1
|
Whitworth IT, Romero S, Kissi-Twum A, Knoener R, Scalf M, Sherer NM, Smith LM. Identification of Host Proteins Involved in Hepatitis B Virus Genome Packaging. J Proteome Res 2024; 23:4128-4138. [PMID: 39078123 DOI: 10.1021/acs.jproteome.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
A critical part of the hepatitis B virus (HBV) life cycle is the packaging of the pregenomic RNA (pgRNA) into nucleocapsids. While this process is known to involve several viral elements, much less is known about the identities and roles of host proteins in this process. To better understand the role of host proteins, we isolated pgRNA and characterized its protein interactome in cells expressing either packaging-competent or packaging-incompetent HBV genomes. We identified over 250 host proteins preferentially associated with pgRNA from the packaging-competent version of the virus. These included proteins already known to support capsid formation, enhance viral gene expression, catalyze nucleocapsid dephosphorylation, and bind to the viral genome, demonstrating the ability of the approach to effectively reveal functionally significant host-virus interactors. Three of these host proteins, AURKA, YTHDF2, and ATR, were selected for follow-up analysis. RNA immunoprecipitation qPCR (RIP-qPCR) confirmed pgRNA-protein association in cells, and siRNA knockdown of the proteins showed decreased encapsidation efficiency. This study provides a template for the use of comparative RNA-protein interactome analysis in conjunction with virus engineering to reveal functionally significant host-virus interactions.
Collapse
Affiliation(s)
- Isabella T Whitworth
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Sofia Romero
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Abena Kissi-Twum
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Rachel Knoener
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Pastor F, Charles E, Belmudes L, Chabrolles H, Cescato M, Rivoire M, Burger T, Passot G, Durantel D, Lucifora J, Couté Y, Salvetti A. Deciphering the phospho-signature induced by hepatitis B virus in primary human hepatocytes. Front Microbiol 2024; 15:1415449. [PMID: 38841065 PMCID: PMC11150682 DOI: 10.3389/fmicb.2024.1415449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Phosphorylation is a major post-translation modification (PTM) of proteins which is finely tuned by the activity of several hundred kinases and phosphatases. It controls most if not all cellular pathways including anti-viral responses. Accordingly, viruses often induce important changes in the phosphorylation of host factors that can either promote or counteract viral replication. Among more than 500 kinases constituting the human kinome only few have been described as important for the hepatitis B virus (HBV) infectious cycle, and most of them intervene during early or late infectious steps by phosphorylating the viral Core (HBc) protein. In addition, little is known on the consequences of HBV infection on the activity of cellular kinases. The objective of this study was to investigate the global impact of HBV infection on the cellular phosphorylation landscape early after infection. For this, primary human hepatocytes (PHHs) were challenged or not with HBV, and a mass spectrometry (MS)-based quantitative phosphoproteomic analysis was conducted 2- and 7-days post-infection. The results indicated that while, as expected, HBV infection only minimally modified the cell proteome, significant changes were observed in the phosphorylation state of several host proteins at both time points. Gene enrichment and ontology analyses of up- and down-phosphorylated proteins revealed common and distinct signatures induced by infection. In particular, HBV infection resulted in up-phosphorylation of proteins involved in DNA damage signaling and repair, RNA metabolism, in particular splicing, and cytoplasmic cell-signaling. Down-phosphorylated proteins were mostly involved in cell signaling and communication. Validation studies carried out on selected up-phosphorylated proteins, revealed that HBV infection induced a DNA damage response characterized by the appearance of 53BP1 foci, the inactivation of which by siRNA increased cccDNA levels. In addition, among up-phosphorylated RNA binding proteins (RBPs), SRRM2, a major scaffold of nuclear speckles behaved as an antiviral factor. In accordance with these findings, kinase prediction analysis indicated that HBV infection upregulates the activity of major kinases involved in DNA repair. These results strongly suggest that HBV infection triggers an intrinsic anti-viral response involving DNA repair factors and RBPs that contribute to reduce HBV replication in cell culture models.
Collapse
Affiliation(s)
- Florentin Pastor
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| | - Emilie Charles
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| | - Lucid Belmudes
- Université Grenoble Alpes, CEA, INSERM, UA13 BGE, CEA, CNRS, FR2048, Grenoble, France
| | - Hélène Chabrolles
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| | - Marion Cescato
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| | | | - Thomas Burger
- Université Grenoble Alpes, CEA, INSERM, UA13 BGE, CEA, CNRS, FR2048, Grenoble, France
| | - Guillaume Passot
- Service de Chirurgie Générale et Oncologique, Hôpital Lyon Sud, Hospices Civils de Lyon Et CICLY, EA3738, Université Claude Bernard Lyon, Lyon, France
| | - David Durantel
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| | - Julie Lucifora
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| | - Yohann Couté
- Université Grenoble Alpes, CEA, INSERM, UA13 BGE, CEA, CNRS, FR2048, Grenoble, France
| | - Anna Salvetti
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| |
Collapse
|
3
|
Ferrão Maciel-Fiuza M, Rengel BD, Wachholz GE, do Amaral Gomes J, de Oliveira MR, Kowalski TW, Roehe PM, Luiz Vianna FS, Schüler-Faccini L, Mayer FQ, Varela APM, Fraga LR. New candidate genes potentially involved in Zika virus teratogenesis. Comput Biol Med 2024; 173:108259. [PMID: 38522248 DOI: 10.1016/j.compbiomed.2024.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Despite efforts to elucidate Zika virus (ZIKV) teratogenesis, still several issues remain unresolved, particularly on the molecular mechanisms behind the pathogenesis of Congenital Zika Syndrome (CZS). To answer this question, we used bioinformatics tools, animal experiments and human gene expression analysis to investigate genes related to brain development potentially involved in CZS. Searches in databases for genes related to brain development and CZS were performed, and a protein interaction network was created. The expression of these genes was analyzed in a CZS animal model and secondary gene expression analysis (DGE) was performed in human cells exposed to ZIKV. A total of 2610 genes were identified in the databases, of which 1013 were connected. By applying centrality statistics of the global network, 36 candidate genes were identified, which, after selection resulted in nine genes. Gene expression analysis revealed distinctive expression patterns for PRKDC, PCNA, ATM, SMC3 as well as for FGF8 and SHH in the CZS model. Furthermore, DGE analysis altered expression of ATM, PRKDC, PCNA. In conclusion, systems biology are helpful tools to identify candidate genes to be validated in vitro and in vivo. PRKDC, PCNA, ATM, SMC3, FGF8 and SHH have altered expression in ZIKV-induced brain malformations.
Collapse
Affiliation(s)
- Miriãn Ferrão Maciel-Fiuza
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna Duarte Rengel
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Gabriela Elis Wachholz
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Julia do Amaral Gomes
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Maikel Rosa de Oliveira
- Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thayne Woycinck Kowalski
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Teratogen Information System, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Bioinformatics Core, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Centro Universitário CESUCA, Cachoeirinha, Brazil
| | - Paulo Michel Roehe
- Department of Microbiology, Immunology and Parasitology, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Teratogen Information System, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lavínia Schüler-Faccini
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil; Teratogen Information System, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Fabiana Quoos Mayer
- Graduate Program in Molecular and Cellular Biology, Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula Muterle Varela
- Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.
| | - Lucas Rosa Fraga
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Teratogen Information System, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Mondal A, Sarkar A, Das D, Sengupta A, Kabiraj A, Mondal P, Nag R, Mukherjee S, Das C. Epigenetic orchestration of the DNA damage response: Insights into the regulatory mechanisms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:99-141. [PMID: 39179350 DOI: 10.1016/bs.ircmb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
The DNA damage response (DDR) is a critical cellular mechanism that safeguards genome integrity and prevents the accumulation of harmful DNA lesions. Increasing evidence highlights the intersection between DDR signaling and epigenetic regulation, offering profound insights into various aspects of cellular function including oncogenesis. This comprehensive review explores the intricate relationship between the epigenetic modifications and DDR activation, with a specific focus on the impact of viral infections. Oncogenic viruses, such as human papillomavirus, hepatitis virus (HBV or HCV), and Epstein-Barr virus have been shown to activate the DDR. Consequently, these DNA damage events trigger a cascade of epigenetic alterations, including changes in DNA methylation patterns, histone modifications and the expression of noncoding RNAs. These epigenetic changes exert profound effects on chromatin structure, gene expression, and maintenance of genome stability. Importantly, elucidation of the viral-induced epigenetic alterations in the context of DDR holds significant implications for comprehending the complexity of cancer and provides potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | | | - Dipanwita Das
- Virus Unit [NICED-ICMR], ID and BG Hospital, Kolkata, India
| | - Amrita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Aindrila Kabiraj
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Rachayita Nag
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
5
|
Yang J, Zheng L, Yang Z, Wei Z, Shao J, Zhang Y, Yao J, Li M, Wang X, Zheng M. 5-FU promotes HBV replication through oxidative stress-induced autophagy dysfunction. Free Radic Biol Med 2024; 213:233-247. [PMID: 38215891 DOI: 10.1016/j.freeradbiomed.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) reactivation is a major problem that must be overcome during chemotherapy for HBV-related hepatocellular carcinoma (HCC). However, the mechanism underlying chemotherapy-associated HBV reactivation is still not fully understood, hindering the development of improved HBV-related HCC treatments. METHODS A meta-analysis was performed to assess the HBV reactivation risk during transcatheter arterial chemoembolization (TACE). To investigate the regulatory effects and mechanisms of 5-FU on HBV replication, an HBV mouse model was established by pAAV-HBV1.2 hydrodynamic injection followed by intraperitoneal 5-FU injection, and different in vitro models (HepG2.2.15 or Huh7 cells) were established. Realtime RT‒qPCR, western blotting, luciferase assays, and immunofluorescence were used to determine viral parameters. We also explored the underlying mechanisms by RNA-seq, oxidative stress evaluation and autophagy assessment. RESULTS The pooled estimated rate of HBV reactivation in patients receiving TACE was 30.3 % (95 % CI, 23.1%-37.4 %). 5-FU, which is a chemotherapeutic agent commonly used in TACE, promoted HBV replication in vitro and in vivo. Mechanistically, 5-FU treatment obviously increased autophagosome formation, as shown by increased LC3-II levels. Additionally, 5-FU impaired autophagic degradation, as shown by marked p62 and mCherry-GFP-LC3 upregulation, ultimately promoting HBV replication and secretion. Autophagy inhibition by 3-methyladenine or chloroquine significantly altered 5-FU-induced HBV replication. Furthermore, 5-FU-induced autophagy and HBV replication were markedly attenuated with a reactive oxygen species (ROS) scavenger. CONCLUSIONS Together, our results indicate that ROS-induced autophagosome formation and autophagic degradation play a critical role in 5-FU-induced HBV reactivation.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Luyan Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhenggang Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhiqiang Wei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiajia Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yina Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Minwei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xueyu Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
6
|
Bartosh UI, Dome AS, Zhukova NV, Karitskaya PE, Stepanov GA. CRISPR/Cas9 as a New Antiviral Strategy for Treating Hepatitis Viral Infections. Int J Mol Sci 2023; 25:334. [PMID: 38203503 PMCID: PMC10779197 DOI: 10.3390/ijms25010334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatitis is an inflammatory liver disease primarily caused by hepatitis A (HAV), B (HBV), C (HCV), D (HDV), and E (HEV) viruses. The chronic forms of hepatitis resulting from HBV and HCV infections can progress to cirrhosis or hepatocellular carcinoma (HCC), while acute hepatitis can lead to acute liver failure, sometimes resulting in fatality. Viral hepatitis was responsible for over 1 million reported deaths annually. The treatment of hepatitis caused by viral infections currently involves the use of interferon-α (IFN-α), nucleoside inhibitors, and reverse transcriptase inhibitors (for HBV). However, these methods do not always lead to a complete cure for viral infections, and chronic forms of the disease pose significant treatment challenges. These facts underscore the urgent need to explore novel drug developments for the treatment of viral hepatitis. The discovery of the CRISPR/Cas9 system and the subsequent development of various modifications of this system have represented a groundbreaking advance in the quest for innovative strategies in the treatment of viral infections. This technology enables the targeted disruption of specific regions of the genome of infectious agents or the direct manipulation of cellular factors involved in viral replication by introducing a double-strand DNA break, which is targeted by guide RNA (spacer). This review provides a comprehensive summary of our current knowledge regarding the application of the CRISPR/Cas system in the regulation of viral infections caused by HAV, HBV, and HCV. It also highlights new strategies for drug development aimed at addressing both acute and chronic forms of viral hepatitis.
Collapse
Affiliation(s)
| | | | | | | | - Grigory A. Stepanov
- The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; (U.I.B.); (A.S.D.); (N.V.Z.); (P.E.K.)
| |
Collapse
|
7
|
Mak JWY, Law AWH, Law KWT, Ho R, Cheung CKM, Law MF. Prevention and management of hepatitis B virus reactivation in patients with hematological malignancies in the targeted therapy era. World J Gastroenterol 2023; 29:4942-4961. [PMID: 37731995 PMCID: PMC10507505 DOI: 10.3748/wjg.v29.i33.4942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/22/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023] Open
Abstract
Hepatitis due to hepatitis B virus (HBV) reactivation can be serious and potentially fatal, but is preventable. HBV reactivation is most commonly reported in patients receiving chemotherapy, especially rituximab-containing therapy for hematological malignancies and those receiving stem cell transplantation. Patients with inactive and even resolved HBV infection still have persistence of HBV genomes in the liver. The expression of these silent genomes is controlled by the immune system. Suppression or ablation of immune cells, most importantly B cells, may lead to reactivation of seemingly resolved HBV infection. Thus, all patients with hematological malignancies receiving anticancer therapy should be screened for active or resolved HBV infection by blood tests for hepatitis B surface antigen (HBsAg) and antibody to hepatitis B core antigen. Patients found to be positive for HBsAg should be given prophylactic antiviral therapy. For patients with resolved HBV infection, there are two approaches. The first is pre-emptive therapy guided by serial HBV DNA monitoring, and treatment with antiviral therapy as soon as HBV DNA becomes detectable. The second approach is prophylactic antiviral therapy, particularly for patients receiving high-risk therapy, especially anti-CD20 monoclonal antibody or hematopoietic stem cell transplantation. Entecavir and tenofovir are the preferred antiviral choices. Many new effective therapies for hematological malignancies have been introduced in the past decade, for example, chimeric antigen receptor (CAR)-T cell therapy, novel monoclonal antibodies, bispecific antibody drug conjugates, and small molecule inhibitors, which may be associated with HBV reactivation. Although there is limited evidence to guide the optimal preventive measures, we recommend antiviral prophylaxis in HBsAg-positive patients receiving novel treatments, including Bruton's tyrosine kinase inhibitors, B-cell lymphoma 2 inhibitors, and CAR-T cell therapy. Further studies are needed to determine the risk of HBV reactivation with these agents and the best prophylactic strategy.
Collapse
Affiliation(s)
- Joyce Wing Yan Mak
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong 852, China
| | | | | | - Rita Ho
- Department of Medicine, North District Hospital, Hong Kong 852, China
| | - Carmen Ka Man Cheung
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong 852, China
| | - Man Fai Law
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong 852, China
| |
Collapse
|
8
|
Kostyushev D, Brezgin S, Kostyusheva A, Ponomareva N, Bayurova E, Zakirova N, Kondrashova A, Goptar I, Nikiforova A, Sudina A, Babin Y, Gordeychuk I, Lukashev A, Zamyatnin AA, Ivanov A, Chulanov V. Transient and tunable CRISPRa regulation of APOBEC/AID genes for targeting hepatitis B virus. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:478-493. [PMID: 37187708 PMCID: PMC10176074 DOI: 10.1016/j.omtn.2023.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
APOBEC/AID cytidine deaminases play an important role in innate immunity and antiviral defenses and were shown to suppress hepatitis B virus (HBV) replication by deaminating and destroying the major form of HBV genome, covalently closed circular DNA (cccDNA), without toxicity to the infected cells. However, developing anti-HBV therapeutics based on APOBEC/AID is complicated by the lack of tools for activating and controlling their expression. Here, we developed a CRISPR-activation-based approach (CRISPRa) to induce APOBEC/AID transient overexpression (>4-800,000-fold increase in mRNA levels). Using this new strategy, we were able to control APOBEC/AID expression and monitor their effects on HBV replication, mutation, and cellular toxicity. CRISPRa prominently reduced HBV replication (∼90%-99% decline of viral intermediates), deaminated and destroyed cccDNA, but induced mutagenesis in cancer-related genes. By coupling CRISPRa with attenuated sgRNA technology, we demonstrate that APOBEC/AID activation can be precisely controlled, eliminating off-site mutagenesis in virus-containing cells while preserving prominent antiviral activity. This study untangles the differences in the effects of physiologically expressed APOBEC/AID on HBV replication and cellular genome, provides insights into the molecular mechanisms of HBV cccDNA mutagenesis, repair, and degradation, and, finally, presents a strategy for a tunable control of APOBEC/AID expression and for suppressing HBV replication without toxicity.
Collapse
Affiliation(s)
- Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Corresponding author Dmitry Kostyushev, Laboratory of Genetic Technologies and Drug Development, Sechenov University, 119991 Moscow, Russia.
| | - Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991 Moscow, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Natalia Zakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - Alla Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Irina Goptar
- Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia
| | | | - Anna Sudina
- Federal State Budgetary Institution Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Yurii Babin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991 Moscow, Russia
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 127994 Moscow, Russia
- Department of Infectious Diseases, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991 Moscow, Russia
| | - Andrey A. Zamyatnin
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Alexander Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - Vladimir Chulanov
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 127994 Moscow, Russia
- Department of Infectious Diseases, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| |
Collapse
|
9
|
Brezgin SA, Kostyusheva AP, Ponomareva NI, Gegechkori VI, Kirdyashkina NP, Ayvasyan SR, Dmitrieva LN, Kokoreva LN, Chulanov VP, Kostyushev DS. HBx Protein Potentiates Hepatitis B Virus Reactivation. Mol Biol 2022. [DOI: 10.1134/s0026893322050041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Chang ML, Liaw YF. Hepatitis B Flare in Hepatitis B e Antigen-Negative Patients: A Complicated Cascade of Innate and Adaptive Immune Responses. Int J Mol Sci 2022; 23:ijms23031552. [PMID: 35163476 PMCID: PMC8836007 DOI: 10.3390/ijms23031552] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a dynamic process involving interactions among HBV, hepatocytes, and the host immune system. The natural course of chronic hepatitis B (CHB) is divided into four chronological phases, including the hepatitis B e antigen (HBeAg)-positive and HBeAg-negative phases. During HBV flare, alanine aminotransferase (ALT) levels abruptly rise to >5× the upper limit of normal; this is thought to occur due to the immune response against an upsurge in serum HBV DNA and antigen levels. Hepatitis flares may occur spontaneously, during or after antiviral therapy, or upon immunosuppression or chemotherapy in both HBeAg-positive and HBeAg-negative patients. The clinical spectrum of HBV flares varies from asymptomatic to hepatic decompensation or failure. HBeAg seroconversion with ≥ 1 year of consolidation therapy is accepted as an endpoint of oral antiviral therapy in HBeAg-positive patients, but recommendations for treating HBeAg-negative patients differ. Thus, the management of HBeAg-negative patients has attracted increasing interest. In the current review, we summarize various types of HBV flares and the associated complex cascade of innate and adaptive immune responses, with a focus on HBeAg-negative CHB patients. Hopefully, this review will provide insight into immunopathogenesis to improve the management of HBV flares in HBeAg-negative CHB patients.
Collapse
Affiliation(s)
- Ming-Ling Chang
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan;
- Division of Hepatology, Department of Hepatogastroenterology, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Correspondence: ; Tel.: +886-3-3281200 (ext. 8107); Fax: +886-3-3272236
| | - Yun-Fan Liaw
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan;
- Division of Hepatology, Department of Hepatogastroenterology, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| |
Collapse
|
11
|
Lubyova B, Tikalova E, Krulova K, Hodek J, Zabransky A, Hirsch I, Weber J. ATM-Dependent Phosphorylation of Hepatitis B Core Protein in Response to Genotoxic Stress. Viruses 2021; 13:v13122438. [PMID: 34960710 PMCID: PMC8705010 DOI: 10.3390/v13122438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic hepatitis caused by infection with the Hepatitis B virus is a life-threatening condition. In fact, 1 million people die annually due to liver cirrhosis or hepatocellular carcinoma. Recently, several studies demonstrated a molecular connection between the host DNA damage response (DDR) pathway and HBV replication and reactivation. Here, we investigated the role of Ataxia-telangiectasia-mutated (ATM) and Ataxia telangiectasia and Rad3-related (ATR) PI3-kinases in phosphorylation of the HBV core protein (HBc). We determined that treatment of HBc-expressing hepatocytes with genotoxic agents, e.g., etoposide or hydrogen peroxide, activated the host ATM-Chk2 pathway, as determined by increased phosphorylation of ATM at Ser1981 and Chk2 at Thr68. The activation of ATM led, in turn, to increased phosphorylation of cytoplasmic HBc at serine-glutamine (SQ) motifs located in its C-terminal domain. Conversely, down-regulation of ATM using ATM-specific siRNAs or inhibitor effectively reduced etoposide-induced HBc phosphorylation. Detailed mutation analysis of S-to-A HBc mutants revealed that S170 (S168 in a 183-aa HBc variant) is the primary site targeted by ATM-regulated phosphorylation. Interestingly, mutation of two major phosphorylation sites involving serines at positions 157 and 164 (S155 and S162 in a 183-aa HBc variant) resulted in decreased etoposide-induced phosphorylation, suggesting that the priming phosphorylation at these serine-proline (SP) sites is vital for efficient phosphorylation of SQ motifs. Notably, the mutation of S172 (S170 in a 183-aa HBc variant) had the opposite effect and resulted in massively up-regulated phosphorylation of HBc, particularly at S170. Etoposide treatment of HBV infected HepG2-NTCP cells led to increased levels of secreted HBe antigen and intracellular HBc protein. Together, our studies identified HBc as a substrate for ATM-mediated phosphorylation and mapped the phosphorylation sites. The increased expression of HBc and HBe antigens in response to genotoxic stress supports the idea that the ATM pathway may provide growth advantage to the replicating virus.
Collapse
Affiliation(s)
- Barbora Lubyova
- IOCB Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic; (E.T.); (K.K.); (J.H.); (A.Z.); (I.H.)
- Correspondence: (B.L.); (J.W.)
| | - Eva Tikalova
- IOCB Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic; (E.T.); (K.K.); (J.H.); (A.Z.); (I.H.)
| | - Kristyna Krulova
- IOCB Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic; (E.T.); (K.K.); (J.H.); (A.Z.); (I.H.)
| | - Jan Hodek
- IOCB Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic; (E.T.); (K.K.); (J.H.); (A.Z.); (I.H.)
| | - Ales Zabransky
- IOCB Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic; (E.T.); (K.K.); (J.H.); (A.Z.); (I.H.)
| | - Ivan Hirsch
- IOCB Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic; (E.T.); (K.K.); (J.H.); (A.Z.); (I.H.)
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic
| | - Jan Weber
- IOCB Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic; (E.T.); (K.K.); (J.H.); (A.Z.); (I.H.)
- Correspondence: (B.L.); (J.W.)
| |
Collapse
|
12
|
Abstract
Hepatitis B virus (HBV) can hide in the liver in the form of covalently closed circular DNA. When the body’s immunity changes, HBV reactivation (HBV-R) can occur. The risk of HBV-R is determined by the complex interaction among virological factors, medication factors and host factors. However, many patients do not know that they are infected with HBV, and doctors often do not invest enough time to systematically evaluate the patient’s HBV-R risk factors before immunosuppressive treatment. Therefore, HBV clinical screening should be vigorously promoted to achieve early detection and early prevention for patients with high risk of HBV-R. The mechanism, clinical features, risk factors, HBV-R under different disease etiologies, prevention and treatment of HBV-R were summarized to improve the in-depth understanding and awareness.
Collapse
Affiliation(s)
- Wei Huang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy & Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy & Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy & Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
13
|
Victor J, Deutsch J, Whitaker A, Lamkin EN, March A, Zhou P, Botten JW, Chatterjee N. SARS-CoV-2 triggers DNA damage response in Vero E6 cells. Biochem Biophys Res Commun 2021; 579:141-145. [PMID: 34600299 PMCID: PMC8440005 DOI: 10.1016/j.bbrc.2021.09.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus responsible for the current COVID-19 pandemic and has now infected more than 200 million people with more than 4 million deaths globally. Recent data suggest that symptoms and general malaise may continue long after the infection has ended in recovered patients, suggesting that SARS-CoV-2 infection has profound consequences in the host cells. Here we report that SARS-CoV-2 infection can trigger a DNA damage response (DDR) in African green monkey kidney cells (Vero E6). We observed a transcriptional upregulation of the Ataxia telangiectasia and Rad3 related protein (ATR) in infected cells. In addition, we observed enhanced phosphorylation of CHK1, a downstream effector of the ATR DNA damage response, as well as H2AX. Strikingly, SARS-CoV-2 infection lowered the expression of TRF2 shelterin-protein complex, and reduced telomere lengths in infected Vero E6 cells. Thus, our observations suggest SARS-CoV-2 may have pathological consequences to host cells beyond evoking an immunopathogenic immune response.
Collapse
Affiliation(s)
- Joshua Victor
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Jamie Deutsch
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Annalis Whitaker
- Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Erica N Lamkin
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Anthony March
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jason W Botten
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA; Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Nimrat Chatterjee
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA; Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA; University of Vermont Cancer Center, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
14
|
Isaguliants M, Krasnyak S, Smirnova O, Colonna V, Apolikhin O, Buonaguro FM. Genetic instability and anti-HPV immune response as drivers of infertility associated with HPV infection. Infect Agent Cancer 2021; 16:29. [PMID: 33971936 PMCID: PMC8111735 DOI: 10.1186/s13027-021-00368-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/16/2021] [Indexed: 12/18/2022] Open
Abstract
Human papillomavirus (HPV) is a sexually transmitted infection common among men and women of reproductive age worldwide. HPV viruses are associated with epithelial lesions and cancers. HPV infections have been shown to be significantly associated with many adverse effects in reproductive function. Infection with HPVs, specifically of high-oncogenic risk types (HR HPVs), affects different stages of human reproduction, resulting in a series of adverse outcomes: 1) reduction of male fertility (male infertility), characterized by qualitative and quantitative semen alterations; 2) impairment of couple fertility with increase of blastocyst apoptosis and reduction of endometrial implantation of trophoblastic cells; 3) defects of embryos and fetal development, with increase of spontaneous abortion and spontaneous preterm birth. The actual molecular mechanism(s) by which HPV infection is involved remain unclear. HPV-associated infertility as Janus, has two faces: one reflecting anti-HPV immunity, and the other, direct pathogenic effects of HPVs, specifically, of HR HPVs on the infected/HPV-replicating cells. Adverse effects observed for HR HPVs differ depending on the genotype of infecting virus, reflecting differential response of the host immune system as well as functional differences between HPVs and their individual proteins/antigens, including their ability to induce genetic instability/DNA damage. Review summarizes HPV involvement in all reproductive stages, evaluate the adverse role(s) played by HPVs, and identifies mechanisms of viral pathogenicity, common as well as specific for each stage of the reproduction process.
Collapse
Affiliation(s)
- Maria Isaguliants
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow, Russia. .,Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia. .,Riga Stradiņs University, Riga, Latvia. .,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Stepan Krasnyak
- Research Institute of Urology and Interventional Radiology named after N.A. Lopatkin, Moscow, Russia
| | - Olga Smirnova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedecine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vincenza Colonna
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | - Oleg Apolikhin
- Research Institute of Urology and Interventional Radiology named after N.A. Lopatkin, Moscow, Russia
| | | |
Collapse
|
15
|
Brezgin S, Kostyusheva A, Ponomareva N, Volia V, Goptar I, Nikiforova A, Shilovskiy I, Smirnov V, Kostyushev D, Chulanov V. Clearing of Foreign Episomal DNA from Human Cells by CRISPRa-Mediated Activation of Cytidine Deaminases. Int J Mol Sci 2020; 21:ijms21186865. [PMID: 32962129 PMCID: PMC7557733 DOI: 10.3390/ijms21186865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
Restriction of foreign DNA is a fundamental defense mechanism required for maintaining genomic stability and proper function of mammalian cells. APOBEC cytidine deaminases are crucial effector molecules involved in clearing pathogenic DNA of viruses and other microorganisms and improperly localized self-DNA (DNA leakages). Mastering the expression of APOBEC provides the crucial means both for developing novel therapeutic approaches for combating infectious and non-infectious diseases and for numerous research purposes. In this study, we report successful application of a CRISPRa approach to effectively and specifically overexpress APOBEC3A and APOBEC3B deaminases and describe their effects on episomal and integrated foreign DNA. This method increased target gene transcription by >6–50-fold in HEK293T cells. Furthermore, CRISPRa-mediated activation of APOBEC3A/APOBEC3B suppressed episomal but not integrated foreign DNA. Episomal GC-rich DNA was rapidly destabilized and destroyed by CRISPRa-induced APOBEC3A/APOBEC3B, while the remaining DNA templates harbored frequent deaminated nucleotides. To conclude, the CRISPRa approach could be readily utilized for manipulating innate immunity and investigating the effects of the key effector molecules on foreign nucleic acids.
Collapse
Affiliation(s)
- Sergey Brezgin
- Department of Molecular Biology and Immunopathology of Infectious Diseases, National Medical Research Center for Tuberculosis and Infectious Diseases, 127994 Moscow, Russia; (S.B.); (A.K.); (N.P.); (V.V.); (V.C.)
- Department of Molecular Immunology, Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia; (I.S.); (V.S.)
| | - Anastasiya Kostyusheva
- Department of Molecular Biology and Immunopathology of Infectious Diseases, National Medical Research Center for Tuberculosis and Infectious Diseases, 127994 Moscow, Russia; (S.B.); (A.K.); (N.P.); (V.V.); (V.C.)
| | - Natalia Ponomareva
- Department of Molecular Biology and Immunopathology of Infectious Diseases, National Medical Research Center for Tuberculosis and Infectious Diseases, 127994 Moscow, Russia; (S.B.); (A.K.); (N.P.); (V.V.); (V.C.)
| | - Viktoriia Volia
- Department of Molecular Biology and Immunopathology of Infectious Diseases, National Medical Research Center for Tuberculosis and Infectious Diseases, 127994 Moscow, Russia; (S.B.); (A.K.); (N.P.); (V.V.); (V.C.)
| | - Irina Goptar
- Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia; (I.G.); (A.N.)
| | - Anastasiya Nikiforova
- Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia; (I.G.); (A.N.)
| | - Igor Shilovskiy
- Department of Molecular Immunology, Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia; (I.S.); (V.S.)
| | - Valery Smirnov
- Department of Molecular Immunology, Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia; (I.S.); (V.S.)
| | - Dmitry Kostyushev
- Department of Molecular Biology and Immunopathology of Infectious Diseases, National Medical Research Center for Tuberculosis and Infectious Diseases, 127994 Moscow, Russia; (S.B.); (A.K.); (N.P.); (V.V.); (V.C.)
- Correspondence:
| | - Vladimir Chulanov
- Department of Molecular Biology and Immunopathology of Infectious Diseases, National Medical Research Center for Tuberculosis and Infectious Diseases, 127994 Moscow, Russia; (S.B.); (A.K.); (N.P.); (V.V.); (V.C.)
- Department of Infectious Diseases, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| |
Collapse
|
16
|
Ekpanyapong S, Reddy KR. Hepatitis B Virus Reactivation: What Is the Issue, and How Should It Be Managed? Clin Liver Dis 2020; 24:317-333. [PMID: 32620274 DOI: 10.1016/j.cld.2020.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) reactivation, in the background of cleared and overt chronic HBV infection, can be seen in patients receiving immunosuppressive agents. Risk of reactivation is variably associated with HBV serologic status and types of immunosuppressive therapy. Prevention of HBV reactivation by antiviral prophylaxis is an effective strategy to reduce morbidity and mortality in those with immunocompromised states. This article defines HBV reactivation, discusses risk stratification and common medications that can induce HBV reactivation as well as guideline recommendations for prevention of HBV reactivation, and describes the prognosis and management of patients who experience HBV reactivation.
Collapse
Affiliation(s)
- Sirina Ekpanyapong
- Department of Medicine, Division of Gastroenterology and Hepatology, Vejthani Hospital, 1 Soi Lat Phrao 111, Khlong Chan, Bang Kapi District, Bangkok 10240, Thailand
| | - K Rajender Reddy
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, 3400 Spruce Street, 2 Dulles HUP, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Brezgin S, Kostyusheva A, Bayurova E, Gordeychuk I, Isaguliants M, Goptar I, Nikiforova A, Smirnov V, Volchkova E, Glebe D, Kostyushev D, Chulanov V. Replenishment of Hepatitis B Virus cccDNA Pool Is Restricted by Baseline Expression of Host Restriction Factors In Vitro. Microorganisms 2019; 7:E533. [PMID: 31698767 PMCID: PMC6920784 DOI: 10.3390/microorganisms7110533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is the major cause of viral persistence in patients with chronic HBV infection. Understanding the mechanisms underlying stability and persistence of HBV cccDNA in hepatocytes is critical for developing novel therapeutics and managing chronic hepatitis B. In this study, we observed an unexpected increase in HBV cccDNA levels upon suppression of transcription by de novo DNA methyltransferase DNMT3A and uncovered additional mechanisms potentially involved in HBV cccDNA maintenance. METHODS HBV-expressing cell lines were transfected with a DNMT3A-expressing plasmid. Real-time PCR and HBsAg assays were used to assess the HBV replication rate. Cell cycling was analyzed by fluorescent cell sorting. CRISPR/Cas9 was utilized to abrogate expression of APOBEC3A and APOBEC3B. Alterations in the expression of target genes were measured by real-time PCR. RESULTS Similar to previous studies, HBV replication induced DNMT3A expression, which in turn, led to reduced HBV transcription but elevated HBV cccDNA levels (4- to 6-fold increase). Increased levels of HBV cccDNA were not related to cell cycling, as DNMT3A accelerated proliferation of infected cells and could not contribute to HBV cccDNA expansion by arresting cells in a quiescent state. At the same time, DNMT3A suppressed transcription of innate immunity factors including cytidine deaminases APOBEC3A and APOBEC3B. CRISPR/Cas9-mediated silencing of APOBEC3A and APOBEC3B transcription had minor effects on HBV transcription, but significantly increased HBV cccDNA levels, similar to DNMT3A. In an attempt to further analyze the detrimental effects of HBV and DNMT3A on infected cells, we visualized γ-H2AX foci and demonstrated that HBV inflicts and DNMT3A aggravates DNA damage, possibly by downregulating DNA damage response factors. Additionally, suppression of HBV replication by DNMT3A may be related to reduced ATM/ATR expression. CONCLUSION Formation and maintenance of HBV cccDNA pools may be partially suppressed by the baseline expression of host inhibitory factors including APOBEC3A and APOBEC3B. HBV inflicts DNA damage both directly and by inducing DNMT3A expression.
Collapse
Affiliation(s)
- Sergey Brezgin
- National Medical Research Center for Tuberculosis and Infectious Diseases, 127994 Moscow, Russia; (A.K.); (V.C.)
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia;
| | - Anastasiia Kostyusheva
- National Medical Research Center for Tuberculosis and Infectious Diseases, 127994 Moscow, Russia; (A.K.); (V.C.)
| | - Ekaterina Bayurova
- NF Gamaleya Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (I.G.); (M.I.)
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Ilya Gordeychuk
- NF Gamaleya Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (I.G.); (M.I.)
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
| | - Maria Isaguliants
- NF Gamaleya Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (I.G.); (M.I.)
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
- Riga Stradins University, LV-1007 Riga, Latvia
- Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Irina Goptar
- Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia; (I.G.); (A.N.)
| | - Anastasiia Nikiforova
- Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia; (I.G.); (A.N.)
| | - Valery Smirnov
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia;
| | - Elena Volchkova
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
| | - Dieter Glebe
- Institute of Medical Virology, University of Giessen, 35392 Giessen, Germany;
| | - Dmitry Kostyushev
- National Medical Research Center for Tuberculosis and Infectious Diseases, 127994 Moscow, Russia; (A.K.); (V.C.)
| | - Vladimir Chulanov
- National Medical Research Center for Tuberculosis and Infectious Diseases, 127994 Moscow, Russia; (A.K.); (V.C.)
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| |
Collapse
|