1
|
Ripoll L, Iserte J, Cerrudo CS, Presti D, Serrat JH, Poma R, Mangione FAJ, Micheloud GA, Gioria VV, Berrón CI, Zago MP, Borio C, Bilen M. Insect-specific RNA viruses detection in Field-Caught Aedes aegypti mosquitoes from Argentina using NGS technology. PLoS Negl Trop Dis 2025; 19:e0012792. [PMID: 39792957 DOI: 10.1371/journal.pntd.0012792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks. In this study, we address the implementation of a sequencing and analysis pipeline based on the Oxford Nanopore Technologies MinION Mk1b system, for arboviral detection in field-caught mosquitoes from Argentina. Full genome of Humaita Tubiacanga Virus (HTV), Phasi Charoen-like Phasivirus (PCLV), Aedes aegypti totivirus (AaeTV) has been sequenced in three distinct regions of Argentina comprising Buenos Aires province, Santa Fe province and the northern province of Salta. Viral sequences enriched by SISPA and coupled with Nanopore sequencing can be a useful tool for viral surveillance, not only for detecting viruses that have a high impact on human and animal health, but also for detecting insect-specific viruses that could promote the transmission of arboviruses.
Collapse
Affiliation(s)
- Lucas Ripoll
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| | - Javier Iserte
- Laboratorio de Bioinformática Estructural, Fundación Instituto Leloir, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Susana Cerrudo
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| | - Damian Presti
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| | - José Humberto Serrat
- Programa de Zoonosis, Dirección General de Coordinación Epidemiológica-Ministerio de Salud Pública de Salta, Salta, Salta, Argentina
| | - Ramiro Poma
- Unidad de Conocimiento Traslacional Hospitalaria, Hospital Público Materno Infantil de Salta (UCT-HPMI)-CONICET, Salta, Salta, Argentina
| | | | - Gabriela Analía Micheloud
- Laboratorio de Virología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Santa Fe, Argentina
| | - Verónica Viviana Gioria
- Laboratorio de Virología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Santa Fe, Argentina
| | - Clara Inés Berrón
- Laboratorio de Virología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Santa Fe, Argentina
| | - M Paola Zago
- Unidad de Conocimiento Traslacional Hospitalaria, Hospital Público Materno Infantil de Salta (UCT-HPMI)-CONICET, Salta, Salta, Argentina
| | - Cristina Borio
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| | - Marcos Bilen
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| |
Collapse
|
2
|
Körsten C, Schäfer M. Experimental arboviral infection of mosquito larvae: A novel approach for vector competence studies. J Virol Methods 2025; 331:115061. [PMID: 39515662 DOI: 10.1016/j.jviromet.2024.115061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Vector competence studies in mosquitoes present valuable opportunities to explore arboviral transmission and virus-vector interactions. However, oral infection studies in mosquitoes can be challenging. An alternative approach is to infect mosquitoes during their aquatic larval stage, resulting in the emergence of infected adults. To investigate the potential of this method, Culex pipiens biotype molestus larvae were infected with Usutu virus (USUV, Orthoflavivirus usutuense). For this purpose, larvae were exposed to USUV-infected mammalian and mosquito cell cultures for 24 h before being reared to adults. Subsequent analysis via RT-qPCR revealed that the Culex larvae successfully acquired USUV from the infected cells and exhibited high susceptibility to infection. Immediately after emergence, 32.10 % (26/81) of male and 41.03 % (16/39) of female mosquitoes tested positive for USUV RNA. Notably, females that were incubated for 15 days post-emergence demonstrated even higher infection rates, reaching 100.00 % (23/23). In addition, viral RNA and infectious particles were detected in some saliva samples, indicating the potential for transmission. This experimental infection of mosquito larvae thus offers the opportunity to produce infected adult mosquitoes for studies enhancing our understanding of virus-vector interactions, co-infections, and transmission routes. Such research contributes to better public health strategies addressing arboviral diseases.
Collapse
Affiliation(s)
- Christin Körsten
- Friedrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), Institute of Infectology, Südufer 10, Greifswald, Insel Riems 17493, Germany.
| | - Mandy Schäfer
- Friedrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), Institute of Infectology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| |
Collapse
|
3
|
Castellano LA, McNamara RJ, Pallarés HM, Gamarnik AV, Alvarez DE, Bazzini AA. Dengue virus preferentially uses human and mosquito non-optimal codons. Mol Syst Biol 2024; 20:1085-1108. [PMID: 39039212 PMCID: PMC11450187 DOI: 10.1038/s44320-024-00052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Codon optimality refers to the effect that codon composition has on messenger RNA (mRNA) stability and translation level and implies that synonymous codons are not silent from a regulatory point of view. Here, we investigated the adaptation of virus genomes to the host optimality code using mosquito-borne dengue virus (DENV) as a model. We demonstrated that codon optimality exists in mosquito cells and showed that DENV preferentially uses nonoptimal (destabilizing) codons and avoids codons that are defined as optimal (stabilizing) in either human or mosquito cells. Human genes enriched in the codons preferentially and frequently used by DENV are upregulated during infection, and so is the tRNA decoding the nonoptimal and DENV preferentially used codon for arginine. We found that adaptation during single-host passaging in human or mosquito cells results in the selection of synonymous mutations towards DENV's preferred nonoptimal codons that increase virus fitness. Finally, our analyses revealed that hundreds of viruses preferentially use nonoptimal codons, with those infecting a single host displaying an even stronger bias, suggesting that host-pathogen interaction shapes virus-synonymous codon choice.
Collapse
Affiliation(s)
- Luciana A Castellano
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Ryan J McNamara
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Horacio M Pallarés
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrea V Gamarnik
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, San Martín B1650, Argentina
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
4
|
Peterson AJ, Hall RA, Harrison JJ, Hobson-Peters J, Hugo LE. Unleashing Nature's Allies: Comparing the Vertical Transmission Dynamics of Insect-Specific and Vertebrate-Infecting Flaviviruses in Mosquitoes. Viruses 2024; 16:1499. [PMID: 39339975 PMCID: PMC11437461 DOI: 10.3390/v16091499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Insect-specific viruses (ISVs) include viruses that are restricted to the infection of mosquitoes and are spread mostly through transovarial transmission. Despite using a distinct mode of transmission, ISVs are often phylogenetically related to arthropod-borne viruses (arboviruses) that are responsible for human diseases and able to infect both mosquitoes and vertebrates. ISVs can also induce a phenomenon called "superinfection exclusion", whereby a primary ISV infection in an insect inhibits subsequent viral infections of the insect. This has sparked interest in the use of ISVs for the control of pathogenic arboviruses transmitted by mosquitoes. In particular, insect-specific flaviviruses (ISFs) have been shown to inhibit infection of vertebrate-infecting flaviviruses (VIFs) both in vitro and in vivo. This has shown potential as a new and ecologically friendly biological approach to the control of arboviral disease. For this intervention to have lasting impacts for biological control, it is imperative that ISFs are maintained in mosquito populations with high rates of vertical transmission. Therefore, these strategies will need to optimise vertical transmission of ISFs in order to establish persistently infected mosquito lines for sustainable arbovirus control. This review compares recent observations of vertical transmission of arboviral and insect-specific flaviviruses and potential determinants of transovarial transmission rates to understand how the vertical transmission of ISFs may be optimised for effective arboviral control.
Collapse
Affiliation(s)
- Alyssa J Peterson
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - Jessica J Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - Leon E Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
5
|
Liu Q, Meng X, Song Z, Shao Y, Zhao Y, Fang R, Huo Y, Zhang L. Insect-transmitted plant virus balances its vertical transmission through regulating Rab1-mediated receptor localization. Cell Rep 2024; 43:114571. [PMID: 39093698 DOI: 10.1016/j.celrep.2024.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/23/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Rice stripe virus (RSV) establishes infection in the ovaries of its vector insect, Laodelphax striatellus. We demonstrate that RSV infection delays ovarian maturation by inhibiting membrane localization of the vitellogenin receptor (VgR), thereby reducing the vitellogenin (Vg) accumulation essential for egg development. We identify the host protein L. striatellus Rab1 protein (LsRab1), which directly interacts with RSV nucleocapsid protein (NP) within nurse cells. LsRab1 is required for VgR surface localization and ovarian Vg accumulation. RSV inhibits LsRab1 function through two mechanisms: NP binding LsRab1 prevents GTP binding, and NP binding LsRab1-GTP complexes stimulates GTP hydrolysis, forming an inactive LsRab1 form. Through this dual inhibition, RSV infection prevents LsRab1 from facilitating VgR trafficking to the cell membrane, leading to inefficient Vg uptake. The Vg-VgR pathway is present in most oviparous animals, and the mechanisms detailed here provide insights into the vertical transmission of other insect-transmitted viruses of medical and agricultural importance.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyi Meng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyu Song
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Shao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi Province 030801, China
| | - Yao Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Huo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lili Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Hernández-Pelegrín L, Huditz HI, García-Castillo P, de Ruijter NCA, van Oers MM, Herrero S, Ros VID. Covert RNA viruses in medflies differ in their mode of transmission and tissue tropism. J Virol 2024; 98:e0010824. [PMID: 38742874 PMCID: PMC11237731 DOI: 10.1128/jvi.00108-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Numerous studies have demonstrated the presence of covert viral infections in insects. These infections can be transmitted in insect populations via two main routes: vertical from parents to offspring, or horizontal between nonrelated individuals. Thirteen covert RNA viruses have been described in the Mediterranean fruit fly (medfly). Some of these viruses are established in different laboratory-reared and wild medfly populations, although variations in the viral repertoire and viral levels have been observed at different time points. To better understand these viral dynamics, we characterized the prevalence and levels of covert RNA viruses in two medfly strains, assessed the route of transmission of these viruses, and explored their distribution in medfly adult tissues. Altogether, our results indicated that the different RNA viruses found in medflies vary in their preferred route of transmission. Two iflaviruses and a narnavirus are predominantly transmitted through vertical transmission via the female, while a nodavirus and a nora virus exhibited a preference for horizontal transmission. Overall, our results give valuable insights into the viral tropism and transmission of RNA viruses in the medfly, contributing to the understanding of viral dynamics in insect populations. IMPORTANCE The presence of RNA viruses in insects has been extensively covered. However, the study of host-virus interaction has focused on viruses that cause detrimental effects to the host. In this manuscript, we uncovered which tissues are infected with covert RNA viruses in the agricultural pest Ceratitis capitata, and which is the preferred transmission route of these viruses. Our results showed that vertical and horizontal transmission can occur simultaneously, although each virus is transmitted more efficiently following one of these routes. Additionally, our results indicated an association between the tropism of the RNA virus and the preferred route of transmission. Overall, these results set the basis for understanding how viruses are established and maintained in medfly populations.
Collapse
Affiliation(s)
- Luis Hernández-Pelegrín
- Laboratory of Virology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| | - Hannah-Isadora Huditz
- Laboratory of Virology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Pablo García-Castillo
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| | - Norbert C. A. de Ruijter
- Laboratory of Cell and Developmental Biology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| | - Vera I. D. Ros
- Laboratory of Virology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
7
|
Kumar Pradhan S, Morrow JL, Sharpe SR, Karuppannasamy A, Ramasamy E, Bynakal S, Maligeppagol M, Ramasamy A, Riegler M. RNA virus diversity and prevalence in field and laboratory populations of melon fly throughout its distribution. J Invertebr Pathol 2024; 204:108117. [PMID: 38679365 DOI: 10.1016/j.jip.2024.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Insects have a rich diversity of RNA viruses that can either cause acute infections or persist in host populations without visible symptoms. The melon fly, Zeugodacus cucurbitae (Tephritidae) causes substantial economic losses through infestation of diverse cucurbit and other crops. Of Indomalayan origin, it is now established in many tropical regions of the world. The virome diversity of Z. cucurbitae is largely unknown across large parts of its distribution, including the Indian subcontinent. We have analysed three transcriptomes each of one field-collected and one laboratory-reared Z. cucurbitae population from Bangalore (India) and discovered genomes of ten putative RNA viruses: two sigmaviruses, one chimbavirus, one cripavirus, one noda-like virus, one nora virus, one orbivirus, one partiti-like virus, one sobemovirus and one toti-like virus. Analysis of the only available host genome of a Hawaiian Z. cucurbitae population did not detect host genome integration of the detected viruses. While all ten viruses were found in the Bangalore field population only seven were detected in the laboratory population, indicating that these seven may cause persistent covert infections. Using virus-specific RNA-dependent RNA polymerase gene primers, we detected nine of the RNA viruses with an overall low variant diversity in some but not all individual flies from four out of five Indian regions. We then screened 39 transcriptomes of Z. cucurbitae laboratory populations from eastern Asia (Guangdong, Hainan, Taiwan) and the Pacific region (Hawaii), and detected seven of the ten virus genomes. We found additional genomes of a picorna-like virus and a negev-like virus. Hawaii as the only tested population from the fly's invasive range only had one virus. Our study provides evidence of new and high RNA virus diversity in Indian populations within the original range of Z. cucurbitae, as well as the presence of persistent covert infections in laboratory populations. It builds the basis for future research of tephritid-associated RNA viruses, including their host effects, epidemiology and application potential in biological control.
Collapse
Affiliation(s)
- Sanjay Kumar Pradhan
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; ICAR- Indian Institute of Horticultural Research, Hesaraghatta Lake, Bengaluru 560089, Karnataka, India; Department of Agricultural Entomology, University of Agricultural Sciences, Bengaluru 560065, Karnataka, India.
| | - Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Stephen R Sharpe
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Ashok Karuppannasamy
- ICAR- Indian Institute of Horticultural Research, Hesaraghatta Lake, Bengaluru 560089, Karnataka, India; Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India; Tata Institute for Genetics and Society, Bengaluru 560065, Karnataka, India.
| | - Ellango Ramasamy
- Computational and Mathematical Biology Centre (CMBC), THSTI- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India.
| | - Shivanna Bynakal
- Department of Agricultural Entomology, University of Agricultural Sciences, Bengaluru 560065, Karnataka, India.
| | - Manamohan Maligeppagol
- ICAR- Indian Institute of Horticultural Research, Hesaraghatta Lake, Bengaluru 560089, Karnataka, India.
| | - Asokan Ramasamy
- ICAR- Indian Institute of Horticultural Research, Hesaraghatta Lake, Bengaluru 560089, Karnataka, India.
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
8
|
de Faria IJS, de Almeida JPP, Marques JT. Impact of symbiotic insect-specific viruses on mosquito vector competence for arboviruses. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101194. [PMID: 38522648 DOI: 10.1016/j.cois.2024.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Mosquitoes are vectors for arboviruses, such as dengue, Zika, and Chikungunya. Symbiotic interactions can affect the intrinsic ability of mosquitoes to acquire and transmit arboviruses, referred to as vector competence. Insect-specific viruses (ISVs) are commonly found in symbiotic associations with mosquitoes in the wild and can affect many aspects of mosquito biology. Here, we review current knowledge on the effects of symbiotic ISV-mosquito interactions on vector competence. We discuss potential mechanisms underlying these interactions and their implications for shaping new biological control strategies. Finally, we highlight the need for field data analyzing the circulation of ISVs in mosquitoes associated with mechanistic studies in the laboratory.
Collapse
Affiliation(s)
- Isaque J S de Faria
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - João P P de Almeida
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - João T Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil; Université de Strasbourg, INSERM U1257, CNRS UPR9022, 67084 Strasbourg, France.
| |
Collapse
|
9
|
Wang H, Chen Q, Wei T. Complex interactions among insect viruses-insect vector-arboviruses. INSECT SCIENCE 2024; 31:683-693. [PMID: 37877630 DOI: 10.1111/1744-7917.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023]
Abstract
Insects are the host or vector of diverse viruses including those that infect vertebrates, plants, and fungi. Insect viruses reside inside their insect hosts and are vertically transmitted from parent to offspring. The insect virus-host relationship is intricate, as these viruses can impact various aspects of insect biology, such as development, reproduction, sex ratios, and immunity. Arthropod-borne viruses (arboviruses) that cause substantial global health or agricultural problems can also be vertically transmitted to insect vector progeny. Multiple infections with insect viruses and arboviruses are common in nature. Such coinfections involve complex interactions, including synergism, dependence, and antagonism. Recent studies have shed light on the influence of insect viruses on the competence of insect vectors for arboviruses. In this review, we focus on the biological effects of insect viruses on the transmission of arboviruses by insects. We also discuss the potential mechanisms by which insect viruses affect the ability of hosts to transmit arboviruses, as well as potential strategies for disease control through manipulation of insect viruses. Analyses of the interactions among insect vectors, insect viruses and arboviruses will provide new opportunities for development of innovative strategies to control arbovirus transmission.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Wang LL, Cheng Q, Newton ND, Wolfinger MT, Morgan MS, Slonchak A, Khromykh AA, Cheng TY, Parry RH. Xinyang flavivirus, from Haemaphysalis flava ticks in Henan Province, China, defines a basal, likely tick-only Orthoflavivirus clade. J Gen Virol 2024; 105:001991. [PMID: 38809251 PMCID: PMC11165663 DOI: 10.1099/jgv.0.001991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
Tick-borne orthoflaviviruses (TBFs) are classified into three conventional groups based on genetics and ecology: mammalian, seabird and probable-TBF group. Recently, a fourth basal group has been identified in Rhipicephalus ticks from Africa: Mpulungu flavivirus (MPFV) in Zambia and Ngoye virus (NGOV) in Senegal. Despite attempts, isolating these viruses in vertebrate and invertebrate cell lines or intracerebral injection of newborn mice with virus-containing homogenates has remained unsuccessful. In this study, we report the discovery of Xinyang flavivirus (XiFV) in Haemaphysalis flava ticks from Xìnyáng, Henan Province, China. Phylogenetic analysis shows that XiFV was most closely related to MPFV and NGOV, marking the first identification of this tick orthoflavivirus group in Asia. We developed a reverse transcriptase quantitative PCR assay to screen wild-collected ticks and egg clutches, with absolute infection rates of 20.75 % in adult females and 15.19 % in egg clutches, suggesting that XiFV could be potentially spread through transovarial transmission. To examine potential host range, dinucleotide composition analyses revealed that XiFV, MPFV and NGOV share a closer composition to classical insect-specific orthoflaviviruses than to vertebrate-infecting TBFs, suggesting that XiFV could be a tick-only orthoflavivirus. Additionally, both XiFV and MPFV lack a furin cleavage site in the prM protein, unlike other TBFs, suggesting these viruses might exist towards a biased immature particle state. To examine this, chimeric Binjari virus with XIFV-prME (bXiFV) was generated, purified and analysed by SDS-PAGE and negative-stain transmission electron microscopy, suggesting prototypical orthoflavivirus size (~50 nm) and bias towards uncleaved prM. In silico structural analyses of the 3'-untranslated regions show that XiFV forms up to five pseudo-knot-containing stem-loops and a prototypical orthoflavivirus dumbbell element, suggesting the potential for multiple exoribonuclease-resistant RNA structures.
Collapse
Affiliation(s)
- Lan-Lan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, PR China
| | - Qia Cheng
- Children’s Medical Center, Hunan Provincial People’s Hospital, Changsha, PR China
| | - Natalee D. Newton
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Michael T. Wolfinger
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
- Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- RNA Forecast e.U., Vienna, Austria
| | - Mahali S. Morgan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- GVN Center of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD, Australia
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, PR China
| | - Rhys H. Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Carvalho VL, Prakoso D, Schwarz ER, Logan TD, Nunes BTD, Beachboard SE, Long MT. Negevirus Piura Suppresses Zika Virus Replication in Mosquito Cells. Viruses 2024; 16:350. [PMID: 38543716 PMCID: PMC10976066 DOI: 10.3390/v16030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 05/23/2024] Open
Abstract
We investigated the interaction between the insect-specific virus, Piura virus (PIUV), and the arbovirus Zika virus (ZIKV) in Aedes albopictus cells. We performed coinfection experiments in C6/36 cells. Piura virus (Cor 33 strain, Colombia) and ZIKV (PRVABC58 strain, Puerto Rico) were co-inoculated into C6/36 cells using two multiplicity of infection (MOI) combinations: 0.1 for both viruses and 1.0 for ZIKV, 0.1 for PIUV. Wells were infected in triplicate with either PIUV and ZIKV coinfection, ZIKV-only, or PIUV-only. Mock infected cells served as control wells. The cell suspension was collected daily 7 days post-infection. Zika virus load was titrated by TCID50 on Vero 76 cells. The ZIKV-only infection and PIUV and ZIKV coinfection experiments were also quantified by RT-qPCR. We also investigated whether ZIKV interfered in the PIUV replication. PIUV suppressed the replication of ZIKV, resulting in a 10,000-fold reduction in ZIKV titers within 3 days post-infection. PIUV viral loads were not reduced in the presence of ZIKV. We conclude that, when concurrently infected, PIUV suppresses ZIKV in C6/36 cells while ZIKV does not interfere in PIUV replication.
Collapse
Affiliation(s)
- Valéria L. Carvalho
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Rodovia BR-316, Km 7, s/n, Ananindeua 67030-000, PA, Brazil
| | - Dhani Prakoso
- Professor Nidom Foundation, Surabaya, East Java 60236, Indonesia;
| | - Erika R. Schwarz
- Montana Veterinary Diagnostic Laboratory, 1911 W Lincoln St., Bozeman, MT 59718, USA
| | - Tracey D. Logan
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 1225 Center Dr. Suite 4101, Gainesville, FL 32611, USA
| | - Bruno Tardelli Diniz Nunes
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Rodovia BR-316, Km 7, s/n, Ananindeua 67030-000, PA, Brazil
| | - Sarah E. Beachboard
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, 1945 SW 16th Ave., Gainesville, FL 32608, USA
| | - Maureen T. Long
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, 1945 SW 16th Ave., Gainesville, FL 32608, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, Gainesville, FL 32610, USA
| |
Collapse
|
12
|
Gómez M, Martínez D, Páez-Triana L, Luna N, Ramírez A, Medina J, Cruz-Saavedra L, Hernández C, Castañeda S, Bohórquez Melo R, Suarez LA, Palma-Cuero M, Murcia LM, González Páez L, Estrada Bustos L, Medina MA, Ariza Campo K, Padilla HD, Zamora Flórez A, De las Salas JL, Muñoz M, Ramírez JD. Influence of dengue virus serotypes on the abundance of Aedes aegypti insect-specific viruses (ISVs). J Virol 2024; 98:e0150723. [PMID: 38095414 PMCID: PMC10804971 DOI: 10.1128/jvi.01507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024] Open
Abstract
A comprehensive understanding of the virome in mosquito vectors is crucial for assessing the potential transmission of viral agents, designing effective vector control strategies, and advancing our knowledge of insect-specific viruses (ISVs). In this study, we utilized Oxford Nanopore Technologies metagenomics to characterize the virome of Aedes aegypti mosquitoes collected in various regions of Colombia, a country hyperendemic for dengue virus (DENV). Analyses were conducted on groups of insects with previous natural DENV infection (DENV-1 and DENV-2 serotypes), as well as mosquito samples that tested negative for virus infection (DENV-negative). Our findings indicate that the Ae. aegypti virome exhibits a similar viral composition at the ISV family and species levels in both DENV-positive and DENV-negative samples across all study sites. However, differences were observed in the relative abundance of viral families such as Phenuiviridae, Partitiviridae, Flaviviridae, Rhabdoviridae, Picornaviridae, Bromoviridae, and Virgaviridae, depending on the serotype of DENV-1 and DENV-2. In addition, ISVs are frequently found in the core virome of Ae. aegypti, such as Phasi Charoen-like phasivirus (PCLV), which was the most prevalent and showed variable abundance in relation to the presence of specific DENV serotypes. Phylogenetic analyses of the L, M, and S segments of the PCLV genome are associated with sequences from different regions of the world but show close clustering with sequences from Brazil and Guadeloupe, indicating a shared evolutionary relationship. The profiling of the Ae. aegypti virome in Colombia presented here improves our understanding of viral diversity within mosquito vectors and provides information that opens the way to possible connections between ISVs and arboviruses. Future studies aimed at deepening our understanding of the mechanisms underlying the interactions between ISVs and DENV serotypes in Ae. aegypti could provide valuable information for the design of effective vector-borne viral disease control and prevention strategies.IMPORTANCEIn this study, we employed a metagenomic approach to characterize the virome of Aedes aegypti mosquitoes, with and without natural DENV infection, in several regions of Colombia. Our findings indicate that the mosquito virome is predominantly composed of insect-specific viruses (ISVs) and that infection with different DENV serotypes (DENV-1 and DENV-2) could lead to alterations in the relative abundance of viral families and species constituting the core virome in Aedes spp. The study also sheds light on the identification of the genome and evolutionary relationships of the Phasi Charoen-like phasivirus in Ae. aegypti in Colombia, a widespread ISV in areas with high DENV incidence.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Nicolás Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Angie Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Julián Medina
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Ramiro Bohórquez Melo
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luis Alejandro Suarez
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Mónica Palma-Cuero
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luz Mila Murcia
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | | | | | | | | | | | | | | | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Department of Pathology, Molecular and Cell-Based Medicine, Molecular Microbiology Laboratory, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
13
|
Gómez M, Martínez D, Páez-Triana L, Luna N, De Las Salas JL, Hernández C, Flórez AZ, Muñoz M, Ramírez JD. Characterizing viral species in mosquitoes (Culicidae) in the Colombian Orinoco: insights from a preliminary metagenomic study. Sci Rep 2023; 13:22081. [PMID: 38086841 PMCID: PMC10716246 DOI: 10.1038/s41598-023-49232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Mosquitoes (Diptera: Culicidae) are primary vectors of arthropod-borne viruses (arboviruses) that pose significant public health threats. Recent advances in sequencing technology emphasize the importance of understanding the arboviruses and insect-specific viruses (ISVs) hosted by mosquitoes, collectively called the "virome". Colombia, a tropical country with favorable conditions for the development and adaptation of multiple species of Culicidae, offers a favorable scenario for the transmission of epidemiologically important arboviruses. However, entomovirological surveillance studies are scarce in rural areas of the country, where humans, mosquitoes, and animals (both domestic and wild) coexist, leading to a higher risk of transmission of zoonotic diseases to humans. Thus, our study aimed to perform a preliminary metagenomic analysis of the mosquitoes of special relevance to public health belonging to the genera Ochlerotatus, Culex, Limatus, Mansonia, Psorophora, and Sabethes, within a rural savanna ecosystem in the Colombian Orinoco. We employed third-generation sequencing technology (Oxford Nanopore Technologies; ONT) to describe the virome of mosquitoes samples. Our results revealed that the virome was primarily shaped by insect-specific viruses (ISVs), with the Iflaviridae family being the most prevalent across all mosquito samples. Furthermore, we identified a group of ISVs that were common in all mosquito species tested, displaying the highest relative abundance concerning other groups of viruses. Notably, Hanko iflavirus-1 was especially prevalent in Culex eknomios (88.4%) and Ochlerotatus serratus (88.0%). Additionally, other ISVs, such as Guadalupe mosquito virus (GMV), Hubei mosquito virus1 (HMV1), Uxmal virus, Tanay virus, Cordoba virus, and Castlerea virus (all belonging to the Negevirus genus), were found as common viral species among the mosquitoes, although in lower proportions. These initial findings contribute to our understanding of ISVs within mosquito vectors of the Culicidae family in the Eastern Plains of Colombia. We recommend that future research explore deeper into ISV species shared among diverse vector species, and their potential interactions with arboviruses. In addition, we also showed the need for a thorough exploration of the influence of local rural habitat conditions on the shape of the virome in mosquito vectors.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Nicolás Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | | | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | | | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Potter-Birriel JM, Pollio AR, Knott BD, Chunashvili T, Fung CK, Conte MA, Reinbold-Wasson DD, Hang J. Metagenomics analysis reveals presence of the Merida-like virus in Georgia. Front Microbiol 2023; 14:1258810. [PMID: 37901812 PMCID: PMC10602647 DOI: 10.3389/fmicb.2023.1258810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Arbovirus surveillance is fundamental for the discovery of novel viruses and prevention of febrile vector-borne illnesses. Vector-borne pathogens can rapidly expand and adapt in new geographic and environmental conditions. In this study, metagenomic surveillance was conducted to identify novel viruses in the Country of Georgia. A total of 521 mosquitoes were captured near a military training facility and pooled from species Culex pipiens (Linnaeus) (87%) and Aedes albopictus (Skuse) (13%). We decided to further analyze the Culex pipiens mosquitoes, due to the more extensive number of samples collected. Our approach was to utilize an unbiased total RNA-seq for pathogen discovery in order to explore the mosquito virome. The viral reads from this analysis were mostly aligned to Insect-specific viruses from two main families, the Iflaviridae; a positive-stranded RNA virus and the Rhabdoviridae; a negative- and single-stranded RNA virus. Our pathogen discovery analysis revealed viral reads aligning to the Merida-like virus Turkey (MERDLVT) strain among the Rhabdoviridae. To further validate this result, we conducted a BLAST sequence comparison analysis of our samples with the MERDLVT strain. Our positive samples aligned to the MERDLVT strain with 96-100% sequence identity and 99.7-100% sequence coverage. A bootstrapped maximum-likelihood phylogenetic tree was used to evaluate the evolutionary relationships among these positive pooled specimens with the (MERDLVT) strain. The Georgia samples clustered most closely with two strains from Turkey, the Merida-like virus KE-2017a isolate 139-1-21 and the Merida-like virus Turkey isolate P431. Collectively, these results show the presence of the MERDLVT strain in Georgia.
Collapse
Affiliation(s)
| | - Adam R. Pollio
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Brian D. Knott
- U.S. Army Medical Research Directorate – Georgia (USAMRD-G), Walter Reed Army Institute of Research, Tbilisi, Georgia
| | - Tamar Chunashvili
- U.S. Army Medical Research Directorate – Georgia (USAMRD-G), Walter Reed Army Institute of Research, Tbilisi, Georgia
| | - Christian K. Fung
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Matthew A. Conte
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Drew D. Reinbold-Wasson
- U.S. Army Medical Research Directorate – Georgia (USAMRD-G), Walter Reed Army Institute of Research, Tbilisi, Georgia
| | - Jun Hang
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
15
|
Hermanns K, Marklewitz M, Zirkel F, Kopp A, Kramer-Schadt S, Junglen S. Mosquito community composition shapes virus prevalence patterns along anthropogenic disturbance gradients. eLife 2023; 12:e66550. [PMID: 37702388 PMCID: PMC10547478 DOI: 10.7554/elife.66550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/12/2023] [Indexed: 09/14/2023] Open
Abstract
Previously unknown pathogens often emerge from primary ecosystems, but there is little knowledge on the mechanisms of emergence. Most studies analyzing the influence of land-use change on pathogen emergence focus on a single host-pathogen system and often observe contradictory effects. Here, we studied virus diversity and prevalence patterns in natural and disturbed ecosystems using a multi-host and multi-taxa approach. Mosquitoes sampled along a disturbance gradient in Côte d'Ivoire were tested by generic RT-PCR assays established for all major arbovirus and insect-specific virus taxa including novel viruses previously discovered in these samples based on cell culture isolates enabling an unbiased and comprehensive approach. The taxonomic composition of detected viruses was characterized and viral infection rates according to habitat and host were analyzed. We detected 331 viral sequences pertaining to 34 novel and 15 previously identified viruses of the families Flavi-, Rhabdo-, Reo-, Toga-, Mesoni- and Iflaviridae and the order Bunyavirales. Highest host and virus diversity was observed in pristine and intermediately disturbed habitats. The majority of the 49 viruses was detected with low prevalence. However, nine viruses were found frequently across different habitats of which five viruses increased in prevalence towards disturbed habitats, in congruence with the dilution effect hypothesis. These viruses were mainly associated with one specific mosquito species (Culex nebulosus), which increased in relative abundance from pristine (3%) to disturbed habitats (38%). Interestingly, the observed increased prevalence of these five viruses in disturbed habitats was not caused by higher host infection rates but by increased host abundance, an effect tentatively named abundance effect. Our data show that host species composition is critical for virus abundance. Environmental changes that lead to an uneven host community composition and to more individuals of a single species are a key driver of virus emergence.
Collapse
Affiliation(s)
- Kyra Hermanns
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Marco Marklewitz
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Florian Zirkel
- Institute of Virology, University of Bonn Medical CentreBerlinGermany
| | - Anne Kopp
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Stephanie Kramer-Schadt
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Institute of Ecology, Technische Universität BerlinBerlinGermany
| | - Sandra Junglen
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
16
|
Wu Z, Liu J, Feng X, Zhang Y, Liu L, Niu G. Identification and Molecular Characteristics of a Novel Single-Stranded RNA Virus Isolated from Culex tritaeniorhynchus in China. Microbiol Spectr 2023; 11:e0053623. [PMID: 37358406 PMCID: PMC10433992 DOI: 10.1128/spectrum.00536-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/12/2023] [Indexed: 06/27/2023] Open
Abstract
Hubei mosquito virus 2 (HMV2) is a novel mosquito virus that was first identified in 2016 in Hubei Province, China. Until now, HMV2 has been shown to be endemic in some areas of China and Japan, but its biological characteristics, epidemiology, and pathogenicity are not yet known. This report describes the detection of HMV2 in mosquitoes that were collected in Shandong Province in 2019 and presents the first isolation and molecular characterization of the virus. In this study, a total of 2,813 mosquitoes were collected and then divided into 57 pools, according to location and species. qRT-PCR and nested PCR were performed to confirm the presence of HMV2, and its genomic features, phylogenetic relationships, growth characteristics, and potential pathogenicity were further analyzed. The results showed that HMV2 was detected in 28 of the 57 mosquito pools and that the minimum infection rate (MIR) for HMV2 was 1.00% (28/2,813). A HMV2 strain and 14 viral partial sequences were obtained from the HMV2-positive pools, including one complete genome sequence. A phylogenetic analysis revealed that HMV2 from Shandong Province shared over 90% identity with other reported isolates and was closely related to the Culex inatomii luteo-like virus. IMPORTANCE Our study provided important epidemiological evidence for the epidemic of HMV2 in Shandong Province. Here, we report the first isolation and molecular characteristics of this virus and enrich our knowledge of the distribution of HMV2 in China.
Collapse
Affiliation(s)
- Zhen Wu
- School of Public Health, WeiFang Medical University, Weifang, China
| | - Jingyu Liu
- Yantai Center for Disease Control and Prevention, Yantai, China
| | - Xiuwei Feng
- School of Public Health, WeiFang Medical University, Weifang, China
| | - Yuli Zhang
- School of Public Health, WeiFang Medical University, Weifang, China
| | - Lin Liu
- Immune-Path Biotechnology (Suzhou) Co., Ltd., Suzhou, China
| | - Guoyu Niu
- School of Public Health, WeiFang Medical University, Weifang, China
| |
Collapse
|
17
|
Abbo SR, de Almeida JPP, Olmo RP, Balvers C, Griep JS, Linthout C, Koenraadt CJM, Silva BM, Fros JJ, Aguiar ERGR, Marois E, Pijlman GP, Marques JT. The virome of the invasive Asian bush mosquito Aedes japonicus in Europe. Virus Evol 2023; 9:vead041. [PMID: 37636319 PMCID: PMC10460169 DOI: 10.1093/ve/vead041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 08/29/2023] Open
Abstract
The Asian bush mosquito Aedes japonicus is rapidly invading North America and Europe. Due to its potential to transmit multiple pathogenic arthropod-borne (arbo)viruses including Zika virus, West Nile virus, and chikungunya virus, it is important to understand the biology of this vector mosquito in more detail. In addition to arboviruses, mosquitoes can also carry insect-specific viruses that are receiving increasing attention due to their potential effects on host physiology and arbovirus transmission. In this study, we characterized the collection of viruses, referred to as the virome, circulating in Ae. japonicus populations in the Netherlands and France. Applying a small RNA-based metagenomic approach to Ae. japonicus, we uncovered a distinct group of viruses present in samples from both the Netherlands and France. These included one known virus, Ae. japonicus narnavirus 1 (AejapNV1), and three new virus species that we named Ae. japonicus totivirus 1 (AejapTV1), Ae. japonicus anphevirus 1 (AejapAV1) and Ae. japonicus bunyavirus 1 (AejapBV1). We also discovered sequences that were presumably derived from two additional novel viruses: Ae. japonicus bunyavirus 2 (AejapBV2) and Ae. japonicus rhabdovirus 1 (AejapRV1). All six viruses induced strong RNA interference responses, including the production of twenty-one nucleotide-sized small interfering RNAs, a signature of active replication in the host. Notably, AejapBV1 and AejapBV2 belong to different viral families; however, no RNA-dependent RNA polymerase sequence has been found for AejapBV2. Intriguingly, our small RNA-based approach identified an ∼1-kb long ambigrammatic RNA that is associated with AejapNV1 as a secondary segment but showed no similarity to any sequence in public databases. We confirmed the presence of AejapNV1 primary and secondary segments, AejapTV1, AejapAV1, and AejapBV1 by reverse transcriptase polymerase chain reaction (PCR) in wild-caught Ae. japonicus mosquitoes. AejapNV1 and AejapTV1 were found at high prevalence (87-100 per cent) in adult females, adult males, and larvae. Using a small RNA-based, sequence-independent metagenomic strategy, we uncovered a conserved and prevalent virome among Ae. japonicus mosquito populations. The high prevalence of AejapNV1 and AejapTV1 across all tested mosquito life stages suggests that these viruses are intimately associated with Ae. japonicus.
Collapse
Affiliation(s)
- Sandra R Abbo
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - João P P de Almeida
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Roenick P Olmo
- Insect Models of Innate Immunity, Université de Strasbourg, CNRS UPR9022, INSERM U1257, 2 Allee Konrad Roentgen, Strasbourg 67000, France
| | - Carlijn Balvers
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Jet S Griep
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Charlotte Linthout
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Constantianus J M Koenraadt
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Bruno M Silva
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Eric R G R Aguiar
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
- Department of Biological Science, Center of Biotechnology and Genetics, State University of Santa Cruz, Rod. Jorge Amado Km 16, Ilhéus 45662-900, Brazil
| | - Eric Marois
- Insect Models of Innate Immunity, Université de Strasbourg, CNRS UPR9022, INSERM U1257, 2 Allee Konrad Roentgen, Strasbourg 67000, France
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - João T Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
- Insect Models of Innate Immunity, Université de Strasbourg, CNRS UPR9022, INSERM U1257, 2 Allee Konrad Roentgen, Strasbourg 67000, France
| |
Collapse
|
18
|
Abel SM, Hong Z, Williams D, Ireri S, Brown MQ, Su T, Hung KY, Henke JA, Barton JP, Le Roch KG. Small RNA sequencing of field Culex mosquitoes identifies patterns of viral infection and the mosquito immune response. Sci Rep 2023; 13:10598. [PMID: 37391513 PMCID: PMC10313667 DOI: 10.1038/s41598-023-37571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023] Open
Abstract
Mosquito-borne disease remains a significant burden on global health. In the United States, the major threat posed by mosquitoes is transmission of arboviruses, including West Nile virus by mosquitoes of the Culex genus. Virus metagenomic analysis of mosquito small RNA using deep sequencing and advanced bioinformatic tools enables the rapid detection of viruses and other infecting organisms, both pathogenic and non-pathogenic to humans, without any precedent knowledge. In this study, we sequenced small RNA samples from over 60 pools of Culex mosquitoes from two major areas of Southern California from 2017 to 2019 to elucidate the virome and immune responses of Culex. Our results demonstrated that small RNAs not only allowed the detection of viruses but also revealed distinct patterns of viral infection based on location, Culex species, and time. We also identified miRNAs that are most likely involved in Culex immune responses to viruses and Wolbachia bacteria, and show the utility of using small RNA to detect antiviral immune pathways including piRNAs against some pathogens. Collectively, these findings show that deep sequencing of small RNA can be used for virus discovery and surveillance. One could also conceive that such work could be accomplished in various locations across the world and over time to better understand patterns of mosquito infection and immune response to many vector-borne diseases in field samples.
Collapse
Affiliation(s)
- Steven M Abel
- Department of Molecular, Cell and Systems Biology, Center for Infection Disease and Vector Research, University of California, Riverside, CA, 92521, USA
| | - Zhenchen Hong
- Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA
| | - Desiree Williams
- Department of Molecular, Cell and Systems Biology, Center for Infection Disease and Vector Research, University of California, Riverside, CA, 92521, USA
| | - Sally Ireri
- Department of Molecular, Cell and Systems Biology, Center for Infection Disease and Vector Research, University of California, Riverside, CA, 92521, USA
| | - Michelle Q Brown
- West Valley Mosquito & Vector Control District, Ontario, CA, 91761, USA
| | - Tianyun Su
- West Valley Mosquito & Vector Control District, Ontario, CA, 91761, USA
| | - Kim Y Hung
- Coachella Valley Mosquito & Vector Control District, Indio, CA, 92201, USA
| | - Jennifer A Henke
- Coachella Valley Mosquito & Vector Control District, Indio, CA, 92201, USA
| | - John P Barton
- Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, Center for Infection Disease and Vector Research, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
19
|
Ahebwa A, Hii J, Neoh KB, Chareonviriyaphap T. Aedes aegypti and Aedes albopictus (Diptera: Culicidae) ecology, biology, behaviour, and implications on arbovirus transmission in Thailand: Review. One Health 2023; 16:100555. [PMID: 37363263 PMCID: PMC10288100 DOI: 10.1016/j.onehlt.2023.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 06/28/2023] Open
Abstract
Aedes aegypti and Aedes albopictus (Aedes) transmit highly pathogenic viruses such as dengue, chikungunya, yellow fever, and Zika which can cause life-threatening diseases in humans. They are the most important vectors of arboviruses in Thailand. Their vectorial capacity (VC) is highly complex mainly due to the interplay between biotic and abiotic factors that vary in time and space. A literature survey was conducted to collate and discuss recent research regarding the influence of Aedes vector biology, behaviour, and ecology on arbovirus transmission in Thailand. The survey followed guidelines of preferred reporting items of systematic reviews and meta-analyses (PRISMA). All fields, keyword search was conducted in the Web of Science database for the period of 2000-2021. The search yielded 821 records on Ae. aegypti and 293 records on Aedes albopictus, of which 77 were selected for discussion. Genomic studies showed that there is a high genetic variation in Aedes albopictus whereas Ae. aegypti generally shows low genetic variation. Along with genetically unstable arboviruses, the interaction between Aedes and arboviruses is largely regulated by genomic events such as genetic mutations and immune response protein factors. Temperature and precipitation are the major climatic events driving arbovirus transmission. Human exposure risk factors are mainly due to multiple feeding patterns, including endophagy by Aedes albopictus and zoophagic behaviour of Ae. aegypti as well as diverse human-associated breeding sites. Integration of the One Health approach in control interventions is a priority with a rigorous focus on Aedes-arbovirus surveillance as a complementary strategy.
Collapse
Affiliation(s)
- Alex Ahebwa
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Jeffrey Hii
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
- College of Public Health, Medical and Veterinary Sciences, James Cook University, North Queensland, QLD 4810, Australia
| | - Kok-Boon Neoh
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Theeraphap Chareonviriyaphap
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
- Royal Society of Thailand, Bangkok 10900, Thailand
| |
Collapse
|
20
|
Chen TY, Bozic J, Mathias D, Smartt CT. Immune-related transcripts, microbiota and vector competence differ in dengue-2 virus-infected geographically distinct Aedes aegypti populations. Parasit Vectors 2023; 16:166. [PMID: 37208697 PMCID: PMC10199558 DOI: 10.1186/s13071-023-05784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Vector competence in Aedes aegypti is influenced by various factors. Crucial new control methods can be developed by recognizing which factors affect virus and mosquito interactions. METHODS In the present study we used three geographically distinct Ae. aegypti populations and compared their susceptibility to infection by dengue virus serotype 2 (DENV-2). To identify any differences among the three mosquito populations, we evaluated expression levels of immune-related genes and assessed the presence of microbiota that might contribute to the uniqueness in their vector competence. RESULTS Based on the results from the DENV-2 competence study, we categorized the three geographically distinct Ae. aegypti populations into a refractory population (Vilas do Atlântico), a susceptible population (Vero) and a susceptible but low transmission population (California). The immune-related transcripts were highly expressed in the California population but not in the refractory population. However, the Rel-1 gene was upregulated in the Vilas do Atlântico population following ingestion of a non-infectious blood meal, suggesting the gene's involvement in non-viral responses, such as response to microbiota. Screening of the bacteria, fungi and flaviviruses revealed differences between populations, and any of these could be one of the factors that interfere with the vector competence. CONCLUSIONS The results reveal potential factors that might impact the virus and mosquito interaction, as well as influence the Ae. aegypti refractory phenotype.
Collapse
Affiliation(s)
- Tse-Yu Chen
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT USA
| | - Jovana Bozic
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
- Department of Entomology, The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA USA
| | - Derrick Mathias
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
| | - Chelsea T. Smartt
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
| |
Collapse
|
21
|
Kong L, Xiao J, Yang L, Sui Y, Wang D, Chen S, Liu P, Chen XG, Gu J. Mosquito densovirus significantly reduces the vector susceptibility to dengue virus serotype 2 in Aedes albopictus mosquitoes (Diptera: Culicidae). Infect Dis Poverty 2023; 12:48. [PMID: 37161462 PMCID: PMC10169196 DOI: 10.1186/s40249-023-01099-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Dengue virus (DENV) is a major public health threat, with Aedes albopictus being the confirmed vector responsible for dengue epidemics in Guangzhou, China. Mosquito densoviruses (MDVs) are pathogenic mosquito-specific viruses, and a novel MDV was previously isolated from Ae. albopictus in Guangzhou. This study aims to determine the prevalence of MDVs in wild Ae. albopictus populations and investigate their potential interactions with DENV and impact on vector susceptibility for DENV. METHODS The prevalence of MDV in wild mosquitoes in China was investigated using open access sequencing data and PCR detection in Ae. albopictus in Guangzhou. The viral infection rate and titers in MDV-persistent C6/36 cells were evaluated at 12, 24, 48, 72, 96, and 120 h post infection (hpi) by indirect immunofluorescence assay (IFA) and real time quantitative PCR (RT-qPCR). The midgut infection rate (MIR), dissemination rate (DR), and salivary gland infection rate (SGIR) in various tissues of MDV-infected mosquitoes were detected and quantified at 0, 5, 10, and 15 days post infection (dpi) by RT-PCR and RT-qPCR. The chi-square test evaluated dengue virus serotype 2 (DENV-2) and Aedes aegypti densovirus (AaeDV) infection rates and related indices in mosquitoes, while Tukey's LSD and t-tests compared viral titers in C6/36 cells and tissues over time. RESULTS The results revealed a relatively wide distribution of MDVs in Aedes, Culex, and Anopheles mosquitoes in China and an over 68% positive rate. In vitro, significant reductions in DENV-2 titers in supernatant at 120 hpi, and an apparent decrease in DENV-2-positive cells at 96 and 120 hpi were observed. In vivo, DENV-2 in the ovaries and salivary glands was first detected at 10 dpi in both monoinfected and superinfected Ae. albopictus females, while MDV superinfection with DENV-2 suppressed the salivary gland infection rate at 15 dpi. DENV-2 titer in the ovary and salivary glands of Ae. albopictus was reduced in superinfected mosquitoes at 15 dpi. CONCLUSIONS MDVs is widespread in natural mosquito populations, and replication of DENV-2 is suppressed in MDV-infected Ae. albopictus, thus reducing vector susceptibility to DENV-2. Our study supports the hypothesis that MDVs may contribute to reducing transmission of DENV and provides an alternative strategy for mosquito-transmitted disease control.
Collapse
Affiliation(s)
- Ling Kong
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lu Yang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuan Sui
- Brown School, Washington University, St. Louis, MO, 63130, USA
| | - Duoquan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China
| | - Shaoqiang Chen
- Shenzhen Aiming Pest Control Operation Service Company Limited, Shenzhen, Guangdong, China
| | - Peiwen Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xiao-Guang Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Jinbao Gu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
22
|
Jagtap SV, Brink J, Frank SC, Badusche M, Leggewie M, Sreenu VB, Fuss J, Schnettler E, Altinli M. Agua Salud Alphavirus Infection, Dissemination and Transmission in Aedes aegypti Mosquitoes. Viruses 2023; 15:1113. [PMID: 37243199 PMCID: PMC10223791 DOI: 10.3390/v15051113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Mosquitoes are competent vectors for many important arthropod-borne viruses (arboviruses). In addition to arboviruses, insect-specific viruses (ISV) have also been discovered in mosquitoes. ISVs are viruses that replicate in insect hosts but are unable to infect and replicate in vertebrates. They have been shown to interfere with arbovirus replication in some cases. Despite the increase in studies on ISV-arbovirus interactions, ISV interactions with their hosts and how they are maintained in nature are still not well understood. In the present study, we investigated the infection and dissemination of the Agua Salud alphavirus (ASALV) in the important mosquito vector Aedes aegypti through different infection routes (per oral infection, intrathoracic injection) and its transmission. We show here that ASALV infects the female Ae. aegypti and replicates when mosquitoes are infected intrathoracically or orally. ASALV disseminated to different tissues, including the midgut, salivary glands and ovaries. However, we observed a higher virus load in the brain than in the salivary glands and carcasses, suggesting a tropism towards brain tissues. Our results show that ASALV is transmitted horizontally during adult and larval stages, although we did not observe vertical transmission. Understanding ISV infection and dissemination dynamics in Ae. aegypti and their transmission routes could help the use of ISVs as an arbovirus control strategy in the future.
Collapse
Affiliation(s)
- Swati V. Jagtap
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany; (S.V.J.)
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
| | - Jorn Brink
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany; (S.V.J.)
| | - Svea C. Frank
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany; (S.V.J.)
| | - Marlis Badusche
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany; (S.V.J.)
| | - Mayke Leggewie
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany; (S.V.J.)
| | | | - Janina Fuss
- Institute of Clinical Molecular Biology (IKMB), Kiel University, 24105 Kiel, Germany
| | - Esther Schnettler
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany; (S.V.J.)
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University Hamburg, 20148 Hamburg, Germany
| | - Mine Altinli
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany; (S.V.J.)
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
| |
Collapse
|
23
|
Mirieri CK, Abd-Alla AM, Ros VI, van Oers MM. Evaluating the Effect of Irradiation on the Densities of Two RNA Viruses in Glossina morsitans morsitans. INSECTS 2023; 14:397. [PMID: 37103212 PMCID: PMC10140815 DOI: 10.3390/insects14040397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Tsetse flies are cyclic vectors of Trypanosoma parasites, which cause debilitating diseases in humans and animals. To decrease the disease burden, the number of flies is reduced using the sterile insect technique (SIT), where male flies are sterilized through irradiation and released into the field. This procedure requires the mass rearing of high-quality male flies able to compete with wild male flies for mating with wild females. Recently, two RNA viruses, an iflavirus and a negevirus, were discovered in mass-reared Glossina morsitans morsitans and named GmmIV and GmmNegeV, respectively. The aim of this study was to evaluate whether the densities of these viruses in tsetse flies are affected by the irradiation treatment. Therefore, we exposed tsetse pupae to various doses (0-150 Gy) of ionizing radiation, either in air (normoxia) or without air (hypoxia), for which oxygen was displaced by nitrogen. Pupae and/or emerging flies were collected immediately afterwards, and at three days post irradiation, virus densities were quantified through RT-qPCR. Generally, the results show that irradiation exposure had no significant impact on the densities of GmmIV and GmmNegeV, suggesting that the viruses are relatively radiation-resistant, even at higher doses. However, sampling over a longer period after irradiation would be needed to verify that densities of these insect viruses are not changed by the sterilisation treatment.
Collapse
Affiliation(s)
- Caroline K. Mirieri
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| | - Adly M.M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| | - Vera I.D. Ros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
24
|
Novelo M, Dutra HLC, Metz HC, Jones MJ, Sigle LT, Frentiu FD, Allen SL, Chenoweth SF, McGraw EA. Dengue and chikungunya virus loads in the mosquito Aedes aegypti are determined by distinct genetic architectures. PLoS Pathog 2023; 19:e1011307. [PMID: 37043515 PMCID: PMC10124881 DOI: 10.1371/journal.ppat.1011307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/24/2023] [Accepted: 03/19/2023] [Indexed: 04/13/2023] Open
Abstract
Aedes aegypti is the primary vector of the arboviruses dengue (DENV) and chikungunya (CHIKV). These viruses exhibit key differences in their vector interactions, the latter moving more quicky through the mosquito and triggering fewer standard antiviral pathways. As the global footprint of CHIKV continues to expand, we seek to better understand the mosquito's natural response to CHIKV-both to compare it to DENV:vector coevolutionary history and to identify potential targets in the mosquito for genetic modification. We used a modified full-sibling design to estimate the contribution of mosquito genetic variation to viral loads of both DENV and CHIKV. Heritabilities were significant, but higher for DENV (40%) than CHIKV (18%). Interestingly, there was no genetic correlation between DENV and CHIKV loads between siblings. These data suggest Ae. aegypti mosquitoes respond to the two viruses using distinct genetic mechanisms. We also examined genome-wide patterns of gene expression between High and Low CHIKV families representing the phenotypic extremes of viral load. Using RNAseq, we identified only two loci that consistently differentiated High and Low families: a long non-coding RNA that has been identified in mosquito screens post-infection and a distant member of a family of Salivary Gland Specific (SGS) genes. Interestingly, the latter gene is also associated with horizontal gene transfer between mosquitoes and the endosymbiotic bacterium Wolbachia. This work is the first to link the SGS gene to a mosquito phenotype. Understanding the molecular details of how this gene contributes to viral control in mosquitoes may, therefore, also shed light on its role in Wolbachia.
Collapse
Affiliation(s)
- Mario Novelo
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Heverton LC Dutra
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hillery C. Metz
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew J. Jones
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Leah T. Sigle
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Francesca D. Frentiu
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Herston, Queensland, Australia
| | - Scott L. Allen
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Stephen F. Chenoweth
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Elizabeth A. McGraw
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
25
|
Krokovsky L, Lins CRB, Guedes DRD, Wallau GDL, Ayres CFJ, Paiva MHS. Dynamic of Mayaro Virus Transmission in Aedes aegypti, Culex quinquefasciatus Mosquitoes, and a Mice Model. Viruses 2023; 15:v15030799. [PMID: 36992508 PMCID: PMC10053307 DOI: 10.3390/v15030799] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/31/2023] Open
Abstract
Mayaro virus (MAYV) is transmitted by Haemagogus spp. mosquitoes and has been circulating in Amazon areas in the North and Central West regions of Brazil since the 1980s, with an increase in human case notifications in the last 10 years. MAYV introduction in urban areas is a public health concern as infections can cause severe symptoms similar to other alphaviruses. Studies with Aedes aegypti have demonstrated the potential vector competence of the species and the detection of MAYV in urban populations of mosquitoes. Considering the two most abundant urban mosquito species in Brazil, we investigated the dynamics of MAYV transmission by Ae. aegypti and Culex quinquefasciatus in a mice model. Mosquito colonies were artificially fed with blood containing MAYV and infection (IR) and dissemination rates (DR) were evaluated. On the 7th day post-infection (dpi), IFNAR BL/6 mice were made available as a blood source to both mosquito species. After the appearance of clinical signs of infection, a second blood feeding was performed with a new group of non-infected mosquitoes. RT-qPCR and plaque assays were carried out with animal and mosquito tissues to determine IR and DR. For Ae. aegypti, we found an IR of 97.5-100% and a DR reached 100% in both 7 and 14 dpi. While IR and DR for Cx. quinquefasciatus was 13.1-14.81% and 60% to 80%, respectively. A total of 18 mice were used (test = 12 and control = 6) for Ae. aegypti and 12 (test = 8 and control = 4) for Cx. quinquefasciatus to evaluate the mosquito-mice transmission rate. All mice that were bitten by infected Ae. aegypti showed clinical signs of infection while all mice exposed to infected Cx. quinquefasciatus mosquitoes remained healthy. Viremia in the mice from Ae. aegypti group ranged from 2.5 × 108 to 5 × 109 PFU/mL. Ae. aegypti from the second blood feeding showed a 50% IR. Our study showed the applicability of an efficient model to complete arbovirus transmission cycle studies and suggests that the Ae. aegypti population evaluated is a competent vector for MAYV, while highlighting the vectorial capacity of Ae. aegypti and the possible introduction into urban areas. The mice model employed here is an important tool for arthropod-vector transmission studies with laboratory and field mosquito populations, as well as with other arboviruses.
Collapse
Affiliation(s)
- Larissa Krokovsky
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, S/N, Campus da UFPE, Cidade Universitária, Recife 50740-465, PE, Brazil
| | - Carlos Ralph Batista Lins
- Biotério de Criação, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, S/N, Campus da UFPE, Cidade Universitária, Recife 50740-465, PE, Brazil
| | - Duschinka Ribeiro Duarte Guedes
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, S/N, Campus da UFPE, Cidade Universitária, Recife 50740-465, PE, Brazil
| | - Gabriel da Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, S/N, Campus da UFPE, Cidade Universitária, Recife 50740-465, PE, Brazil
| | - Constância Flávia Junqueira Ayres
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, S/N, Campus da UFPE, Cidade Universitária, Recife 50740-465, PE, Brazil
| | - Marcelo Henrique Santos Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, S/N, Campus da UFPE, Cidade Universitária, Recife 50740-465, PE, Brazil
- Núcleo de Ciências da Vida, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco (UFPE), Rodovia BR-104, km 59-Nova Caruaru, Caruaru 55002-970, PE, Brazil
| |
Collapse
|
26
|
Ferreira QR, Lemos FFB, Moura MN, Nascimento JODS, Novaes AF, Barcelos IS, Fernandes LA, Amaral LSDB, Barreto FK, de Melo FF. Role of the Microbiome in Aedes spp. Vector Competence: What Do We Know? Viruses 2023; 15:779. [PMID: 36992487 PMCID: PMC10051417 DOI: 10.3390/v15030779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Aedes aegypti and Aedes albopictus are the vectors of important arboviruses: dengue fever, chikungunya, Zika, and yellow fever. Female mosquitoes acquire arboviruses by feeding on the infected host blood, thus being able to transmit it to their offspring. The intrinsic ability of a vector to infect itself and transmit a pathogen is known as vector competence. Several factors influence the susceptibility of these females to be infected by these arboviruses, such as the activation of the innate immune system through the Toll, immunodeficiency (Imd), JAK-STAT pathways, and the interference of specific antiviral response pathways of RNAi. It is also believed that the presence of non-pathogenic microorganisms in the microbiota of these arthropods could influence this immune response, as it provides a baseline activation of the innate immune system, which may generate resistance against arboviruses. In addition, this microbiome has direct action against arboviruses, mainly due to the ability of Wolbachia spp. to block viral genome replication, added to the competition for resources within the mosquito organism. Despite major advances in the area, studies are still needed to evaluate the microbiota profiles of Aedes spp. and their vector competence, as well as further exploration of the individual roles of microbiome components in activating the innate immune system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fernanda Khouri Barreto
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| |
Collapse
|
27
|
Arboviruses and symbiotic viruses cooperatively hijack insect sperm-specific proteins for paternal transmission. Nat Commun 2023; 14:1289. [PMID: 36894574 PMCID: PMC9998617 DOI: 10.1038/s41467-023-36993-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Arboviruses and symbiotic viruses can be paternally transmitted by male insects to their offspring for long-term viral persistence in nature, but the mechanism remains largely unknown. Here, we identify the sperm-specific serpin protein HongrES1 of leafhopper Recilia dorsalis as a mediator of paternal transmission of the reovirus Rice gall dwarf virus (RGDV) and a previously undescribed symbiotic virus of the Virgaviridae family, Recilia dorsalis filamentous virus (RdFV). We show that HongrES1 mediates the direct binding of virions to leafhopper sperm surfaces and subsequent paternal transmission via interaction with both viral capsid proteins. Direct interaction of viral capsid proteins mediates simultaneously invasion of two viruses into male reproductive organs. Moreover, arbovirus activates HongrES1 expression to suppress the conversion of prophenoloxidase to active phenoloxidase, potentially producing a mild antiviral melanization defense. Paternal virus transmission scarcely affects offspring fitness. These findings provide insights into how different viruses cooperatively hijack insect sperm-specific proteins for paternal transmission without disturbing sperm functions.
Collapse
|
28
|
Hellhammer F, Heinig-Hartberger M, Neuhof P, Teitge F, Jung-Schroers V, Becker SC. Impact of different diets on the survival, pupation, and adult emergence of Culex pipiens biotype molestus larvae, and infectability with the insect-specific Culex Y virus. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
The current rapidly advancing climate change will affect the transmission of arthropod-borne viruses (arboviruses), mainly through changes in vector populations. Mosquitos of the Culex pipiens complex play a particularly prominent role in virus transmission in central Europe. Factors that contribute to the vector population density and the ability of those vectors to transmit viral pathogens (vector competence) can include nutrition during the larval stages. To test the influence of larval diet on larval survival and adult emergence, as well as vector competence, several diets varying in their nutritional composition were compared using a newly established assay. We tested the effects of 17 diets or diet combinations on the fitness of third-instar larvae of Culex pipiens biotype molestus. Larval survival rates at day 7 ranged from 43.33% to 94.44%. We then selected 3 of the 17 diets (Tetra Pleco, as the routine feed; JBL NovoTab, as the significantly inferior feed; and KG, as the significantly superior feed) and tested the effect of these diets, in combination with Culex Y virus infection, on larval survival rate. All Culex Y virus-infected larvae showed significantly lower larval survival, as well as low pupation and adult emergence rates. However, none of the tested diets in our study had a significant impact on larval survival in combination with viral infection. Furthermore, we were able to correlate several water quality parameters, such as phosphate, nitrate, and ammonium concentration, electrical conductivity, and low O2 saturations, with reduced larval survival. Thus, we were able to demonstrate that Culex Y virus could be a suitable agent to reduce mosquito population density by reducing larval density, pupation rate, and adult emergence rate. When combined with certain water quality parameters, these effects can be further enhanced, leading to a reduced mosquito population density, and reduce the cycle of transmission. Furthermore, we demonstrate, for the first time, the infection of larvae of the mosquito Culex pipiens biotype molestus with a viral pathogen.
Collapse
|
29
|
Hussain M, Etebari K, Asgari S. Analysing inhibition of dengue virus in Wolbachia-infected mosquito cells following the removal of Wolbachia. Virology 2023; 581:48-55. [PMID: 36889142 DOI: 10.1016/j.virol.2023.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Wolbachia pipientis is known to block replication of positive sense RNA viruses. Previously, we created an Aedes aegypti Aag2 cell line (Aag2.wAlbB) transinfected with the wAlbB strain of Wolbachia and a matching tetracycline-cured Aag2.tet cell line. While dengue virus (DENV) was blocked in Aag2.wAlbB cells, we found significant inhibition of DENV in Aag2.tet cells. RNA-Seq analysis of the cells confirmed removal of Wolbachia and lack of expression of Wolbachia genes that could have been due to lateral gene transfer in Aag2.tet cells. However, we noticed a substantial increase in the abundance of phasi charoen-like virus (PCLV) in Aag2.tet cells. When RNAi was used to reduce the PCLV levels, DENV replication was significantly increased. Further, we found significant changes in the expression of antiviral and proviral genes in Aag2.tet cells. Overall, the results reveal an antagonistic interaction between DENV and PCLV and how PCLV-induced changes could contribute to DENV inhibition.
Collapse
Affiliation(s)
- Mazhar Hussain
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
30
|
Uchida L, Sakurai Y, Shimooka M, Morales-Vargas RE, Hagiwara K, Muramatsu Y. Identification of Three Novel Genes in Phenuiviridae Detected from Aedes Mosquitoes in Hokkaido, Japan. Jpn J Infect Dis 2023; 76:55-63. [PMID: 36184398 DOI: 10.7883/yoken.jjid.2022.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mosquitoes are important arthropod vectors of arboviruses. The family Phenuiviridae includes several medically important arboviruses, such as the Rift Valley fever phlebovirus and Toscana phlebovirus. Recent comprehensive genetic analyses have identified many novel mosquito-specific viruses that are phylogenetically related to Phenuiviridae. We collected mosquitoes from Hokkaido in northern Japan, and conducted reverse transcription polymerase chain reactions (RT-PCRs) targeting the RNA-dependent RNA polymerase (RdRp) gene of Phenuiviridae. A total of 285 pools, comprising 3,082 mosquitoes from 2 genera and 8 species, were collected. Partial RdRp sequences were detected in 97 pools, which allowed us to classify the viruses into 3 clusters provisionally designated as Etutanne virus (ETTV) 1, 2, and 3. The virus most closely related to ETTVs is Narangue virus (family Phenuiviridae, genus Mobuvirus), which was detected in Mansonia mosquitoes; the nucleotide and amino acid sequences of the Narangue virus are 58.4-66.2% and 64.7-86.7% similar, respectively, to those of ETTVs. PCR and RT-PCR using DNA and RNase digestion methods showed that the ETTVs are RNA viruses that do not form non-retroviral integrated RNA virus sequences in the mosquito genome.
Collapse
Affiliation(s)
- Leo Uchida
- School of Veterinary Medicine, Rakuno Gakuen University, Japan
| | - Yoshimi Sakurai
- School of Veterinary Medicine, Rakuno Gakuen University, Japan
| | - Makoto Shimooka
- School of Veterinary Medicine, Rakuno Gakuen University, Japan
| | | | | | | |
Collapse
|
31
|
Moonen JP, Schinkel M, van der Most T, Miesen P, van Rij RP. Composition and global distribution of the mosquito virome - A comprehensive database of insect-specific viruses. One Health 2023; 16:100490. [PMID: 36817977 PMCID: PMC9929601 DOI: 10.1016/j.onehlt.2023.100490] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Mosquitoes are vectors for emerging and re-emerging infectious viral diseases of humans, livestock and other animals. In addition to these arthropod-borne (arbo)viruses, mosquitoes are host to an array of insect-specific viruses, collectively referred to as the mosquito virome. Mapping the mosquito virome and understanding if and how its composition modulates arbovirus transmission is critical to understand arboviral disease emergence and outbreak dynamics. In recent years, next-generation sequencing as well as PCR and culture-based methods have been extensively used to identify mosquito-associated viruses, providing insights into virus ecology and evolution. Until now, the large amount of mosquito virome data, specifically those acquired by metagenomic sequencing, has not been comprehensively integrated. We have constructed a searchable database of insect-specific viruses associated with vector mosquitoes from 175 studies, published between October 2000 and February 2022. We identify the most frequently detected and widespread viruses of the Culex, Aedes and Anopheles mosquito genera and report their global distribution. In addition, we highlight the challenges of extracting and integrating published virome data and we propose that a standardized reporting format will facilitate data interpretation and re-use by other scientists. We expect our comprehensive database, summarizing mosquito virome data collected over 20 years, to be a useful resource for future studies.
Collapse
|
32
|
Heinig-Hartberger M, Hellhammer F, Zöller DDJA, Dornbusch S, Bergmann S, Vocadlova K, Junglen S, Stern M, Lee KZ, Becker SC. Culex Y Virus: A Native Virus of Culex Species Characterized In Vivo. Viruses 2023; 15:235. [PMID: 36680275 PMCID: PMC9863036 DOI: 10.3390/v15010235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Mosquitoes are vectors of various pathogens that cause diseases in humans and animals. To prevent the outbreak of mosquito-borne diseases, it is essential to control vector populations, as treatment or vaccination for mosquito-borne diseases are often unavailable. Insect-specific viruses (ISVs) have previously been described as being potentially helpful against arboviral disease outbreaks. In this study, we present the first in vivo characterization of the ISV Culex Y virus (CYV). CYV was first isolated from free-living Culex pipiens mosquitoes in 2010; then, it was found in several mosquito cell lines in a further study in 2018. For mammalian cells, we were able to confirm that CYV does not replicate as it was previously described. Additionally, we found that CYV does not replicate in honey bees or locusts. However, we detected replication in the Culex pipiens biotype molestus, Aedes albopictus, and Drosophila melanogaster, thus indicating dipteran specificity. We detected significantly higher mortality in Culex pipiens biotype molestus males and Drosophila melanogaster, but not in Aedes albopictus and female Culex pipiens biotype molestus. CYV could not be transmitted transovarially to offspring, but we detected venereal transmission as well as CYV in mosquitos' saliva, indicating that an oral route of infection would also be possible. CYV's dipteran specificity, transmission routes, and killing effect with respect to Culex males may be used as powerful tools with which to destabilize arbovirus vector populations in the future.
Collapse
Affiliation(s)
- Mareike Heinig-Hartberger
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Fanny Hellhammer
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - David D. J. A. Zöller
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Susann Dornbusch
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Stella Bergmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Katerina Vocadlova
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Sandra Junglen
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany
| | - Michael Stern
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Kwang-Zin Lee
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| |
Collapse
|
33
|
Palatini U, Alfano N, Carballar RL, Chen XG, Delatte H, Bonizzoni M. Virome and nrEVEome diversity of Aedes albopictus mosquitoes from La Reunion Island and China. Virol J 2022; 19:190. [DOI: 10.1186/s12985-022-01918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Aedes albopictus is a public health threat for its worldwide spread and ability to transmit arboviruses. Understanding mechanisms of mosquito immunity can provide new tools to control arbovirus spread. The genomes of Aedes mosquitoes contain hundreds of nonretroviral endogenous viral elements (nrEVEs), which are enriched in piRNA clusters and produce piRNAs, with the potential to target cognate viruses. Recently, one nrEVE was shown to limit cognate viral infection through nrEVE-derived piRNAs. These findings suggest that nrEVEs constitute an archive of past viral infection and that the landscape of viral integrations may be variable across populations depending on their viral exposure.
Methods
We used bioinformatics and molecular approaches to identify known and novel (i.e. absent in the reference genome) viral integrations in the genome of wild collected Aedes albopictus mosquitoes and characterize their virome.
Results
We showed that the landscape of viral integrations is dynamic with seven novel viral integrations being characterized, but does not correlate with the virome, which includes both viral species known and unknown to infect mosquitoes. However, the small RNA coverage profile of nrEVEs and the viral genomic contigs we identified confirmed an interaction among these elements and the piRNA and siRNA pathways in mosquitoes.
Conclusions
Mosquitoes nrEVEs have been recently described as a new form of heritable, sequence-specific mechanism of antiviral immunity. Our results contribute to understanding the dynamic distribution of nrEVEs in the genomes of wild Ae. albopictus and their interaction with mosquito viruses.
Collapse
|
34
|
Deciphering the Tissue Tropism of the RNA Viromes Harbored by Field-Collected Anopheles sinensis and Culex quinquefasciatus. Microbiol Spectr 2022; 10:e0134422. [PMID: 35968979 PMCID: PMC9604083 DOI: 10.1128/spectrum.01344-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Arboviruses and insect-specific viruses (ISVs) are two major types of viruses harbored by mosquitoes that are distinguished by the involvement of vertebrate hosts in their transmission cycles. While intensive studies have focused on the transmission, tissue tropism, and evolution of arboviruses, these characteristics are poorly investigated in ISVs, which dominate the mosquito virome. Therefore, in this study, we collected two mosquito species, Anopheles sinensis and Culex quinquefasciatus, in the field and used a metatranscriptomics approach to characterize their RNA viromes in different tissues, such as the midgut, legs, salivary gland, eggs, and the remainder of the carcass. Blood-engorged individuals of these species were captured in 3 locations, and 60 mosquitoes were pooled from each species and location. A total of 40 viral species from diverse viral taxa associated with all viral RNA genome types were identified, among which 19 were newly identified in this study. According to the current viral taxonomy, some of these viruses, such as Yancheng Anopheles associated virus 2 (Narnaviridae) and Jiangsu Anopheles-related virus (Ghabrivirales), were novel. The two investigated mosquito species generally harbored distinct viromes. Nevertheless, the viruses were generally shared among different tissue types to various degrees. Specifically, the eggs possessed a viral community with significantly lower diversity and abundance than those in other tissues, whereas the legs and salivary glands exhibited higher viral abundance. The compositions and distributions of the viromes of different mosquito tissues were demonstrated for the first time in our study, providing important insight into the virome dynamics within individual mosquitoes. IMPORTANCE ISVs are considered to be ancestral to arboviruses. Because of their medical importance, arboviruses have been well studied from the aspects of their transmission mode, evolution of dual-host tropism, and genetic dynamics within mosquito vectors. However, the mode of ISV maintenance is poorly understood, even though many novel ISVs have been identified with the emergence of sequencing technology. In our study, in addition to the identification of a diverse virus community, the tissue tropism of RNA viromes harbored by two field-collected mosquito species was demonstrated for the first time. According to the results, the virus communities of different tissues, such as the salivary glands, midguts, legs, and eggs, can help us understand the evolution, transmission routes, and maintenance modes of mosquito-specific viruses in nature.
Collapse
|
35
|
Andrade PS, Valença IN, Heinisch MRS, Rocha EC, Fernandes LN, Faria NR, Sabino EC, Lima-Camara TN. First Report of Wenzhou sobemo-like virus 4 in Aedes albopictus (Diptera: Culicidae) in Latin America. Viruses 2022; 14:2341. [PMID: 36366436 PMCID: PMC9696862 DOI: 10.3390/v14112341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 02/01/2023] Open
Abstract
Insect-specific viruses (ISVs) are viruses that replicate exclusively in arthropod cells. Many ISVs have been studied in mosquitoes as many of them act as vectors for human etiological agents, such as arboviruses. Aedes (Stegomyia) albopictus is an important potential vector of several arboviruses in Brazil, such as dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV). The development of next-generation sequencing metagenomics has enabled the discovery and characterization of new ISVs. Ae. albopictus eggs were collected using oviposition traps placed in two urban parks in the city of São Paulo, Brazil. The Aedes albopictus females were divided into pools and the genetic material was extracted and processed for sequencing by metagenomics. Complete genomes of ISV Wenzhou sobemo-like virus 4 (WSLV4) were obtained in three of the four pools tested. This is the first detection of ISV WSLV4 in Ae. albopictus females in Latin America. Further studies on ISVs in Ae. albopictus are needed to better understand the role of this species in the dynamics of arbovirus transmission in the Americas.
Collapse
Affiliation(s)
- Pâmela S. Andrade
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Ian N. Valença
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Marta R. S. Heinisch
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil
| | - Esmenia C. Rocha
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Lícia N. Fernandes
- Medical Research Laboratory 49, Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Nuno R. Faria
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Ester C. Sabino
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Tamara N. Lima-Camara
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil
| |
Collapse
|
36
|
Agboli E, Tomazatos A, Maiga-Ascofaré O, May J, Lühken R, Schmidt-Chanasit J, Jöst H. Arbovirus Epidemiology: The Mystery of Unnoticed Epidemics in Ghana, West Africa. Microorganisms 2022; 10:1914. [PMID: 36296190 PMCID: PMC9610185 DOI: 10.3390/microorganisms10101914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
It is evident that all the countries surrounding Ghana have experienced epidemics of key arboviruses of medical importance, such as the recent dengue fever epidemic in Burkina Faso. Therefore, Ghana is considered a ripe zone for epidemics of arboviruses, mainly dengue. Surprisingly, Ghana never experienced the propounded deadly dengue epidemic. Indeed, it is mysterious because the mosquito vectors capable of transmitting the dengue virus, such as Aedes aegypti, were identified in Ghana through entomological investigations. Additionally, cases may be missed, as the diagnostic and surveillance capacities of the country are weak. Therefore, we review the arbovirus situation and outline probable reasons for the epidemic mystery in the country. Most of the recorded cases of arbovirus infections were usually investigated via serology by detecting IgM and IgG immunoglobulins in clinical samples, which is indicative of prior exposure but not an active case. This led to the identification of yellow fever virus and dengue virus as the main circulating arboviruses among the Ghanaian population. However, major yellow fever epidemics were reported for over a decade. It is important to note that the reviewed arboviruses were not frequently detected in the vectors. The data highlight the necessity of strengthening the diagnostics and the need for continuous arbovirus and vector surveillance to provide an early warning system for future arbovirus epidemics.
Collapse
Affiliation(s)
- Eric Agboli
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
- University of Health and Allied Sciences, Ho PMB 31, Ghana
| | - Alexandru Tomazatos
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
| | - Oumou Maiga-Ascofaré
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, PMB, Kumasi 039-5028, Ghana
| | - Jürgen May
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20359 Hamburg, Germany
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
| |
Collapse
|
37
|
Arthropod-Borne Virus Surveillance as a Tool to Study the Australian Mosquito Virome. Viruses 2022; 14:v14091882. [PMID: 36146689 PMCID: PMC9502171 DOI: 10.3390/v14091882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/05/2022] Open
Abstract
Mosquitoes (n = 4381 in 198 pools) were collected in March and April 2018 to survey the presence of West Nile virus Kunjin strain in mosquito populations around crocodile farms in the Darwin region of the Northern Territory (NT) of Australia. While no Kunjin virus was detected in these mosquitoes, we applied our viral replicative intermediates screening system termed monoclonal antibodies to viral RNA intermediates in cells or MAVRIC to this set of samples. This resulted in the detection of 28 pools with virus replicating in C6/36 mosquito cells and the identification of three insect viruses from three distinct virus classes. We demonstrate the persistence of the insect-specific flavivirus Palm Creek virus in Coquillettidia xanthogaster mosquitoes from Darwin over almost a decade, with limited genetic drift. We also detected a novel Hubei macula-like virus 3 strain in samples from two mosquito genera, suggesting the virus, for which the sequence was originally detected in spiders and soybean thrips, might be involved in a horizontal transmission cycle between arthropods and plants. Overall, these data demonstrate the strength of the optimized MAVRIC system and contribute to our general knowledge of the mosquito virome and insect viruses.
Collapse
|
38
|
Gómez M, Martinez D, Muñoz M, Ramírez JD. Aedes aegypti and Ae. albopictus microbiome/virome: new strategies for controlling arboviral transmission? Parasit Vectors 2022; 15:287. [PMID: 35945559 PMCID: PMC9364528 DOI: 10.1186/s13071-022-05401-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023] Open
Abstract
Aedes aegypti and Aedes albopictus are the main vectors of highly pathogenic viruses for humans, such as dengue (DENV), chikungunya (CHIKV), and Zika (ZIKV), which cause febrile, hemorrhagic, and neurological diseases and remain a major threat to global public health. The high ecological plasticity, opportunistic feeding patterns, and versatility in the use of urban and natural breeding sites of these vectors have favored their dispersal and adaptation in tropical, subtropical, and even temperate zones. Due to the lack of available treatments and vaccines, mosquito population control is the most effective way to prevent arboviral diseases. Resident microorganisms play a crucial role in host fitness by preventing or enhancing its vectorial ability to transmit viral pathogens. High-throughput sequencing and metagenomic analyses have advanced our understanding of the composition and functionality of the microbiota of Aedes spp. Interestingly, shotgun metagenomics studies have established that mosquito vectors harbor a highly conserved virome composed of insect-specific viruses (ISV). Although ISVs are not infectious to vertebrates, they can alter different phases of the arboviral cycle, interfering with transmission to the human host. Therefore, this review focuses on the description of Ae. aegypti and Ae. albopictus as vectors susceptible to infection by viral pathogens, highlighting the role of the microbiota-virome in vectorial competence and its potential in control strategies for new emerging and re-emerging arboviruses.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Grupo de Investigación en Ciencias Básicas (NÚCLEO) Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martinez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia. .,Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
39
|
Kirstein OD, Talavera GA, Wei Z, Ciau-Carrilo KJ, Koyoc-Cardeña E, Puerta-Guardo H, Rodríguez-Martín E, Medina-Barreiro A, Mendoza AC, Piantadosi AL, Manrique-Saide P, Vazquez-Prokopec GM. Natural Aedes-Borne Virus Infection Detected in Male Adult Aedes aegypti (Diptera: Culicidae) Collected From Urban Settings in Mérida, Yucatán, México. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1336-1346. [PMID: 35535688 PMCID: PMC9278843 DOI: 10.1093/jme/tjac048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 05/12/2023]
Abstract
Aedes-borne viruses (ABVs) such as dengue (DENV), chikungunya (CHIKV), and Zika (ZIKV) contribute significantly to the global burden of infectious diseases, disproportionately affecting disadvantaged populations from tropical and subtropical urban areas. ABVs can be transmitted from female mosquitoes to their progeny by vertical transmission via transovarial and/or trans-egg vertical transmission and contribute to the maintenance of infected-mosquito populations year-round in endemic regions. This study describes the natural infection rate of DENV, CHIKV, and ZIKV in field-caught male Aedes (Sergentomyia) aegypti (Linnaeus) mosquitoes from Mérida, Yucatán, México, as a proxy for the occurrence of vertical virus transmission. We used indoor sequential sampling with Prokopack aspirators to collect all mosquitoes inside houses from ABV hotspots areas. Collections were performed in a DENV and CHIKV post-epidemic phase and during a period of active ZIKV transmission. We individually RT-qPCR tested all indoor collected Ae. aegypti males (1,278) followed by Sanger sequencing analysis for final confirmation. A total of 6.7% male mosquitoes were positive for ABV (CHIKV = 5.7%; DENV = 0.9%; ZIKV = 0.1%) and came from 21.0% (30/143) houses infested with males. Most ABV-positive male mosquitoes were positive for CHIKV (84.8%). The distribution of ABV-positive Ae. aegypti males was aggregated in a few households, with two houses having 11 ABV-positive males each. We found a positive association between ABV-positive males and females per house. These findings suggested the occurrence of vertical arbovirus transmission within the mosquito populations in an ABV-endemic area and, a mechanism contributing to viral maintenance and virus re-emergence among humans in post-epidemic periods.
Collapse
Affiliation(s)
- Oscar D Kirstein
- Department of Environmental Sciences. Emory University, Atlanta, GA, USA
| | - Guadalupe Ayora Talavera
- Laboratorio de Virología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Zhuoran Wei
- Department of Environmental Sciences. Emory University, Atlanta, GA, USA
| | - Karina J Ciau-Carrilo
- Laboratorio de Virología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Edgar Koyoc-Cardeña
- Unidad Colaborativa para Bioensayos Entomológicos, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Henry Puerta-Guardo
- Laboratorio de Virología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
- Unidad Colaborativa para Bioensayos Entomológicos, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Ester Rodríguez-Martín
- Laboratorio de Virología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Anuar Medina-Barreiro
- Unidad Colaborativa para Bioensayos Entomológicos, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Azael Che Mendoza
- Unidad Colaborativa para Bioensayos Entomológicos, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Anne L Piantadosi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Pablo Manrique-Saide
- Unidad Colaborativa para Bioensayos Entomológicos, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | | |
Collapse
|
40
|
Antiviral RNAi Mechanisms to Arboviruses in Mosquitoes: microRNA Profile of Aedes aegypti and Culex quinquefasciatus from Grenada, West Indies. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mosquito-borne arboviruses, such as dengue virus, West Nile virus, Zika virus and yellow fever virus, impose a tremendous cost on the health of populations around the world. As a result, much effort has gone into the study of the impact of these viruses on human infections. Comparatively less effort, however, has been made to study the way these viruses interact with mosquitoes themselves. As ingested arboviruses infect their midgut and subsequently other tissue, the mosquito mounts a multifaceted innate immune response. RNA interference, the central intracellular antiviral defense mechanism in mosquitoes and other invertebrates can be induced and modulated through outside triggers (small RNAs) and treatments (transgenesis or viral-vector delivery). Accordingly, modulation of this facet of the mosquito’s immune system would thereby suggest a practical strategy for vector control. However, this requires a detailed understanding of mosquitoes’ endogenous small RNAs and their effects on the mosquito and viral proliferation. This paper provides an up-to-date overview of the mosquito’s immune system along with novel data describing miRNA profiles for Aedes aegypti and Culex quinquefasiatus in Grenada, West Indies.
Collapse
|
41
|
Huang Y, Zhang H, Li X, Zhao L, Cai D, Wang S, Ren N, Ma H, Huang D, Wang F, Yuan Z, Zhang B, Xia H. In Vitro and In Vivo Characterization of a New Strain of Mosquito Flavivirus Derived from Culicoides. Viruses 2022; 14:v14061298. [PMID: 35746769 PMCID: PMC9229015 DOI: 10.3390/v14061298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Mosquito-specific flaviviruses comprise a group of insect-specific viruses with a single positive RNA, which can affect the duplication of mosquito-borne viruses and the life growth of mosquitoes, and which have the potential to be developed as a vaccine platform for mosquito-borne viruses. In this study, a strain of mosquito flavivirus (MFV) YN15-283-02 was detected in Culicoides collected from Yunnan, China. The isolation of the purified MFV YN15-283-02 from cell culture failed, and the virus was then rescued by an infectious clone. To study the biological features of MFV YN15-283-02 in vitro and in vivo, electron microscopy, phylogenetic tree, and viral growth kinetic analyses were performed in both cell lines and mosquitoes. The rescued MFV (rMFV) YN15-283-02 duplicated and reached a peak in C6/36 cells at 6 d.p.i. with approximately 2 × 106 RNA copies/μL (RNA to cell ratio of 0.1), but without displaying a cytopathic effect. In addition, the infection rate for the rMFV in Ae.aegypti show a low level in both larvae (≤15%) and adult mosquitoes (≤12%).
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongqing Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodan Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
| | - Lu Zhao
- Westlake Disease Modeling Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Dirui Cai
- School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Shunlong Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nanjie Ren
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixia Ma
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
| | - Doudou Huang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
| | - Fei Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (B.Z.); (H.X.); Tel.: +86-27-87197607 (B.Z.); +86-27-87198120 (H.X.)
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (B.Z.); (H.X.); Tel.: +86-27-87197607 (B.Z.); +86-27-87198120 (H.X.)
| |
Collapse
|
42
|
Konstantinidis K, Dovrolis N, Kouvela A, Kassela K, Rosa Freitas MG, Nearchou A, de Courcy Williams M, Veletza S, Karakasiliotis I. Defining Virus-Carrier Networks that Shape the Composition of the Mosquito Core Virome of a Local Ecosystem. Virus Evol 2022; 8:veac036. [PMID: 35505691 PMCID: PMC9055857 DOI: 10.1093/ve/veac036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
Mosquitoes are the most important vectors of emerging infectious diseases. During the past decade, our understanding of the diversity of viruses they carry has greatly expanded. Most of these viruses are considered mosquito-specific, but there is increasing evidence that these viruses may affect the vector competence of mosquitoes. Metagenomics approaches have focused on specific mosquito species for the identification of what is called the core virome. Despite the fact that, in most ecosystems, multiple species may participate in virus emergence and circulation, there is a lack of understanding of the virus-carrier/host network for both vector-borne and mosquito-specific viruses. Here, we studied the core virome of mosquitoes in a diverse local ecosystem that had 24 different mosquito species. The analysis of the viromes of these 24 mosquito species resulted in the identification of 34 viruses, which included 15 novel viruses, as determined according to the species demarcation criteria of the respective virus families. Most of the mosquito species had never been analysed previously, and a comparison of the individual viromes of the 24 mosquito species revealed novel relationships among mosquito species and virus families. Groups of related viruses and mosquito species from multiple genera formed a complex web in the local ecosystem. Furthermore, analyses of the virome of mixed-species pools of mosquitoes from representative traps of the local ecosystem showed almost complete overlap with the individual-species viromes identified in the study. Quantitative analysis of viruses’ relative abundance revealed a linear relationship to the abundance of the respective carrier/host mosquito species, supporting the theory of a stable core virome in the most abundant species of the local ecosystem. Finally, our study highlights the importance of using a holistic approach to investigating mosquito viromes relationships in rich and diverse ecosystems.
Collapse
Affiliation(s)
| | - Nikolas Dovrolis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Adamantia Kouvela
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Katerina Kassela
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Goreti Rosa Freitas
- Laboratório de Mosquitoes Transmissores de Hematozoários, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Andreas Nearchou
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Stavroula Veletza
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
43
|
Coatsworth H, Bozic J, Carrillo J, Buckner EA, Rivers AR, Dinglasan RR, Mathias DK. Intrinsic variation in the vertically transmitted core virome of the mosquito Aedes aegypti. Mol Ecol 2022; 31:2545-2561. [PMID: 35229389 DOI: 10.1111/mec.16412] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/27/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022]
Abstract
Virome studies among metazoans have revealed the ubiquity of RNA viruses in animals, contributing to a fundamental re-thinking of the relationships between organisms and their microbiota. Mosquito viromes, often scrutinized due to their public health relevance, may also provide insight into broadly applicable concepts, such as a "core virome," a set of viruses consistently associated with a host species or population that may fundamentally impact its basic biology. A subset of mosquito-associated viruses (MAVs) could comprise such a core, and MAVs can be categorized as (i) arboviruses, which alternate between mosquito and vertebrate hosts, (ii) insect-specific viruses, which cannot replicate in vertebrate cells, and (iii) viruses with unknown specificity. MAVs have been widely characterized in the disease vector Aedes aegypti, and the occurrence of a core virome in this species has been proposed but remains unclear. Using a wild population previously surveyed for MAVs and a common laboratory strain, we investigated viromes in reproductive tissue via metagenomic RNA sequencing. Virome composition varied across samples, but four groups comprised >97% of virus sequences: a novel partiti-like virus (Partitiviridae), a toti-like virus (Totiviridae), unclassified Riboviria, and four orthomyxo-like viruses (Orthormyxoviridae). Whole or partial genomes for the partiti-like virus, toti-like virus, and one orthomyxo-like virus were assembled and analyzed phylogenetically. Multigenerational maintenance of these MAVs was confirmed by RT-PCR, indicating vertical transmission as a mechanism for persistence. This study provides fundamental information regarding MAV ecology and variability in A. aegypti and the potential for vertically maintained core viromes at the population level.
Collapse
Affiliation(s)
- H Coatsworth
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA.,Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA.,CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA
| | - J Bozic
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA.,Entomology & Nematology Department, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, USA.,Department of Entomology, the Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - J Carrillo
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA.,Manatee County Mosquito Control District, Palmetto, Florida, USA.,Lacerta Therapeutics, Production and Development, Alachua Florida, USA
| | - E A Buckner
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA.,Entomology & Nematology Department, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, USA
| | - A R Rivers
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA.,Genomics and Bioinformatics Research Unit, Agricultural Research Service, United States Department of Agriculture, Gainesville, Florida, USA
| | - R R Dinglasan
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA.,Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA.,CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA
| | - D K Mathias
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA.,Entomology & Nematology Department, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, USA
| |
Collapse
|
44
|
Densovirus Oil Suspension Significantly Improves the Efficacy and Duration of Larvicidal Activity against Aedes albopictus. Viruses 2022; 14:v14030475. [PMID: 35336882 PMCID: PMC8954509 DOI: 10.3390/v14030475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Aedes albopictus is the sole vector for various mosquito-borne viruses, including dengue, chikungunya, and Zika. Ecofriendly biological agents are required to reduce the spread of these mosquito-borne infections. Mosquito densoviruses (MDVs) are entomopathogenic mosquito-specific viruses, which can reduce the capacity of isolated vectors and decrease mosquito-borne viral disease transmission. However, their variable pathogenicity restricts their commercial use. In the present study, we developed a series of novel larvicide oil suspensions (denoted Bacillus thuringiensis (Bti) oil, Ae. albopictus densovirus (AalDV-5) oil, and a mixture of AalDV-5+Bti oil), which were tested against Ae. albopictus larvae under experimental semi-field and open-field conditions. The effect of AalDV-5 on non-target species was also evaluated. The combined effect of AalDV-5+Bti was greater than that of individual toxins and was longer lasting and more persistent compared with the laboratory AalDV-5 virus strain. The virus was quantified on a weekly basis by quantitative polymerase chain reaction (qPCR) and was persistently detected in rearing water as well as in dead larvae. Wildtype densovirus is not pathogenic to non-target organisms. The present findings confirm the improved effect of a mixed microbial suspension (AalDV-5+Bti oil) larvicide against Ae. albopictus. The development and testing of these products will enable better control of the vector mosquitoes.
Collapse
|
45
|
Antiviral RNAi Response against the Insect-Specific Agua Salud Alphavirus. mSphere 2022; 7:e0100321. [PMID: 35171691 PMCID: PMC8849343 DOI: 10.1128/msphere.01003-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arboviruses transmitted by mosquitoes are responsible for the death of millions of people each year. In addition to arboviruses, many insect-specific viruses (ISVs) have been discovered in mosquitoes in the last decade. ISVs, in contrast to arboviruses transmitted by mosquitoes to vertebrates, cannot replicate in vertebrate cells even when they are evolutionarily closely related to arboviruses. The alphavirus genus includes many arboviruses, although only a few ISVs have been discovered from this genus so far. Here, we investigate the interactions of a recently isolated insect-specific alphavirus, Agua Salud alphavirus (ASALV), with its mosquito host. RNA interference (RNAi) is one of the essential antiviral responses against arboviruses, although there is little knowledge on the interactions of RNAi with ISVs. Through the knockdown of transcripts of the different key RNAi pathway (small interfering RNA [siRNA], microRNA [miRNA], and P-element-induced wimpy testis [PIWI]-interacting RNA [piRNA]) proteins, we show the antiviral role of Ago2 (siRNA), Ago1 (miRNA), and Piwi4 proteins against ASALV in Aedes aegypti-derived cells. ASALV replication was increased in Dicer2 and Ago2 knockout cells, confirming the antiviral role of the siRNA pathway. In infected cells, mainly ASALV-specific siRNAs are produced, while piRNA-like small RNAs, with the characteristic nucleotide bias resulting from ping-pong amplification, are produced only in Dicer2 knockout cells. Taken together, ASALV interactions with the mosquito RNAi response differ from those of arthropod-borne alphaviruses in some aspects, although they also share some commonalities. Further research is needed to understand whether the identified differences can be generalized to other insect-specific alphaviruses. IMPORTANCE Mosquitoes are efficient vectors for many arboviruses that cause emergent infectious diseases in humans. Many insect-specific viruses (ISVs) that can infect mosquitoes but cannot infect vertebrates have been discovered in the last decade. ISVs have attracted great attention due to their potential use in mosquito or arbovirus control, by either decreasing mosquito fitness or restricting arbovirus replication and transmission to humans. However, ISV-mosquito interactions are not well understood. RNA interference (RNAi) is the most important innate immune response against many arboviruses, while it is unknown if it is antiviral against ISVs. Here, we investigate in detail the antiviral effect of the RNAi response in mosquitoes against an ISV for the first time. Using a recently isolated insect-specific alphavirus, we show that the regulation of virus replication was different from that for arthropod-borne alphaviruses despite some similarities. The differences in mosquito-virus interactions could drive the different transmission modes, which could eventually drive the evolution of arboviruses. Hence, an understanding of mosquito-ISV interactions can shed light on the ecology and evolution of both ISVs and the medically important arboviruses.
Collapse
|
46
|
Special Issue “Mosquito-Borne Virus Ecology”. Viruses 2022; 14:v14020357. [PMID: 35215949 PMCID: PMC8875898 DOI: 10.3390/v14020357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
|
47
|
Bonica MB, Balcazar DE, Chuchuy A, Barneche JA, Torres C, Micieli MV. Detection of Flaviviral-Like DNA Sequences in Aedes aegypti (Diptera: Culicidae) Collected From Argentina. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2406-2411. [PMID: 33939805 DOI: 10.1093/jme/tjab073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Indexed: 06/12/2023]
Abstract
Diseases caused by flaviviruses are a major public health burden across the world. In the past decades, South America has suffered dengue epidemics, the re-emergence of yellow fever and St. Louis encephalitis viruses, and the introduction of West Nile and Zika viruses. Many insect-specific flaviviruses (ISFs) that cannot replicate in vertebrate cells have recently been described. In this study, we analyzed field-collected mosquito samples from six different ecoregions of Argentina to detect flaviviruses. We did not find any RNA belonging to pathogenic flaviviruses or ISFs in adults or immature stages. However, flaviviral-like DNA similar to flavivirus NS5 region was detected in 83-100% of Aedes aegypti (L.). Despite being previously described as an ancient element in the Ae. aegypti genome, the flaviviral-like DNA sequence was not detected in all Ae. aegypti samples and sequences obtained did not form a monophyletic group, possibly reflecting the genetic diversity of mosquito populations in Argentina.
Collapse
Affiliation(s)
- Melisa B Bonica
- Laboratorio de Insectos Vectores, Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT La Plata-CONICET), Universidad Nacional de La Plata (UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Dario E Balcazar
- Laboratorio de Insectos Vectores, Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT La Plata-CONICET), Universidad Nacional de La Plata (UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ailen Chuchuy
- Laboratorio de Insectos Vectores, Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT La Plata-CONICET), Universidad Nacional de La Plata (UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge A Barneche
- Laboratorio de Insectos Vectores, Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT La Plata-CONICET), Universidad Nacional de La Plata (UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Torres
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - María V Micieli
- Laboratorio de Insectos Vectores, Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT La Plata-CONICET), Universidad Nacional de La Plata (UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
48
|
Duarte MA, Campos FS, Araújo Neto OF, Silva LA, Silva AB, Aguiar TC, Santos RN, Souza UJB, Alves GB, Melo FL, Ardisson-Araujo DMP, Aguiar RWS, Ribeiro BM. Identification of potential new mosquito-associated viruses of adult Aedes aegypti mosquitoes from Tocantins state, Brazil. Braz J Microbiol 2021; 53:51-62. [PMID: 34727360 DOI: 10.1007/s42770-021-00632-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022] Open
Abstract
Medically important arboviruses such as dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV) are primarily transmitted by the globally distributed mosquito Aedes aegypti. Increasing evidence suggests that the transmission of some viruses can be influenced by mosquito-specific and mosquito-borne viruses. Advancements in high-throughput sequencing (HTS) and bioinformatics have expanded our knowledge on the richness of viruses harbored by mosquitoes. HTS was used to characterize the presence of virus sequences in wild-caught adult Ae. aegypti from Tocantins (TO) state, Brazil. Samples of mosquitoes were collected in four cities of Tocantins state and submitted to RNA isolation, followed by sequencing at an Illumina HiSeq platform. Our results showed initially by Krona the presence of 3% of the sequenced reads belonging to the viral database. After further analysis, the virus sequences were found to have homology to two viral families found in insects Phenuiviridae and Metaviridae. Three possible viral strains including putative new viruses were detected and named Phasi Charoen-like phasivirus isolate To-1 (PCLV To-1), Aedes aegypti To virus 1 (AAToV1), and Aedes aegypti To virus 2 (AAToV2). The results presented in this work contribute to the growing knowledge about the diversity of viruses in mosquitoes and might be useful for future studies on the interaction between insect-specific viruses and arboviruses.
Collapse
Affiliation(s)
- Matheus A Duarte
- Faculdade de Agronomia E Veterinária, Universidade de Brasília, Brasília, DF, 70.910-900, Brazil
| | - Fabrício S Campos
- Laboratório de Bioinformática E Biotecnologia, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, TO, 77.402-970, Brazil.
| | - Osvaldo F Araújo Neto
- Laboratório de Bioinformática E Biotecnologia, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, TO, 77.402-970, Brazil
| | - Leonardo A Silva
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF, 70.910-900, Brazil
| | - Arthur B Silva
- Laboratório de Bioinformática E Biotecnologia, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, TO, 77.402-970, Brazil
| | - Thalita C Aguiar
- Laboratório de Bioinformática E Biotecnologia, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, TO, 77.402-970, Brazil
| | - Raissa N Santos
- Laboratório de Bioinformática E Biotecnologia, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, TO, 77.402-970, Brazil
| | - Ueric J B Souza
- Laboratório de Bioinformática E Biotecnologia, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, TO, 77.402-970, Brazil
| | - Giselly B Alves
- Laboratório de Biologia Molecular, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, TO, 77.402-970, Brazil
| | - Fernando L Melo
- Departamento de Fitopatologia, Instituto de Biologia, Universidade de Brasília, Brasília, DF, 70.910-900, Brazil
| | - Daniel M P Ardisson-Araujo
- Laboratório de Virologia de Insetos, Universidade Federal de Santa Maria, Santa Maria, RS, 97.105-900, Brazil
| | - Raimundo W S Aguiar
- Laboratório de Biologia Molecular, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, TO, 77.402-970, Brazil
| | - Bergmann M Ribeiro
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF, 70.910-900, Brazil
| |
Collapse
|
49
|
Detection of Insect-Specific Flaviviruses in Mosquitoes (Diptera: Culicidae) in Northeastern Regions of South Africa. Viruses 2021; 13:v13112148. [PMID: 34834955 PMCID: PMC8621686 DOI: 10.3390/v13112148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Mosquitoes in the Aedes and Culex genera are considered the main vectors of pathogenic flaviviruses worldwide. Entomological surveillance using universal flavivirus sets of primers in mosquitoes can detect not only pathogenic viruses but also insect-specific ones. It is hypothesized that insect-specific flaviviruses, which naturally infect these mosquitoes, may influence their vector competence for zoonotic arboviruses. Here, entomological surveillance was performed between January 2014 and May 2018 in five different provinces in the northeastern parts of South Africa, with the aim of identifying circulating flaviviruses. Mosquitoes were sampled using different carbon dioxide trap types. Overall, 64,603 adult mosquitoes were collected, which were screened by RT-PCR and sequencing. In total, 17 pools were found positive for insect-specific Flaviviruses in the mosquito genera Aedes (12/17, 70.59%) and Anopheles (5/17, 29.41%). No insect-specific viruses were detected in Culex species. Cell-fusing agent viruses were detected in Aedes aegypti and Aedes caballus. A range of anopheline mosquitoes, including Anopheles coustani, An. squamosus and An. maculipalpis, were positive for Culex flavivirus-like and Anopheles flaviviruses. These results confirm the presence of insect-specific flaviviruses in mosquito populations in South Africa, expands their geographical range and indicates potential mosquito species as vector species.
Collapse
|
50
|
Altinli M, Schnettler E, Sicard M. Symbiotic Interactions Between Mosquitoes and Mosquito Viruses. Front Cell Infect Microbiol 2021; 11:694020. [PMID: 34527601 PMCID: PMC8435781 DOI: 10.3389/fcimb.2021.694020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022] Open
Abstract
Mosquitoes not only transmit human and veterinary pathogens called arboviruses (arthropod-borne viruses) but also harbor mosquito-associated insect-specific viruses (mosquito viruses) that cannot infect vertebrates. In the past, studies investigating mosquito viruses mainly focused on highly pathogenic interactions that were easier to detect than those without visible symptoms. However, the recent advances in viral metagenomics have highlighted the abundance and diversity of viruses which do not generate mass mortality in host populations. Over the last decade, this has facilitated the rapid growth of virus discovery in mosquitoes. The circumstances around the discovery of mosquito viruses greatly affected how they have been studied so far. While earlier research mainly focused on the pathogenesis caused by DNA and some double-stranded RNA viruses during larval stages, more recently discovered single-stranded RNA mosquito viruses were heavily studied for their putative interference with arboviruses in female adults. Thus, many aspects of mosquito virus interactions with their hosts and host-microbiota are still unknown. In this context, considering mosquito viruses as endosymbionts can help to identify novel research areas, in particular in relation to their long-term interactions with their hosts (e.g. relationships during all life stages, the stability of the associations at evolutionary scales, transmission routes and virulence evolution) and the possible context-dependent range of interactions (i.e. beneficial to antagonistic). Here, we review the symbiotic interactions of mosquito viruses considering different aspects of their ecology, such as transmission, host specificity, host immune system and interactions with other symbionts within the host cellular arena. Finally, we highlight related research gaps in mosquito virus research.
Collapse
Affiliation(s)
- Mine Altinli
- Molecular Entomology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Esther Schnettler
- Molecular Entomology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University Hamburg, Hamburg, Germany
| | - Mathieu Sicard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|