1
|
Xhekaj B, Kurum E, Stefanovska J, Cvetkovikj A, Sherifi K, Rexhepi A, Charrel R, Kniha E, Ayhan N. Neutralization-based seroprevalence of Toscana virus and sandfly fever Sicilian virus in dogs in the Republic of Kosovo. Parasit Vectors 2025; 18:48. [PMID: 39930491 PMCID: PMC11812177 DOI: 10.1186/s13071-025-06681-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Phlebotomine sand flies are the key vectors for phleboviruses (order Hareavirales and family Phenuiviridae), of which some are associated with febrile diseases and nervous system infections. In the Mediterranean Basin, Toscana virus (TOSV; Phlebovirus toscanaense) and sandfly fever Sicilian viruses (SFSV; Phlebovirus siciliaense) are important human pathogens, and their endemicity has been known for decades, particularly in the Balkan countries. While the circulation of both viruses is highly evident among humans and livestock in the Central Balkan country Kosovo, data from companion animals are scarce; however, it might help to further assess the distribution of both viruses in the country. METHODS Sera of dogs from all seven districts of Kosovo were screened for TOSV and SFSV antibodies by seroneutralization assays. RESULTS Altogether, 45 of 288 (15.6%) samples showed anti-Phlebovirus antibodies, of which 36 (12.5%) were against TOSV, 11 (3.8%) were against SFSV, and 2 (0.7%) were positive for antibodies against both viruses. CONCLUSIONS Phlebovirus seroprevalence was observed in all seven districts of the country, generally being higher for TOSV compared with SFSV. Our study presents the first assessment of neutralization-based seroprevalence of two medically important phleboviruses among dogs in the Republic of Kosovo. Although healthy dogs are unsusceptible to Phlebovirus infection, dogs with leishmaniasis can be potential amplifying hosts. Given the high number of stray dogs, frequent uncontrolled spreading of phleboviruses in dogs, and potential spillover in populated regions of the country, these findings should be taken into consideration.
Collapse
Affiliation(s)
- Betim Xhekaj
- Faculty of Agriculture and Veterinary, University of Prishtina "Hasan Prishtina", Bulevardi "Bill Clinton", 10000, Pristina, Kosovo
| | - Elif Kurum
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Jovana Stefanovska
- Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop-Trajkov 5-7, Skopje, 1000, North Macedonia
| | - Aleksandar Cvetkovikj
- Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop-Trajkov 5-7, Skopje, 1000, North Macedonia
| | - Kurtesh Sherifi
- Faculty of Agriculture and Veterinary, University of Prishtina "Hasan Prishtina", Bulevardi "Bill Clinton", 10000, Pristina, Kosovo
| | - Agim Rexhepi
- Faculty of Agriculture and Veterinary, University of Prishtina "Hasan Prishtina", Bulevardi "Bill Clinton", 10000, Pristina, Kosovo
| | - Remi Charrel
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Edwin Kniha
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Nazli Ayhan
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France.
- National Reference Center for Arboviruses, Inserm-IRBA, Marseille, France.
| |
Collapse
|
2
|
Trájer AJ, Hoxha I, Xhekaj B, Platzgummer K, Dvořák V, Obwaller AG, Stefanovska J, Cvetkovikj A, Walochnik J, Sherifi K, Kniha E. Ecological setting of phlebotomine sand flies in the Republic of Kosovo. Heliyon 2024; 10:e33029. [PMID: 39021964 PMCID: PMC11253276 DOI: 10.1016/j.heliyon.2024.e33029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Sand flies (Diptera, Psychodidae) are the principal vectors of Leishmania spp., the causative agents of leishmaniasis, as well as phleboviruses. In the Balkans, the endemicity and spreading of sand fly-borne diseases are evident, particularly in the Republic of Kosovo, a country with a predominantly humid continental climate. To date, understanding the drivers behind the spatial structure and diversity patterns of sand fly communities in humid continental regions remains limited. Therefore, elucidating the geographical and ecological factors contributing to the presence of potential vector species in the country is crucial. We aimed to enhance our understanding of factors influencing sand fly occurrence in cool and wet wintering humid continental areas, which could serve as a model for other countries with similar climatic conditions. Therefore, we assessed the currently known sand fly fauna through detailed environmental analyses, including Voronoi tessellation patterns, entropy calculations, Principal Coordinate and Component Analyses, Hierarchical Clustering, Random Trees, and climatic suitability patterns. Notable differences in the ecological tolerance of the species were detected, and the most important climatic features limiting sand fly presence were wind speed and temperature seasonality. Sand flies were observed to prefer topographical environments with little roughness, and the modelled climatic suitability values indicated that, dominantly, the western plain regions of Kosovo harbour the most diverse sand fly fauna; and are the most threatened by sand fly-borne diseases. Phlebotomus neglectus and P. perfiliewi, both confirmed vectors for L. infantum and phleboviruses, were identified as two main species with vast distribution in Kosovo. Contrary to this, most other present species are relatively sparse and restricted to temperate rather than humid continental regions. Our findings reveal a diverse potential sand fly fauna in Kosovo, indicating the need for tailored strategies to address varying risks across the country's western and eastern regions in relation to leishmaniasis control amidst changing environmental conditions.
Collapse
Affiliation(s)
- Attila J. Trájer
- University of Pannonia, Sustainability Solutions Research Lab, Egyetem u. 10. H-8200, Hungary
| | - Ina Hoxha
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Betim Xhekaj
- Faculty of Agriculture and Veterinary, University of Prishtina ‘Hasan Prishtina’, Bulevardi ‘Bill Clinton’, P.N. 10000 Prishtinë, Kosovo
| | - Katharina Platzgummer
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Vit Dvořák
- Department of Parasitology, Faculty of Science, Charles University Prague, Viničná 7, 128 43, Prague, Czech Republic
| | - Adelheid G. Obwaller
- Division of Science, Research and Development, Federal Ministry of Defence, Roßauer Lände 1, 1090, Vienna, Austria
| | - Jovana Stefanovska
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop-Trajkov 5–7, 1000, Skopje, North Macedonia
| | - Aleksandar Cvetkovikj
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop-Trajkov 5–7, 1000, Skopje, North Macedonia
| | - Julia Walochnik
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Kurtesh Sherifi
- Faculty of Agriculture and Veterinary, University of Prishtina ‘Hasan Prishtina’, Bulevardi ‘Bill Clinton’, P.N. 10000 Prishtinë, Kosovo
| | - Edwin Kniha
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| |
Collapse
|
3
|
Polat C, Ayhan N, Ergünay K, Charrel RN. Comprehensive evaluation of nucleic acid amplification methods widely used for generic detection of sandfly-borne phleboviruses. Microbiol Spectr 2024; 12:e0342823. [PMID: 38456695 PMCID: PMC10986501 DOI: 10.1128/spectrum.03428-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024] Open
Abstract
Sandfly-borne phleboviruses (SBPs), which cause sandfly fever, aseptic meningitis, encephalitis, and meningoencephalitis, are emerging pathogens of major public health concern. Virus nucleic acid testing is essential for SBP diagnosis, especially in the early stages of infection, and for the discovery of novel SBPs. The efficacy of utilizing generic primers that target conserved nucleotide sequences for the detection of both known and novel SBPs has not been extensively evaluated. We aimed to compare and evaluate the performance of five generic primer sets, widely used to detect S- and L-segments of arthropod-borne phleboviruses and designed as singleplex (n = 3) and nested (n = 2) formats, including both well-known and recently characterized 15 Old World virus strains. Furthermore, we performed in silico analysis to assess the detection capabilities of these generic primer sets. The initial evaluation of previously published generic primer sets for SBP detection yielded two singleplex primer sets with the potential to be adapted for use in real-time or high-throughput detection settings. Studies are ongoing to develop and further optimize a preliminary assay and test various hosts and vectors to assess their capacity to detect known and novel viruses. IMPORTANCE Virus nucleic acid testing is the primary diagnostic method, particularly in the early stages of illness. Virus-specific or syndromic tests are widely used for this purpose. The use of generic primers has had a considerable impact on the discovery, identification, and detection of Old World sandfly-borne phleboviruses (OWSBP). The study is significant because it is the first to carry out a comparative evaluation of all published OWSBP generic primer sets.
Collapse
Affiliation(s)
- Ceylan Polat
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Unité des Virus Emergents, Aix Marseille University, Marseille, France
| | - Nazli Ayhan
- Unité des Virus Emergents, Aix Marseille University, Marseille, France
- National Reference Center for Arboviruses, National Institute of Health, and Medical Research (Inserm) and French Armed Forces Biomedical Research Institute (IRBA), Marseille, France
| | - Koray Ergünay
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, Maryland, USA
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
- Department of Entomology, Smithsonian Institution-National Museum of Natural History (NMNH), Washington, DC, USA
| | - Remi N. Charrel
- Unité des Virus Emergents, Aix Marseille University, Marseille, France
- Laboratoire des Infections Virales Aigues et Tropicales, Pole des Maladies Infectieuses, AP-HM Hopitaux Universitaires de Marseille, Marseille, France
| |
Collapse
|
4
|
First report of Karimabad virus in Rhombomys opimus in China. One Health 2022; 15:100437. [PMID: 36277086 PMCID: PMC9582553 DOI: 10.1016/j.onehlt.2022.100437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Karimabad virus (KARV) is an arthropod-borne viral agent originally found in the Mediterranean region that can cause human infection via sandfly as the main vector. The KARV virion has been only detected from sandfly in western Asian countries and specific antibody has been detected from Rhombomys opimus and human in countries in Africa, Western and Central Asia. In this study, by next-generation sequencing (NGS) on a high variety of wild small animals in Xinjiang Autonomous Region in China, we obtained a complete sequence of KARV from Rhombomys opimus. An expanded epidemiological investigation was subsequently performed on 1713 small wild mammals that were widely collected from seven bioclimatic distinct sites in China by applying KARV specific RT-PCR and sequencing. Positive results were only obtained from 8 (2.29%) of the Rhombomys opimus captured in Xinjiang Autonomous Region, while not in 57 rodent species that were captured in other six provinces. Sequence analysis revealed the currently identified KARV was clustered with Gabek Forest virus, and they shared 79.1–93.9% identity with Iranian KARV that differed for L, M and S segments. Phylogenetic analysis based on eight partial L gene sequences demonstrated the separation of two lineages of the current KARV sequences. The first report of KARV in Rhombomys opimus in China expanded the currently known geographic scope, reservoirs types and the genetic heterogeneity of KARV. Our results show a new host, Rhombomys opimus, for KARV and highlight potential zoonotic transmission of KARV in humans.
Collapse
|
5
|
Moalem Y, Malis Y, Voloshin K, Dukhovny A, Hirschberg K, Sklan EH. Sandfly Fever Viruses Attenuate the Type I Interferon Response by Targeting the Phosphorylation of JAK-STAT Components. Front Immunol 2022; 13:865797. [PMID: 35720342 PMCID: PMC9198438 DOI: 10.3389/fimmu.2022.865797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Sandfly fever viruses are emerging Phleboviruses typically causing mild febrile illness. Some strains, however, can cause severe and occasionally fatal neuro-invasive disease. Like most viruses, Phleboviruses have devised various strategies to inhibit the type I interferon (IFN) response to support a productive infection. Still, most of the strategies identified so far focus on inhibiting the sensing arm of the IFN response. In contrast, the effect of sandfly virus infection on signaling from the IFN receptor is less characterized. Therefore, we tested the effect of sandfly fever virus Naples (SFNV) and Sicily (SFSV) infection on IFN signaling. We found that infection with either of these viruses inhibits signaling from the IFN receptor by inhibiting STAT1 phosphorylation and nuclear localization. We show that the viral nonstructural protein NSs mediates these effects, but only NSs from SFNV was found to interact with STAT1 directly. Thus, we tested the upstream IFN signaling components and found that Janus kinase 1 (Jak1) phosphorylation is also impaired by infection. Furthermore, the NSs proteins from both viruses directly interacted with Jak1. Last, we show that IFN inhibition by SFNV and SFSV is most likely downstream of the IFN receptor at the Jak1 level. Overall, our results reveal the multiple strategies used by these related viruses to overcome host defenses.
Collapse
Affiliation(s)
- Yarden Moalem
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehonathan Malis
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Konstantin Voloshin
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Dukhovny
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Koret Hirschberg
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Wang YN, Jiang RR, Ding H, Zhang XL, Wang N, Zhang YF, Li Y, Chen JJ, Zhang PH, Li H, Jiang JF, Liu LZ, Yu MB, Wang G, Zhang XA, Liu W. First Detection of Mukawa Virus in Ixodes persulcatus and Haemaphysalis concinna in China. Front Microbiol 2022; 13:791563. [PMID: 35308357 PMCID: PMC8930188 DOI: 10.3389/fmicb.2022.791563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mukawa virus (MKWV), a novel tick-borne virus (TBV) of the genus Phlebovirus of family Phenuiviridae, has been firstly reported in Ixodes persulcatus in Japan. In this study, we made an epidemiological investigation in China to obtain the geographic distribution and genetic features of this virus outside Japan. We screened 1,815 adult ticks (665 I. persulcatus, 336 Dermacentor silvarum, 599 Haemaphysalis longicornis, 170 Rhipicephalus microplus, 45 Haemaphysalis concinna) and 805 wild small mammals collected from eight provinces. The positive rate of 6.77% (45/665, including 18 female and 27 male I. persulcatus) and 2.22% (1/45, 1 male H. concinna) were obtained from I. persulcatus and H. concinna in Heilongjiang province, respectively. No evidence of MKWV infection was found in other three tick species or any of the mammalian species. The virus can infect the Vero cells successfully, indicating the ability of MKWV to replicate in mammalian cells. A phylogenetic tree based on the nucleotide sequences of L, M, and S segments demonstrated that the Japanese MKWV variant, our two MKWV variants, and KURV were clustered with the members of the mosquito/sandfly-borne phleboviruses and distant from other tick-borne phenuiviruses. A phylogenetic analysis based on 895 bp partial L gene sequences (n = 46) showed that all MKWV sequences were separated into three lineages. Our results showed the presence of MKWV in I. persulcatus and H. concinna in northeast of China, highlighting the necessity of epidemiological study in wider regions. Due to the ability of MKWV to replicate in mammalian cells, the potential for zoonosis, and wide distribution of I. persulcatus and H. concinna in China, the important vectors of MKWV, further screening to more tick species, wild animals, domestic animals, and humans raises up practical significance.
Collapse
Affiliation(s)
- Yu-Na Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | | | - Heng Ding
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Long Zhang
- Science and Technology Research Center of China Customs, Beijing, China
| | - Ning Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yun-Fa Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yue Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Pan-He Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lan-Zheng Liu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Meng-bin Yu
- Institute of NBC Defence, PLA Army, Beijing, China
| | - Gang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Xiao-Ai Zhang,
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Wei Liu, ,
| |
Collapse
|
7
|
Benallal KE, Garni R, Harrat Z, Volf P, Dvorak V. Phlebotomine sand flies (Diptera: Psychodidae) of the Maghreb region: A systematic review of distribution, morphology, and role in the transmission of the pathogens. PLoS Negl Trop Dis 2022; 16:e0009952. [PMID: 34990451 PMCID: PMC8735671 DOI: 10.1371/journal.pntd.0009952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Phlebotomine sand flies (Diptera: Psychodidae) are important vectors of various human and animal pathogens such as Bartonella bacilliformis, Phlebovirus, and parasitic protozoa of the genus Leishmania, causative agent of leishmaniases that account among most significant vector-borne diseases. The Maghreb countries Mauritania, Morocco, Algeria, Tunisia, and Libya occupy a vast area of North Africa and belong to most affected regions by these diseases. Locally varying climatic and ecological conditions support diverse sand fly fauna that includes many proven or suspected vectors. The aim of this review is to summarize often fragmented information and to provide an updated list of sand fly species of the Maghreb region with illustration of species-specific morphological features and maps of their reported distribution. MATERIALS AND METHODS The literature search focused on scholar databases to review information on the sand fly species distribution and their role in the disease transmissions in Mauritania, Morocco, Algeria, Tunisia, and Libya, surveying sources from the period between 1900 and 2020. Reported distribution of each species was collated using Google Earth, and distribution maps were drawn using ArcGIS software. Morphological illustrations were compiled from various published sources. RESULTS AND CONCLUSIONS In total, 32 species of the genera Phlebotomus (Ph.) and Sergentomyia (Se.) were reported in the Maghreb region (15 from Libya, 18 from Tunisia, 23 from Morocco, 24 from Algeria, and 9 from Mauritania). Phlebotomus mariae and Se. africana subsp. asiatica were recorded only in Morocco, Ph. mascitti, Se. hirtus, and Se. tiberiadis only in Algeria, whereas Ph. duboscqi, Se. dubia, Se. africana africana, Se. lesleyae, Se. magna, and Se. freetownensis were reported only from Mauritania. Our review has updated and summarized the geographic distribution of 26 species reported so far in Morocco, Algeria, Tunisia, and Libya, excluding Mauritania from a detailed analysis due to the unavailability of accurate distribution data. In addition, morphological differences important for species identification are summarized with particular attention to closely related species such as Ph. papatasi and Ph. bergeroti, Ph. chabaudi, and Ph. riouxi, and Se. christophersi and Se. clydei.
Collapse
Affiliation(s)
- Kamal Eddine Benallal
- Laboratory of Parasitic Eco-Epidemiology and Genetic of Populations, Institut Pasteur of Algiers, Algiers, Algeria
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Rafik Garni
- Laboratory of Parasitic Eco-Epidemiology and Genetic of Populations, Institut Pasteur of Algiers, Algiers, Algeria
| | - Zoubir Harrat
- Laboratory of Parasitic Eco-Epidemiology and Genetic of Populations, Institut Pasteur of Algiers, Algiers, Algeria
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vít Dvorak
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Clinically Important Phleboviruses and Their Detection in Human Samples. Viruses 2021; 13:v13081500. [PMID: 34452365 PMCID: PMC8402687 DOI: 10.3390/v13081500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022] Open
Abstract
The detection of phleboviruses (family: Phenuiviridae) in human samples is challenged by the overall diversity and genetic complexity of clinically relevant strains, their predominantly nondescript clinical associations, and a related lack of awareness among some clinicians and laboratorians. Here, we seek to inform the detection of human phlebovirus infections by providing a brief introduction to clinically relevant phleboviruses, as well as key targets and approaches for their detection. Given the diversity of pathogens within the genus, this report focuses on diagnostic attributes that are generally shared among these agents and should be used as a complement to, rather than a replacement of, more detailed discussions on the detection of phleboviruses at the individual virus level.
Collapse
|
9
|
Wang J, Fu S, Xu Z, Cheng J, Shi M, Fan N, Song J, Tian X, Cheng J, Ni S, He Y, Lei W, Li F, Peng H, Wang B, Wang H, Lu X, Ma Y, Liang G. Emerging Sand Fly-Borne Phlebovirus in China. Emerg Infect Dis 2021; 26:2435-2438. [PMID: 32946723 PMCID: PMC7510709 DOI: 10.3201/eid2610.191374] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We isolated 17 viral strains capable of causing cytopathic effects in mammalian cells and death in neonatal mice from sand flies in China. Phylogenetic analysis showed that these strains belonged to the genus Phlebovirus. These findings highlight the need to control this potentially emerging virus to help safeguard public health.
Collapse
|
10
|
Wang J, Fan N, Fu S, Cheng J, Wu B, Xu Z, Song J, Tian X, Li Y, He Y, Li F, Xu S, Lu X, Wang H, Wang B, Liang G. Isolation and Characterization of Wuxiang Virus from Sandflies Collected in Yangquan County, Shanxi Province, China. Vector Borne Zoonotic Dis 2021; 21:446-457. [PMID: 33891486 DOI: 10.1089/vbz.2020.2699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this study, we isolated a group of viruses that can cause a cytopathic effect in BHK-21 cells from sandfly specimens collected in Yangquan County, Shanxi Province, central China. The representative virus strain is SXYQ1860 and, with increased viral injection, the suckling mice became ill and died, with viral titers continually increasing. The results of molecular genetic evolution analysis of the three gene segments of the virus, L, M, and S, indicate that the newly isolated viruses from Yangquan County are the same as the Wuxiang virus (WUXV) previously isolated from sandflies collected in Wuxiang county, China. This is the first time that the WUXV was also isolated outside Wuxiang County. Therefore, strengthening the surveillance of neglected sandflies and the viruses they transmit to help prevent and control arboviruses and the associated diseases is essential for public health.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,School of Public Health, Qingdao University, Qingdao, China
| | - Na Fan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,School of Public Health, Qingdao University, Qingdao, China
| | - Shihong Fu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jingxia Cheng
- Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, China
| | - Bin Wu
- Yangquan Center for Disease Control and Prevention, Yangquan, China
| | - Ziqian Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jingdong Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaodong Tian
- Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, China
| | - Yan Li
- Yangquan Center for Disease Control and Prevention, Yangquan, China
| | - Ying He
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Songtao Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoqing Lu
- School of Public Health, Qingdao University, Qingdao, China
| | - Huanyu Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bin Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
11
|
Phumee A, Wacharapluesadee S, Petcharat S, Tawatsin A, Thavara U, Siriyasatien P. Detection of Changuinola virus (Reoviridae: Orbivirus) in field-caught sand flies in southern Thailand. Trans R Soc Trop Med Hyg 2021; 115:1039-1044. [PMID: 33515044 DOI: 10.1093/trstmh/traa203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/05/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Phlebotomine sand flies are vectors for several pathogenic bacteria, parasites and viruses that have significant impacts on public health. Sand fly-associated viruses that cause diseases in humans and animals have recently received more attention. This study aimed to detect pathogenic viruses belonging to the Orbivirus genus, Phlebovirus genus, Flavivirus genus and family Rhabdoviridae in several field-caught sand fly species in southern Thailand. METHODS Sand flies were collected in southern Thailand using CDC light traps. Each sample was processed individually for virus screening using RT-PCR and sequencing. RESULTS Seven out of 60 sand fly samples (two samples of Idiophlebotomus spp., three of Phlebotomus papatasi and two of Sergentomyia khawi) were positive for the Orbivirus genus, which is closely related to Changuinola virus (CGLV). Phlebovirus genus, Flavivirus genus and family Rhabdoviridae were negative in all samples. CONCLUSIONS CGLV causes Changuinola virus disease or Changuinola fever, a febrile illness in Central and South America. The virus has never been reported in Thailand. This study is the first report of the detection of CGLV in sand flies from Thailand. An extensive study of sand flies from other regions of the country and the associations between sand flies, viruses and vertebrate hosts in Thailand should be undertaken.
Collapse
Affiliation(s)
- Atchara Phumee
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sininat Petcharat
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apiwat Tawatsin
- National Institute of Health of Thailand, Department of Medical Sciences, Nonthaburi 11000, Thailand
| | - Usavadee Thavara
- National Institute of Health of Thailand, Department of Medical Sciences, Nonthaburi 11000, Thailand
| | - Padet Siriyasatien
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|