute for Integrative Systems Biology, ISysBio, Universitat de València-CSIC, 46980 Valencia, Spain
- Correspondence: ; Tel.: +34-963-543-261
| |
Collapse
|
42
|
Kieft K, Zhou Z, Anantharaman K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. MICROBIOME 2020; 8:90. [PMID: 32522236 PMCID: PMC7288430 DOI: 10.1186/s40168-020-00867-0] [Citation(s) in RCA: 466] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/13/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Viruses are central to microbial community structure in all environments. The ability to generate large metagenomic assemblies of mixed microbial and viral sequences provides the opportunity to tease apart complex microbiome dynamics, but these analyses are currently limited by the tools available for analyses of viral genomes and assessing their metabolic impacts on microbiomes. DESIGN Here we present VIBRANT, the first method to utilize a hybrid machine learning and protein similarity approach that is not reliant on sequence features for automated recovery and annotation of viruses, determination of genome quality and completeness, and characterization of viral community function from metagenomic assemblies. VIBRANT uses neural networks of protein signatures and a newly developed v-score metric that circumvents traditional boundaries to maximize identification of lytic viral genomes and integrated proviruses, including highly diverse viruses. VIBRANT highlights viral auxiliary metabolic genes and metabolic pathways, thereby serving as a user-friendly platform for evaluating viral community function. VIBRANT was trained and validated on reference virus datasets as well as microbiome and virome data. RESULTS VIBRANT showed superior performance in recovering higher quality viruses and concurrently reduced the false identification of non-viral genome fragments in comparison to other virus identification programs, specifically VirSorter, VirFinder, and MARVEL. When applied to 120,834 metagenome-derived viral sequences representing several human and natural environments, VIBRANT recovered an average of 94% of the viruses, whereas VirFinder, VirSorter, and MARVEL achieved less powerful performance, averaging 48%, 87%, and 71%, respectively. Similarly, VIBRANT identified more total viral sequence and proteins when applied to real metagenomes. When compared to PHASTER, Prophage Hunter, and VirSorter for the ability to extract integrated provirus regions from host scaffolds, VIBRANT performed comparably and even identified proviruses that the other programs did not. To demonstrate applications of VIBRANT, we studied viromes associated with Crohn's disease to show that specific viral groups, namely Enterobacteriales-like viruses, as well as putative dysbiosis associated viral proteins are more abundant compared to healthy individuals, providing a possible viral link to maintenance of diseased states. CONCLUSIONS The ability to accurately recover viruses and explore viral impacts on microbial community metabolism will greatly advance our understanding of microbiomes, host-microbe interactions, and ecosystem dynamics. Video Abstract.
Collapse
Affiliation(s)
- Kristopher Kieft
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
43
|
Mühlen S, Dersch P. Treatment Strategies for Infections With Shiga Toxin-Producing Escherichia coli. Front Cell Infect Microbiol 2020; 10:169. [PMID: 32435624 PMCID: PMC7218068 DOI: 10.3389/fcimb.2020.00169] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/31/2020] [Indexed: 01/07/2023] Open
Abstract
Infections with Shiga toxin-producing Escherichia coli (STEC) cause outbreaks of severe diarrheal disease in children and the elderly around the world. The severe complications associated with toxin production and release range from bloody diarrhea and hemorrhagic colitis to hemolytic-uremic syndrome, kidney failure, and neurological issues. As the use of antibiotics for treatment of the infection has long been controversial due to reports that antibiotics may increase the production of Shiga toxin, the recommended therapy today is mainly supportive. In recent years, a variety of alternative treatment approaches such as monoclonal antibodies or antisera directed against Shiga toxin, toxin receptor analogs, and several vaccination strategies have been developed and evaluated in vitro and in animal models. A few strategies have progressed to the clinical trial phase. Here, we review the current understanding of and the progress made in the development of treatment options against STEC infections and discuss their potential.
Collapse
Affiliation(s)
- Sabrina Mühlen
- Institute for Infectiology, University of Münster, Münster, Germany.,German Center for Infection Research (DZIF), Associated Site University of Münster, Münster, Germany
| | - Petra Dersch
- Institute for Infectiology, University of Münster, Münster, Germany.,German Center for Infection Research (DZIF), Associated Site University of Münster, Münster, Germany
| |
Collapse
|
44
|
Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages. Proc Natl Acad Sci U S A 2020; 117:1951-1961. [PMID: 31932441 PMCID: PMC6994977 DOI: 10.1073/pnas.1913234117] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
New methods for detecting and killing antibiotic-resistant, Gram-negative bacteria are of prime interest for a wide variety of applications. While phages have long been considered as potential antibacterial agents, many concerns about phage therapy stem from the fact that phages are replicating, evolvable entities whose biology is poorly understood in most cases. These concerns could be addressed by destroying the phage immediately upon use. We accomplish this by conjugating phages to gold nanorods, whose excitation by near-infrared light causes localized heating that essentially cooks nearby bacteria. Thus, the phages deliver gold nanorods to the targeted bacteria, and the nanorods destroy both bacteria and phages simultaneously. This strategy transforms phages from an evolving biological entity into a controlled, drug-like reagent. The use of bacteriophages (phages) for antibacterial therapy is under increasing consideration to treat antimicrobial-resistant infections. Phages have evolved multiple mechanisms to target their bacterial hosts, such as high-affinity, environmentally hardy receptor-binding proteins. However, traditional phage therapy suffers from multiple challenges stemming from the use of an exponentially replicating, evolving entity whose biology is not fully characterized (e.g., potential gene transduction). To address this problem, we conjugate the phages to gold nanorods, creating a reagent that can be destroyed upon use (termed “phanorods”). Chimeric phages were engineered to attach specifically to several Gram-negative organisms, including the human pathogens Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae, and the plant pathogen Xanthomonas campestris. The bioconjugated phanorods could selectively target and kill specific bacterial cells using photothermal ablation. Following excitation by near-infrared light, gold nanorods release energy through nonradiative decay pathways, locally generating heat that efficiently kills targeted bacterial cells. Specificity was highlighted in the context of a P. aeruginosa biofilm, in which phanorod irradiation killed bacterial cells while causing minimal damage to epithelial cells. Local temperature and viscosity measurements revealed highly localized and selective ablation of the bacteria. Irradiation of the phanorods also destroyed the phages, preventing replication and reducing potential risks of traditional phage therapy while enabling control over dosing. The phanorod strategy integrates the highly evolved targeting strategies of phages with the photothermal properties of gold nanorods, creating a well-controlled platform for systematic killing of bacterial cells.
Collapse
|
45
|
Ngo-Duc TT, Alibay Z, Plank JM, Cheeney JE, Haberer ED. Gold-Decorated M13 I-Forms and S-Forms for Targeted Photothermal Lysis of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2020; 12:126-134. [PMID: 31800209 DOI: 10.1021/acsami.9b15682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
With the emergence of multidrug-resistant bacteria, photothermal therapy has been proposed as an alternative to antibiotics for targeting and killing pathogens. In this study, two M13 bacteriophage polymorphs were studied as nanoscaffolds for plasmonic bactericidal agents. Receptor-binding proteins found on the pIII minor coat protein targeted Escherichia coli bacteria with F-pili (F+ strain), while a gold-binding peptide motif displayed on the pVIII major coat protein templated Au nanoparticles. Temperature-dependent exposure to a chloroform-water interface transformed the native filamentous phage into either rod-like or spheroid structures. The morphology, geometry, and size of the polymorphs, as well as the receptor-binding protein and host cell receptor interaction were studied using electron microscopy. Au/template structures were formed through incubation with Au colloid, and optical absorbance was measured. Despite the closely packed Au nanoparticle layer on the surface the viral scaffolds, electron microscopy confirmed that host receptor affinity was retained. Photothermal bactericidal studies were performed using 532 nm laser irradiation with a variety of powers and exposure times. Bacterial viability was assessed using colony count. With the shape-modified M13 scaffolds, up to 64% of E. coli were killed within 20 min. These studies demonstrate the promise of i-form and s-form polymorphs for the directed plasmonic-based photothermal killing of bacteria.
Collapse
Affiliation(s)
- Tam-Triet Ngo-Duc
- Materials Science and Engineering Program , University of California , Riverside 92521 , United States
| | - Zaira Alibay
- Materials Science and Engineering Program , University of California , Riverside 92521 , United States
| | - Joshua M Plank
- Department of Electrical and Computer Engineering , University of California , Riverside 92521 , United States
| | - Joseph Earl Cheeney
- Materials Science and Engineering Program , University of California , Riverside 92521 , United States
| | - Elaine D Haberer
- Materials Science and Engineering Program , University of California , Riverside 92521 , United States
- Department of Electrical and Computer Engineering , University of California , Riverside 92521 , United States
| |
Collapse
|
46
|
Kirienko NV, Rahme L, Cho YH. Editorial: Beyond Antimicrobials: Non-traditional Approaches to Combating Multidrug-Resistant Bacteria. Front Cell Infect Microbiol 2019; 9:343. [PMID: 31681623 PMCID: PMC6797549 DOI: 10.3389/fcimb.2019.00343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/24/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Laurence Rahme
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Microbiology, Harvard Medical School, Boston, MA, United States.,Shriners Hospitals for Children Boston, Boston, MA, United States
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| |
Collapse
|