1
|
Du Y, Ou L, Zheng H, Lu D, Niu Y, Bao C, Zhang M, Mi Z. Proteomic and metabolomic analysis of the serum of patients with tick-borne encephalitis. J Proteomics 2024; 298:105111. [PMID: 38331167 DOI: 10.1016/j.jprot.2024.105111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/18/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Tick-borne encephalitis virus (TBEV) is a common virus in Europe and Asia, causing around 10,000 to 10,500 infections annually. It affects the central nervous system and poses threats to public health. However, the exact molecular mechanisms of TBE pathogenesis are not yet fully understood due to the complex interactions between the virus and its host. In this study, a comprehensive analysis was conducted to characterize the serum metabolome and proteome of adult patients infected with TBEV, in comparison to a control group of healthy individuals. Liquid chromatography tandem mass spectrometry (LC-MS) was employed to monitor metabolic and proteomic alternations throughout the progression of the disease, significant physiological changes associated with different stages of the disease were identified. A total of 44 proteins and 115 metabolites exhibited significantly alternations in the sera of patients diagnosed with TBE. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of these metabolites and proteins revealed differential enrichment of genes associated with the extracellular matrix, complement binding, hemostasis, lipid metabolism, and amino acid metabolism between TBE patients and healthy controls. We gained valuable understanding of the specific metabolites implicated in the host's responses to TBE, establishing a basis for further research on TBE disease. SIGNIFICANCE: The current investigation revealed a comprehensive and systematic differences on TBE using LC-MS platform from human serum samples of TBE patients and healthy individuals providing the immune response to the invasion of TBE.
Collapse
Affiliation(s)
- YanDan Du
- Department of clinical laboratory, Inner Mongolia Forestry General Hospital (The second Clinical Medical School of Inner Mongolia, University for the Nationalities), Hulunbuir, Inner Mongolia, China
| | - LePing Ou
- Department of clinical laboratory, Inner Mongolia Forestry General Hospital (The second Clinical Medical School of Inner Mongolia, University for the Nationalities), Hulunbuir, Inner Mongolia, China
| | - HaiJun Zheng
- Department of clinical laboratory, Inner Mongolia Forestry General Hospital (The second Clinical Medical School of Inner Mongolia, University for the Nationalities), Hulunbuir, Inner Mongolia, China
| | - DeSheng Lu
- Department of clinical laboratory, Inner Mongolia Forestry General Hospital (The second Clinical Medical School of Inner Mongolia, University for the Nationalities), Hulunbuir, Inner Mongolia, China
| | - YiQing Niu
- Department of clinical laboratory, Inner Mongolia Forestry General Hospital (The second Clinical Medical School of Inner Mongolia, University for the Nationalities), Hulunbuir, Inner Mongolia, China
| | - ChunXi Bao
- Department of clinical laboratory, Inner Mongolia Forestry General Hospital (The second Clinical Medical School of Inner Mongolia, University for the Nationalities), Hulunbuir, Inner Mongolia, China
| | - Meng Zhang
- Inner Mongolia Di An Feng Xin Medical Technology Co., LTD, Huhhot, Inner Mongolia, China
| | - ZhiHui Mi
- Inner Mongolia Di An Feng Xin Medical Technology Co., LTD, Huhhot, Inner Mongolia, China.
| |
Collapse
|
2
|
El Khoury M, Naim HY. Lipid rafts disruption by statins negatively impacts the interaction between SARS-CoV-2 S1 subunit and ACE2 in intestinal epithelial cells. Front Microbiol 2024; 14:1335458. [PMID: 38260879 PMCID: PMC10800905 DOI: 10.3389/fmicb.2023.1335458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The causative agent of the COVID-19 pandemic, SARS-CoV-2, is a virus that targets mainly the upper respiratory tract. However, it can affect other systems such as the gastrointestinal (GI) tract. Therapeutic strategies for this virus are still inconclusive and understanding its entry mechanism is important for finding effective treatments. Cholesterol is an important constituent in the structure of cellular membranes that plays a crucial role in a variety of cellular events. In addition, it is important for the infectivity and pathogenicity of several viruses. ACE2, the main receptor of SARS-CoV-2, is associated with lipid rafts which are microdomains composed of cholesterol and sphingolipids. In this study, we investigate the role of statins, lipid-lowering drugs, on the trafficking of ACE2 and the impact of cholesterol modulation on the interaction of this receptor with S1 in Caco-2 cells. The data show that fluvastatin and simvastatin reduce the expression of ACE2 to variable extents, impair its association with lipid rafts and sorting to the brush border membrane resulting in substantial reduction of its interaction with the S1 subunit of the spike protein. By virtue of the substantial effects of statins demonstrated in our study, these molecules, particularly fluvastatin, represent a promising therapeutic intervention that can be used off-label to treat SARS-CoV-2.
Collapse
Affiliation(s)
| | - Hassan Y. Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
3
|
Fei S, Xia J, Ma G, Zhang M, Sun J, Feng M, Wang Y. Apolipoprotein D facilitate the proliferation of BmNPV. Int J Biol Macromol 2022; 223:830-836. [PMID: 36372108 DOI: 10.1016/j.ijbiomac.2022.11.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
The silkworm, Bombyx mori, a model Lepidopteran specie, is an important economic insect. It is specifically infected by Bombyx mori nucleopolyhedrovirus (BmNPV), causing huge losses to the sericulture industry. Therefore, the understandings of the interaction mechanism between BmNPV and the host will help to provide the theoretical basis for the sericulture industry to control BmNPV. Apolipoprotein D (ApoD) is a member of lipid transport family and capable of binding to a variety of lipophilic ligands. ApoD is mainly used in neurodegenerative disease research in mammals, and there is little research on ApoD against viruses. Here, we explored the effects of Bombyx mori Apolipoprotein D (BmApoD) on BmNPV replication. We knocked out and overexpressed BmApoD in BmN cells and infected them with Bombyx mori nucleopolyhedrovirus (BmNPV). The results showed that BmApoD promote the replication of BmNPV in BmN cells. It was also confirmed that BmApoD promote the replication of BmNPV after knocking down BmApoD in silkworm larvae. This study is the first to explore the role of ApoD in insect-virus interactions, providing new insights into the functional role of ApoD.
Collapse
Affiliation(s)
- Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guangyu Ma
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mengmeng Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Yeyuan Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
4
|
Mastrodomenico V, LoMascolo NJ, Cruz-Pulido YE, Cunha CR, Mounce BC. Polyamine-Linked Cholesterol Incorporation in Rift Valley Fever Virus Particles Promotes Infectivity. ACS Infect Dis 2022; 8:1439-1448. [PMID: 35786847 PMCID: PMC9549488 DOI: 10.1021/acsinfecdis.2c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viruses rely on an array of cellular metabolites to replicate and form progeny virions. One set of these molecules, polyamines, are small aliphatic molecules, which are abundant in most cells, that support virus infection; however, the precise roles of polyamines in virus infection remain incompletely understood. Recent work demonstrated that polyamine metabolism supports cellular cholesterol synthesis through translation of the key transcription factor SREBP2. Here, we show that the bunyavirus Rift Valley fever virus (RVFV) relies on both cholesterol and polyamines for virus infection. Depletion of cellular cholesterol or interruption of cholesterol trafficking negatively impacts RVFV infection. Cholesterol is incorporated into RVFV virions and mediates their infectivity in a polyamine-dependent manner; we find that the virus derived from polyamine-depleted cells lacks cholesterol within the virion membrane. Conversely, we find that virion-associated cholesterol is linked to the incorporation of spermidine within the virion. Our prior work demonstrated that polyamines facilitate pH-mediated fusion and genome release, which may be a consequence of cholesterol depletion within virions. Thus, our work highlights the metabolic connection between polyamines and cholesterol synthesis to impact bunyavirus infection. These data demonstrate the connectedness between cellular metabolic pathways and reveal potential avenues of therapeutic intervention.
Collapse
Affiliation(s)
- Vincent Mastrodomenico
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Natalie J LoMascolo
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Yazmin E Cruz-Pulido
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
- Infectious Diseases and Immunology Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Christina R Cunha
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Bryan C Mounce
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
- Infectious Diseases and Immunology Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| |
Collapse
|
5
|
AbuRuz S, Al-Azayzih A, ZainAlAbdin S, Beiram R, Al Hajjar M. Clinical characteristics and risk factors for mortality among COVID-19 hospitalized patients in UAE: Does ethnic origin have an impact. PLoS One 2022; 17:e0264547. [PMID: 35235580 PMCID: PMC8890645 DOI: 10.1371/journal.pone.0264547] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/12/2022] [Indexed: 01/08/2023] Open
Abstract
Background The relationship between COVID-19 patient’s clinical characteristics and disease manifestation remains incompletely understood. The impact of ethnicity on mortality of patients with COVID-19 infection is poorly addressed in the literature. Emerging evidence suggests that many risk factors are related to symptoms severity and mortality risk, emphasizing the necessity of fulfilling this knowledge gap that may help reducing mortality from COVID-19 infections through tackling the risk factors. Aims To explore epidemiological and demographic characteristics of hospitalized COVID-19 patients from different ethnic origins living in the UAE, compare them to findings reported across the globe and determine the impact of these characteristics and ethnicity on mortality during hospitalization. Methods A single center, retrospective chart review study of hospitalized COVID-19 patients was conducted in a large COVID-19 referral hospital in UAE. The following outcomes were assessed: patients’ clinical characteristics, disease symptoms and severity, and association of ethnicity and other risk factors on 30-day in hospital mortality. Results A total of 3296 patients were recruited in this study with an average age of 44.3±13.4 years old. Preliminary data analysis indicated that 78.3% (n = 2582) of cases were considered mild. Average duration of hospital stay was 6.0±7.3 days and 4.3% (n = 143) were admitted to ICU. The most frequently reported symptoms were cough (32.6%, n = 1075) and fever (22.2%, n = 731). The 30-day mortality rate during hospitalization was 2.7% (n = 90). Many risk factors were associated with mortality during hospitalization including: age, respiratory rate (RR), creatinine, and C-reactive protein, oxygen saturation (SaO2), hemoglobin, hematocrit, ferritin, creatinine, C-reactive protein, anemia, COPD, Chronic kidney disease, dyslipidemia, Vitamin-D Deficiency, and ethnic origin (p <0.05). Multiple logistic regression analysis showed that higher mortality rates during hospitalization was associated with anemia, chronic obstructive pulmonary disease (COPD), chronic kidney disease, and Middle Eastern origin (p<0.05). Conclusion The results indicated that most COVID-19 cases were mild and morality rate was low compared to worldwide reported mortality. Mortality rate during hospitalization was higher in patients from Middle East origin with preexisting comorbidities especially anemia, COPD, and chronic kidney disease. Due to the relatively small number of mortality cases, other identified risk factors from univariate analysis such as age, respiratory rate, and Vitamin-D (VitD) deficiency should also be taken into consideration. It is crucial to stratify patients on admission based on these risk factors to help decide intensity and type of treatment which, possibly, will reduce the risk of death.
Collapse
Affiliation(s)
- Salah AbuRuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, The United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
- * E-mail:
| | - Ahmad Al-Azayzih
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Sham ZainAlAbdin
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, The United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, The United Arab Emirates University, Al Ain, United Arab Emirates
| | | |
Collapse
|
6
|
Liu CH, Huang SJ, Yu TY. Cholesterol Modulates the Interaction between HIV-1 Viral Protein R and Membrane. MEMBRANES 2021; 11:784. [PMID: 34677550 PMCID: PMC8539443 DOI: 10.3390/membranes11100784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 11/24/2022]
Abstract
Being a major metabolite for maintaining cellular homeostasis, as well as an important structural component in lipid membrane, cholesterol also plays critical roles in the life cycles of some viruses, including human immunodeficiency virus-1 (HIV-1). The involvement of cholesterol in HIV-1 infectivity, assembly and budding has made it an important research target. Viral protein R (Vpr) is an accessory protein of HIV-1, which is involved in many major events in the life cycle of HIV-1. In addition to its multi-functional roles in the HIV-1 life cycle, it is shown to interact with lipid membrane and form a cation-selective channel. In this work, we examined the effect of cholesterol on the interaction of Vpr and lipid membrane. Using calcein release assay, we found that the membrane permeability induced by the membrane binding of Vpr was significantly reduced in the presence of cholesterol in membrane. In addition, using solid-state NMR (ssNMR) spectroscopy, Vpr was shown to experience multiple chemical environments in lipid membrane, as indicated by the broad line shape of carbonyl 13C resonance of Cys-76 residue ranging from 165-178 ppm, which can be attributed to the existence of complex Vpr-membrane environments. We further showed that the presence of cholesterol in membrane will alter the distribution of Vpr in the complex membrane environments, which may explain the change of the Vpr induced membrane permeability in the presence of cholesterol.
Collapse
Affiliation(s)
- Chun-Hao Liu
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan;
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsin Chu 300044, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Roles of conserved residues in the receptor binding sites of human parainfluenza virus type 3 HN protein. Microb Pathog 2021; 158:105053. [PMID: 34147587 DOI: 10.1016/j.micpath.2021.105053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022]
Abstract
Human parainfluenza virus type 3 (hPIV-3) entry and intrahost spread through membrane fusion are initiated by two envelope glycoproteins, hemagglutinin-neuraminidase (HN) and fusion (F) protein. Binding of HN protein to the cellular receptor via its receptor-binding sites triggers conformational changes in the F protein leading to virus-cell fusion. However, little is known about the roles of individual amino acids that comprise the receptor-binding sites in the fusion process. Here, residues R192, D216, E409, R424, R502, Y530 and E549 located within the receptor-binding site Ⅰ, and residues N551 and H552 at the putative site Ⅱ were replaced by alanine with site-directed mutagenesis. All mutants except N551A displayed statistically lower hemadsorption activities ranging from 16.4% to 80.2% of the wild-type (wt) level. With standardization of the number of bound erythrocytes, similarly, other than N551A, all mutants showed reduced fusogenic activity at three successive stages: lipid mixing (hemifusion), content mixing (full fusion) and syncytium development. Kinetic measurements of the hemifusion process showed that the initial hemifusion extent for R192A, D216A, E409A, R424A, R502A, Y530A, E549A and H552A was decreased to 69.9%, 80.6%, 71.3%, 67.3%, 50.6%, 87.4%, 84.9% and 25.1%, respectively, relative to the wt, while the initial rate of hemifusion for the E409A, R424A, R502A and H552A mutants was reduced to 69.0%, 35.4%, 62.3%, 37.0%, respectively. In addition, four mutants with reduced initial hemifusion rates also showed decreased percentages of F protein cleavage from 43.4% to 56.3% of the wt. Taken together, Mutants R192A, D216A, E409A, R424A, R502A, Y530A, E549A and H552A may lead to damage on the fusion activity at initial stage of hemifusion, of which decreased extent and rate may be associated with impaired receptor binding activity resulting in the increased activation barrier of F protein and the cleavage of it, respectively.
Collapse
|
8
|
Roles of Cholesterol in Early and Late Steps of the Nipah Virus Membrane Fusion Cascade. J Virol 2021; 95:JVI.02323-20. [PMID: 33408170 DOI: 10.1128/jvi.02323-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cholesterol has been implicated in various viral life cycle steps for different enveloped viruses, including viral entry into host cells, cell-cell fusion, and viral budding from infected cells. Enveloped viruses acquire their membranes from their host cells. Although cholesterol has been associated with the binding and entry of various enveloped viruses into cells, cholesterol's exact function in the viral-cell membrane fusion process remains largely elusive, particularly for the paramyxoviruses. Furthermore, paramyxoviral fusion occurs at the host cell membrane and is essential for both virus entry (virus-cell fusion) and syncytium formation (cell-cell fusion), central to viral pathogenicity. Nipah virus (NiV) is a deadly member of the Paramyxoviridae family, which also includes Hendra, measles, mumps, human parainfluenza, and various veterinary viruses. The zoonotic NiV causes severe encephalitis, vasculopathy, and respiratory symptoms, leading to a high mortality rate in humans. We used NiV as a model to study the role of membrane cholesterol in paramyxoviral membrane fusion. We used a combination of methyl-beta cyclodextrin (MβCD), lovastatin, and cholesterol to deplete or enrich cell membrane cholesterol outside cytotoxic concentrations. We found that the levels of cellular membrane cholesterol directly correlated with the levels of cell-cell fusion induced. These phenotypes were paralleled using NiV/vesicular stomatitis virus (VSV)-pseudotyped viral infection assays. Remarkably, our mechanistic studies revealed that cholesterol reduces an early F-triggering step but enhances a late fusion pore formation step in the NiV membrane fusion cascade. Thus, our results expand our mechanistic understanding of the paramyxoviral/henipaviral entry and cell-cell fusion processes.IMPORTANCE Cholesterol has been implicated in various steps of the viral life cycle for different enveloped viruses. Nipah virus (NiV) is a highly pathogenic enveloped virus in the Henipavirus genus within the Paramyxoviridae family, capable of causing a high mortality rate in humans and high morbidity in domestic and agriculturally important animals. The role of cholesterol for NiV or the henipaviruses is unknown. Here, we show that the levels of cholesterol influence the levels of NiV-induced cell-cell membrane fusion during syncytium formation and virus-cell membrane fusion during viral entry. Furthermore, the specific role of cholesterol in membrane fusion is not well defined for the paramyxoviruses. We show that the levels of cholesterol affect an early F-triggering step and a late fusion pore formation step during the membrane fusion cascade. Thus, our results expand our mechanistic understanding of the viral entry and cell-cell fusion processes, which may aid the development of antivirals.
Collapse
|
9
|
Ripa I, Andreu S, López-Guerrero JA, Bello-Morales R. Membrane Rafts: Portals for Viral Entry. Front Microbiol 2021; 12:631274. [PMID: 33613502 PMCID: PMC7890030 DOI: 10.3389/fmicb.2021.631274] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/14/2021] [Indexed: 02/02/2023] Open
Abstract
Membrane rafts are dynamic, small (10-200 nm) domains enriched with cholesterol and sphingolipids that compartmentalize cellular processes. Rafts participate in roles essential to the lifecycle of different viral families including virus entry, assembly and/or budding events. Rafts seem to participate in virus attachment and recruitment to the cell surface, as well as the endocytic and non-endocytic mechanisms some viruses use to enter host cells. In this review, we will introduce the specific role of rafts in viral entry and define cellular factors implied in the choice of one entry pathway over the others. Finally, we will summarize the most relevant information about raft participation in the entry process of enveloped and non-enveloped viruses.
Collapse
Affiliation(s)
- Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
10
|
Kočar E, Režen T, Rozman D. Cholesterol, lipoproteins, and COVID-19: Basic concepts and clinical applications. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158849. [PMID: 33157278 PMCID: PMC7610134 DOI: 10.1016/j.bbalip.2020.158849] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022]
Abstract
Cholesterol is being recognized as a molecule involved in regulating the entry of the SARS-CoV-2 virus into the host cell. However, the data about the possible role of cholesterol carrying lipoproteins and their receptors in relation to infection are scarce and the connection of lipid-associated pathologies with COVID-19 disease is in its infancy. Herein we provide an overview of lipids and lipid metabolism in relation to COVID-19, with special attention on different forms of cholesterol. Cholesterol enriched lipid rafts represent a platform for viruses to enter the host cell by endocytosis. Generally, higher membrane cholesterol coincides with higher efficiency of COVID-19 entry. Inversely, patients with COVID-19 show lowered levels of blood cholesterol, high-density lipoproteins (HDL) and low-density lipoproteins. The modulated efficiency of viral entry can be explained by availability of SR-B1 receptor. HDL seems to have a variety of roles, from being itself a scavenger for viruses, an immune modulator and mediator of viral entry. Due to inverse roles of membrane cholesterol and lipoprotein cholesterol in COVID-19 infected patients, treatment of these patients with cholesterol lowering statins needs more attention. In conclusion, cholesterol and lipoproteins are potential markers for monitoring the viral infection status, while the lipid metabolic pathways and the composition of membranes could be targeted to selectively inhibit the life cycle of the virus as a basis for antiviral therapy.
Collapse
Affiliation(s)
- Eva Kočar
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| |
Collapse
|
11
|
Lee J, Kreutzberger AJB, Odongo L, Nelson EA, Nyenhuis DA, Kiessling V, Liang B, Cafiso DS, White JM, Tamm LK. Ebola virus glycoprotein interacts with cholesterol to enhance membrane fusion and cell entry. Nat Struct Mol Biol 2021; 28:181-189. [PMID: 33462517 PMCID: PMC7992113 DOI: 10.1038/s41594-020-00548-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Cholesterol serves critical roles in enveloped virus fusion by modulating membrane properties. The glycoprotein (GP) of Ebola virus (EBOV) promotes fusion in the endosome, a process that requires the endosomal cholesterol transporter NPC1. However, the role of cholesterol in EBOV fusion is unclear. Here we show that cholesterol in GP-containing membranes enhances fusion and the membrane-proximal external region and transmembrane (MPER/TM) domain of GP interacts with cholesterol via several glycine residues in the GP2 TM domain, notably G660. Compared to wild-type (WT) counterparts, a G660L mutation caused a more open angle between MPER and TM domains in an MPER/TM construct, higher probability of stalling at hemifusion for GP2 proteoliposomes and lower cell entry of virus-like particles (VLPs). VLPs with depleted cholesterol show reduced cell entry, and VLPs produced under cholesterol-lowering statin conditions show less frequent entry than respective controls. We propose that cholesterol-TM interactions affect structural features of GP2, thereby facilitating fusion and cell entry.
Collapse
Affiliation(s)
- Jinwoo Lee
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Alex J B Kreutzberger
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Laura Odongo
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth A Nelson
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - David A Nyenhuis
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Binyong Liang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - David S Cafiso
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Judith M White
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
12
|
Farronato M, Tadakamadla SK, Ali Quadri MF, Acharya S, Tadakamadla J, Love RM, Jamal M, Mulder R, Maspero C, Farronato D, Ivanov A, Neefs D, Cagetti MG, de Vito D, Gupta RJ, Connelly ST, Tartaglia GM. A Call for Action to Safely Deliver Oral Health Care during and Post COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6704. [PMID: 32942560 PMCID: PMC7558658 DOI: 10.3390/ijerph17186704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak started just a couple of months ago and it grew rapidly causing several deaths and morbidities. The mechanism behind the transmission of the virus is still not completely understood despite a multitude of new specific manuscripts being published daily. This article highlights the oral cavity as a possible viral transmission route into the body via the Angiotensin converting enzyme 2 receptor. It also provides guidelines for routine protective measures in the dental office while delivering oral health care.
Collapse
Affiliation(s)
- Marco Farronato
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy;
| | - Santosh K Tadakamadla
- School of Dentistry and Oral Health, Griffith University, Gold Coast, QLD 4222, Australia; (S.K.T.); (J.T.); (R.M.L.)
| | - Mir Faeq Ali Quadri
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - Shashidhar Acharya
- Department of Public Health Dentistry, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Jyothi Tadakamadla
- School of Dentistry and Oral Health, Griffith University, Gold Coast, QLD 4222, Australia; (S.K.T.); (J.T.); (R.M.L.)
| | - Robert M. Love
- School of Dentistry and Oral Health, Griffith University, Gold Coast, QLD 4222, Australia; (S.K.T.); (J.T.); (R.M.L.)
| | - Mohamed Jamal
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, UAE;
| | - Riaan Mulder
- Department of Restorative Dentistry, University of the Western Cape, Cape Town 7535, South Africa;
| | - Cinzia Maspero
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy;
| | - Davide Farronato
- Department of Medicine and Surgery, School of Dentistry, University of Insubria, 21100 Varese, Italy;
| | - Alexander Ivanov
- Pediatric Cranio-Maxillo-Facial Department—Central Research Institute of Dental and Maxillofacial Surgery, Moscow 119021, Russia;
| | - Dirk Neefs
- Dierick Dental Care & B-dent Dental Clinic, 2000 Antwerp, Belgium;
| | - Maria Grazia Cagetti
- WHO Collaborating Centre for Epidemiology and Community Dentistry of Milan, 20142 Milan, Italy;
| | - Danila de Vito
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Rishi J. Gupta
- San Francisco Veteran’s Affairs Health Care, Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (R.J.G.); (S.T.C.)
| | - Stephen Thaddeus Connelly
- San Francisco Veteran’s Affairs Health Care, Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (R.J.G.); (S.T.C.)
| | - Gianluca M. Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy;
| |
Collapse
|
13
|
Garrido PF, Calvelo M, Blanco-González A, Veleiro U, Suárez F, Conde D, Cabezón A, Piñeiro Á, Garcia-Fandino R. The Lord of the NanoRings: Cyclodextrins and the battle against SARS-CoV-2. Int J Pharm 2020; 588:119689. [PMID: 32717282 PMCID: PMC7381410 DOI: 10.1016/j.ijpharm.2020.119689] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
A handful of singular structures and laws can be observed in nature. They are not always evident but, once discovered, it seems obvious how to take advantage of them. In chemistry, the discovery of reproducible patterns stimulates the imagination to develop new functional materials and technological or medical applications. Two clear examples are helical structures at different levels in biological polymers as well as ring and spherical structures of different size and composition. Rings are intuitively observed as holes able to thread elongated structures. A large number of real and fictional stories have rings as inanimate protagonists. The design, development or just discovering of a special ring has often been taken as a symbol of power or success. Several examples are the Piscatory Ring wore by the Pope of the Catholic Church, the NBA Championship ring and the One Ring created by the Dark Lord Sauron in the epic story The Lord of the Rings. In this work, we reveal the power of another extremely powerful kind of rings to fight against the pandemic which is currently affecting the whole world. These rings are as small as ~1 nm of diameter and so versatile that they are able to participate in the attack of viruses, and specifically SARS-CoV-2, in a large range of different ways. This includes the encapsulation and transport of specific drugs, as adjuvants to stabilize proteins, vaccines or other molecules involved in the infection, as cholesterol trappers to destabilize the virus envelope, as carriers for RNA therapies, as direct antiviral drugs and even to rescue blood coagulation upon heparin treatment. “One ring to rule them all. One ring to find them. One ring to bring them all and in the darkness bind them.” J. R. R. Tolkien.
Collapse
Affiliation(s)
- Pablo F Garrido
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Martín Calvelo
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Alexandre Blanco-González
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Uxía Veleiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Fabián Suárez
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Daniel Conde
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Alfonso Cabezón
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Rebeca Garcia-Fandino
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
14
|
Baglivo M, Baronio M, Natalini G, Beccari T, Chiurazzi P, Fulcheri E, Petralia PP, Michelini S, Fiorentini G, Miggiano GA, Morresi A, Tonini G, Bertelli M. Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: a possible strategy for reducing SARS-COV-2 infectivity? ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:161-164. [PMID: 32191676 PMCID: PMC7569585 DOI: 10.23750/abm.v91i1.9402] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Viral infectivity depends on interactions between components of the host cell plasma membrane and the virus envelope. Here we review strategies that could help stem the advance of the SARS-COV-2 epidemic. METHODS AND RESULTS We focus on the role of lipid structures, such as lipid rafts and cholesterol, involved in the process, mediated by endocytosis, by which viruses attach to and infect cells. Previous studies have shown that many naturally derived substances, such as cyclodextrin and sterols, could reduce the infectivity of many types of viruses, including the coronavirus family, through interference with lipid-dependent attachment to human host cells. CONCLUSIONS Certain molecules prove able to reduce the infectivity of some coronaviruses, possibly by inhibiting viral lipid-dependent attachment to host cells. More research into these molecules and methods would be worthwhile as it could provide insights the mechanism of transmission of SARS-COV-2 and, into how they could become a basis for new antiviral strategies.
Collapse
Affiliation(s)
| | - Manuela Baronio
- Department of Anaesthesia and Intensive Care, Fondazione Poliambulanza, Brescia, Italy.
| | - Giuseppe Natalini
- Department of Anaesthesia and Intensive Care, Fondazione Poliambulanza, Brescia, Italy.
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| | - Pietro Chiurazzi
- Institute of Genomic Medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.
| | - Ezio Fulcheri
- Pathology Division of Anatomic Pathology Dept. of Surgical and Diagnostic Sciences (DISC) University of Genova, Italy; UOSD Fetal Pathology and Ginecology IRCCS . Istituto Giannina Gaslini, Genova, Italy.
| | | | - Sandro Michelini
- Department of Vascular Rehabilitation, San Giovanni Battista Hospital, Rome, Italy.
| | | | | | - Assunta Morresi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| | - Gerolamo Tonini
- Department of Surgery, Fondazione Poliambulanza, Brescia, Italy.
| | - Matteo Bertelli
- MAGI-Euregio, Bolzano, Italy; EBTNA-Lab, Rovereto (TN), Italy.
| |
Collapse
|
15
|
Braga SS. Cyclodextrins: Emerging Medicines of the New Millennium. Biomolecules 2019; 9:E801. [PMID: 31795222 PMCID: PMC6995511 DOI: 10.3390/biom9120801] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Cyclodextrins, since their discovery in the late 19th century, were mainly regarded as excipients. Nevertheless, developments in cyclodextrin research have shown that some of these hosts can capture and include biomolecules, highlighting fatty acids and cholesterol, which implies that they are not inert and that their action may be used in specific medicinal purposes. The present review, centered on literature reports from the year 2000 until the present day, presents a comprehensive description of the known biological activities of cyclodextrins and their implications for medicinal applications. The paper is divided into two main sections, one devoted to the properties and applications of cyclodextrins as active pharmaceutical ingredients in a variety of pathologies, from infectious ailments to cardiovascular dysfunctions and metabolic diseases. The second section is dedicated to the use of cyclodextrins in a range of biomedical technologies.
Collapse
Affiliation(s)
- Susana Santos Braga
- QOPNA & LAQV/REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|