1
|
Davis AJ, Chipman RB, Nelson KM, Haley BS, Kirby JD, Ma X, Wallace RM, Gilbert AT. Evaluation of contingency actions to control the spread of raccoon rabies in Ohio and Virginia. Prev Vet Med 2024; 225:106145. [PMID: 38354432 DOI: 10.1016/j.prevetmed.2024.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
The raccoon (Procyon lotor) variant of the rabies virus (RRV) is enzootic in the eastern United States and oral rabies vaccination (ORV) is the primary strategy to prevent and control landscape spread. Breaches of ORV management zones occasionally occur, and emergency "contingency" actions may be implemented to enhance local control. Contingency actions are an integral part of landscape-scale wildlife rabies management but can be very costly and routinely involve enhanced rabies surveillance (ERS) around the index case. We investigated two contingency actions in Ohio (2017-2019 and 2018-2021) and one in Virginia (2017-2019) using a dynamic, multi-method occupancy approach to examine relationships between specific management actions and RRV occurrence, including whether ERS was sufficient around the index case. The RRV occupancy was assessed seasonally at 100-km2 grids and we examined relationships across three spatial scales (regional management zone, RRV free regions, and local contingency areas). The location of a grid relative to the ORV management zone was the strongest predictor of RRV occupancy at the regional scale. In RRV free regions, the neighbor effect and temporal variability were most important in influencing RRV occupancy. Parenteral (hand) vaccination of raccoons was important across all three contingency action areas, but more influential in the Ohio contingency action areas where more raccoons were hand vaccinated. In the Virginia contingency action area, ORV strategies were as important in reducing RRV occupancy as a hand vaccination strategy. The management action to trap, euthanize, and test (TET) raccoons was an important method to increase ERS, yet the impacts of TET on RRV occupancy are not clear. The probability of detecting additional cases of RRV was exceptionally high (>0.95) during the season the index case occurred. The probability of detecting RRV through ERS declined in the seasons following initial TET efforts but remained higher after the contingency action compared to the ERS detection probabilities prior to index case incidence. Local RRV cases were contained within one year and eliminated within 2-3 years of each contingency action.
Collapse
Affiliation(s)
- Amy J Davis
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, 80521, USA.
| | - Richard B Chipman
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Rabies Management Program, Concord, NH, 03301, USA
| | - Kathleen M Nelson
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Rabies Management Program, Concord, NH, 03301, USA
| | - Betsy S Haley
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Rabies Management Program, Concord, NH, 03301, USA
| | - Jordona D Kirby
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Rabies Management Program, Concord, NH, 03301, USA
| | - Xiaoyue Ma
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Ryan M Wallace
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Amy T Gilbert
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, 80521, USA
| |
Collapse
|
2
|
Bastille-Rousseau G, Gorman NT, McClure KM, Nituch L, Buchanan T, Chipman RB, Gilbert AT, Pepin KM. Assessing the Efficiency of Local Rabies Vaccination Strategies for Raccoons (Procyon lotor) in an Urban Setting. J Wildl Dis 2024; 60:26-38. [PMID: 37924240 DOI: 10.7589/jwd-d-23-00059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/14/2023] [Indexed: 11/06/2023]
Abstract
Raccoon rabies virus (RRV) has been managed using multiple vaccination strategies, including oral rabies vaccination and trap-vaccinate-release (TVR). Identifying a rabies vaccination strategy for an area is a nontrivial task. Vaccination strategies differ in the amount of effort and monetary costs required to achieve a particular level of vaccine seroprevalence (efficiency). Simulating host movement relative to different vaccination strategies in silico can provide a useful tool for exploring the efficiency of different vaccination strategies. We refined a previously developed individual-based model of raccoon movement to evaluate vaccination strategies for urban Hamilton, Ontario, Canada. We combined different oral rabies vaccination baiting (hand baiting, helicopter, and bait stations) with TVR strategies and used GPS data to parameterize and simulate raccoon movement in Hamilton. We developed a total of 560 vaccination strategies, in consultation with the Ontario Ministry of Natural Resources and Forestry, for RRV control in Hamilton. We documented the monetary costs of each vaccination strategy and estimated the population seroprevalence. Intervention costs and seroprevalence estimates were used to calculate the efficiency of each strategy to meet targets set for the purpose of RRV control. Estimated seroprevalence across different strategies varied widely, ranging from less than 5% to more than 70%. Increasing bait densities (distributed using by hand or helicopter) led to negligible increase in seroprevalence. Helicopter baiting was the most efficient and TVR was the least efficient, but helicopter-based strategies led to lower levels of seroprevalence (6-12%) than did TVR-based strategies (17-70%). Our simulations indicated that a mixed strategy including at least some TVR may be the most efficient strategy for a local urban RRV control program when seroprevalence levels >30% may be required. Our simulations provide information regarding the efficiency of different vaccination strategies for raccoon populations, to guide local RRV control in urban settings.
Collapse
Affiliation(s)
| | - Nicole T Gorman
- Cooperative Wildlife Research Laboratory, Southern Illinois University, Carbondale, Illinois 62901, USA
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Katherine M McClure
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado 80521, USA
- US Geological Survey Pacific Island Ecosystem Research Center, Hawaii National Park, Hawaii 96718, USA
| | - Larissa Nituch
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Tore Buchanan
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Richard B Chipman
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Rabies Management Program, Concord, New Hampshire 03301, USA
| | - Amy T Gilbert
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado 80521, USA
| | - Kim M Pepin
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado 80521, USA
| |
Collapse
|
3
|
Hill JE, Miller ML, Helton JL, Chipman RB, Gilbert AT, Beasley JC, Dharmarajan G, Rhodes OE. Raccoon spatial ecology in the rural southeastern United States. PLoS One 2023; 18:e0293133. [PMID: 37943745 PMCID: PMC10635488 DOI: 10.1371/journal.pone.0293133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
The movement ecology of raccoons varies widely across habitats with important implications for the management of zoonotic diseases such as rabies. However, the spatial ecology of raccoons remains poorly understood in many regions of the United States, particularly in the southeast. To better understand the spatial ecology of raccoons in the southeastern US, we investigated the role of sex, season, and habitat on monthly raccoon home range and core area sizes in three common rural habitats (bottomland hardwood, upland pine, and riparian forest) in South Carolina, USA. From 2018-2022, we obtained 264 monthly home ranges from 46 raccoons. Mean monthly 95% utilization distribution (UD) sizes ranged from 1.05 ± 0.48 km2 (breeding bottomland females) to 5.69 ± 3.37 km2 (fall riparian males) and mean monthly 60% UD sizes ranged from 0.25 ± 0.15 km2 (breeding bottomland females) to 1.59 ± 1.02 km2 (summer riparian males). Males maintained home range and core areas ~2-5 times larger than females in upland pine and riparian habitat throughout the year, whereas those of bottomland males were only larger than females during the breeding season. Home ranges and core areas of females did not vary across habitats, whereas male raccoons had home ranges and core areas ~2-3 times larger in upland pine and riparian compared to bottomland hardwood throughout much of the year. The home ranges of males in upland pine and riparian are among the largest recorded for raccoons in the United States. Such large and variable home ranges likely contribute to elevated risk of zoonotic disease spread by males in these habitats. These results can be used to inform disease mitigation strategies in the southeastern United States.
Collapse
Affiliation(s)
- Jacob E. Hill
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States of America
| | - Madison L. Miller
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States of America
| | - James L. Helton
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States of America
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States of America
| | - Richard B. Chipman
- National Rabies Management Program, USDA, APHIS, Wildlife Services, Concord, NH, United States of America
| | - Amy T. Gilbert
- National Wildlife Research Center, USDA, APHIS, Wildlife Services, Fort Collins, CO, United States of America
| | - James C. Beasley
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States of America
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States of America
| | - Guha Dharmarajan
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States of America
| | - Olin E. Rhodes
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States of America
- Odum School of Ecology, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
4
|
Gual-Gonzalez L, McCarter MSJ, Peebles M, Nolan MS. A statewide, cross-sectional evaluation of the knowledge and level of concern of rabies among South Carolina residents. Zoonoses Public Health 2023; 70:103-110. [PMID: 36177916 PMCID: PMC10092321 DOI: 10.1111/zph.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
Animal rabies cases have increased steadily in South Carolina (SC) for the past decade. An understanding of the population's awareness and understanding of the disease is needed to tailor public health interventions. A marketing list-serv of SC residents' email addresses was used to recruit anonymous respondents for a Knowledge Attitudes and Practices (KAP) electronic survey. A total 516 South Carolinians completed the 31-question survey. Quantile regression and a Pearson's correlation evaluated potential associations between respondent's rabies knowledge and their attitudes and practices. Knowledge was assessed on topics of rabies biology, state animal case counts and rabies pet-related laws. Level of concern and level of knowledge were positively correlated. Additionally, statewide hotspot analysis revealed geographic areas warranting targeted public health interventions; counties with low public concern juxtapositioned with high animal rabies case counts. This study demonstrates the utility of statewide KAPs to gauge populations rabies perception and related preventative actions to tailor appropriate educational programs to limit human-animal rabies exposures.
Collapse
Affiliation(s)
- Lídia Gual-Gonzalez
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, South Carolina, USA
| | - Maggie S J McCarter
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, South Carolina, USA
| | - Megan Peebles
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, South Carolina, USA
| | - Melissa S Nolan
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
5
|
McClure KM, Bastille‐Rousseau G, Davis AJ, Stengel CA, Nelson KM, Chipman RB, Wittemyer G, Abdo Z, Gilbert AT, Pepin KM. Accounting for animal movement improves vaccination strategies against wildlife disease in heterogeneous landscapes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2568. [PMID: 35138667 PMCID: PMC9285612 DOI: 10.1002/eap.2568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/28/2021] [Accepted: 10/15/2021] [Indexed: 06/14/2023]
Abstract
Oral baiting is used to deliver vaccines to wildlife to prevent, control, and eliminate infectious diseases. A central challenge is how to spatially distribute baits to maximize encounters by target animal populations, particularly in urban and suburban areas where wildlife such as raccoons (Procyon lotor) are abundant and baits are delivered along roads. Methods from movement ecology that quantify movement and habitat selection could help to optimize baiting strategies by more effectively targeting wildlife populations across space. We developed a spatially explicit, individual-based model of raccoon movement and oral rabies vaccine seroconversion to examine whether and when baiting strategies that match raccoon movement patterns perform better than currently used baiting strategies in an oral rabies vaccination zone in greater Burlington, Vermont, USA. Habitat selection patterns estimated from locally radio-collared raccoons were used to parameterize movement simulations. We then used our simulations to estimate raccoon population rabies seroprevalence under currently used baiting strategies (actual baiting) relative to habitat selection-based baiting strategies (habitat baiting). We conducted simulations on the Burlington landscape and artificial landscapes that varied in heterogeneity relative to Burlington in the proportion and patch size of preferred habitats. We found that the benefits of habitat baiting strongly depended on the magnitude and variability of raccoon habitat selection and the degree of landscape heterogeneity within the baiting area. Habitat baiting improved seroprevalence over actual baiting for raccoons characterized as habitat specialists but not for raccoons that displayed weak habitat selection similar to radiocollared individuals, except when baits were delivered off roads where preferred habitat coverage and complexity was more pronounced. In contrast, in artificial landscapes with either more strongly juxtaposed favored habitats and/or higher proportions of favored habitats, habitat baiting performed better than actual baiting, even when raccoons displayed weak habitat preferences and where baiting was constrained to roads. Our results suggest that habitat selection-based baiting could increase raccoon population seroprevalence in urban-suburban areas, where practical, given the heterogeneity and availability of preferred habitat types in those areas. Our novel simulation approach provides a flexible framework to test alternative baiting strategies in multiclass landscapes to optimize bait-distribution strategies.
Collapse
Affiliation(s)
- Katherine M. McClure
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection ServiceUnited States Department of AgricultureFort CollinsColoradoUSA
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
- Present address:
Hawai‘i Cooperative Studies UnitUniversity of Hawai‘i at HiloHiloHawai‘iUSA
| | - Guillaume Bastille‐Rousseau
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection ServiceUnited States Department of AgricultureFort CollinsColoradoUSA
- Cooperative Wildlife Research LaboratorySouthern Illinois UniversityCarbondaleIllinoisUSA
| | - Amy J. Davis
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection ServiceUnited States Department of AgricultureFort CollinsColoradoUSA
| | - Carolyn A. Stengel
- Wildlife Services, Animal and Plant Health Inspection ServiceUnited States Department of AgricultureConcordNew HampshireUSA
| | - Kathleen M. Nelson
- National Rabies Management Program, Wildlife Services, Animal and Plant Health Inspection ServiceUnited States Department of AgricultureConcordNew HampshireUSA
| | - Richard B. Chipman
- National Rabies Management Program, Wildlife Services, Animal and Plant Health Inspection ServiceUnited States Department of AgricultureConcordNew HampshireUSA
| | - George Wittemyer
- Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Zaid Abdo
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Amy T. Gilbert
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection ServiceUnited States Department of AgricultureFort CollinsColoradoUSA
| | - Kim M. Pepin
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection ServiceUnited States Department of AgricultureFort CollinsColoradoUSA
| |
Collapse
|
6
|
Data-Driven Management-A Dynamic Occupancy Approach to Enhanced Rabies Surveillance Prioritization. Viruses 2021; 13:v13091795. [PMID: 34578376 PMCID: PMC8472164 DOI: 10.3390/v13091795] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Rabies lyssavirus (RABV) is enzootic in raccoons across the eastern United States. Intensive management of RABV by oral rabies vaccination (ORV) has prevented its spread westward and shown evidence of local elimination in raccoon populations of the northeastern US. The USDA, Wildlife Services, National Rabies Management Program (NRMP) collaborates with other agencies to implement broad-scale ORV and conducts extensive monitoring to measure the effectiveness of the management. Enhanced Rabies Surveillance (ERS) was initiated during 2005 and updated in 2016 to direct surveillance efforts toward higher-value specimens by assigning points to different methods of encountering specimens for collection (strange-acting, roadkill, surveillance-trapped, etc.; specimen point values ranged from 1 to 15). We used the 2016–2019 data to re-evaluate the point values using a dynamic occupancy model. Additionally, we used ERS data from 2012–2015 and 2016–2019 to examine the impact that the point system had on surveillance data. Implementation of a point system increased positivity rates among specimens by 64%, indicating a substantial increase in the efficiency of the ERS to detect wildlife rabies. Our re-evaluation found that most points accurately reflect the value of the surveillance specimens. The notable exception was that samples from animals found dead were considerably more valuable for rabies detection than originally considered (original points = 5, new points = 20). This work demonstrates how specimen prioritization strategies can be used to refine and improve ERS in support of wildlife rabies management.
Collapse
|
7
|
León B, González SF, Solís LM, Ramírez-Cardoce M, Moreira-Soto A, Cordero-Solórzano JM, Hutter SE, González-Barrientos R, Rupprecht CE. Rabies in Costa Rica - Next Steps Towards Controlling Bat-Borne Rabies After its Elimination in Dogs. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:311-329. [PMID: 34211351 PMCID: PMC8223541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Rabies is an acute, progressive encephalitis caused by a lyssavirus, with the highest case fatality of any conventional infectious disease. More than 17 different lyssaviruses have been described, but rabies virus is the most widely distributed and important member of the genus. Globally, tens of thousands of human fatalities still occur each year. Although all mammals are susceptible, most human fatalities are caused by the bites of rabid dogs, within lesser developed countries. A global plan envisions the elimination of human rabies cases caused via dogs by the year 2030. The combination of prophylaxis of exposed humans and mass vaccination of dogs is an essential strategy for such success. Regionally, the Americas are well on the way to meet this goal. As one example of achievement, Costa Rica, a small country within Central America, reported the last autochthonous case of human rabies transmitted by a dog at the end of the 1970s. Today, rabies virus transmitted by the common vampire bat, Desmodus rotundus, as well as other wildlife, remains a major concern for humans, livestock, and other animals throughout the region. This review summarizes the historical occurrence of dog rabies and its elimination in Costa Rica, describes the current occurrence of the disease with a particular focus upon affected livestock, discusses the ecology of the vampire bat as the primary reservoir relevant to management, details the clinical characteristics of recent human rabies cases, and provides suggestions for resolution of global challenges posed by this zoonosis within a One Health context.
Collapse
Affiliation(s)
- Bernal León
- Biosecurity Laboratory, Servicio Nacional de Salud
Animal (SENASA), LANASEVE, Heredia, Costa Rica
- Universidad Técnica Nacional (UTN), Quesada, Costa
Rica
| | | | - Lisa Miranda Solís
- Specialist in Pediatric Pathology, Pathology Service,
Children National Hospital, Caja Costarricense de Seguro Social, San José, Costa
Rica
| | - Manuel Ramírez-Cardoce
- Specialist in Infectious Diseases, San Juan de Dios
Hospital, Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Andres Moreira-Soto
- Research Center for Tropical Diseases (CIET), Virology,
Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
- Charité-Universitätsmedizin Berlin, corporate member of
Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute
of Health, Institute of Virology, Berlin, Germany
| | | | - Sabine Elisabeth Hutter
- Coordinator of the National Risk Analysis Program,
Epidemiology Department, SENASA, Ministry of Agriculture, San José, Costa
Rica
- Institute of Food Safety, Food Technology and
Veterinary Public Health, Department for Farm Animals and Veterinary Public
Health University of Veterinary Medicine, Vienna, Austria
| | - Rocío González-Barrientos
- Pathology Area Biosecurity Laboratory, Servicio
Nacional de Salud Animal (SENASA), LANASEVE, Heredia, Costa Rica
- Department of Biomedical Sciences of Anatomic
Pathology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
8
|
Johnson SR, Slate D, Nelson KM, Davis AJ, Mills SA, Forbes JT, VerCauteren KC, Gilbert AT, Chipman RB. Serological Responses of Raccoons and Striped Skunks to Ontario Rabies Vaccine Bait in West Virginia during 2012-2016. Viruses 2021; 13:v13020157. [PMID: 33499059 PMCID: PMC7912576 DOI: 10.3390/v13020157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/29/2022] Open
Abstract
Since the 1990s, oral rabies vaccination (ORV) has been used successfully to halt the westward spread of the raccoon rabies virus (RV) variant from the eastern continental USA. Elimination of raccoon RV from the eastern USA has proven challenging across targeted raccoon (Procyon lotor) and striped skunk (Mephitis mephitis) populations impacted by raccoon RV. Field trial evaluations of the Ontario Rabies Vaccine Bait (ONRAB) were initiated to expand ORV products available to meet the rabies management goal of raccoon RV elimination. This study describes the continuation of a 2011 trial in West Virginia. Our objective was to evaluate raccoon and skunk response to ORV occurring in West Virginia for an additional two years (2012–2013) at 75 baits/km2 followed by three years (2014–2016) of evaluation at 300 baits/km2. We measured the change in rabies virus-neutralizing antibody (RVNA) seroprevalence in targeted wildlife populations by comparing levels pre- and post-ORV during each year of study. The increase in bait density from 75/km2 to 300/km2 corresponded to an increase in average post-ORV seroprevalence for raccoon and skunk populations. Raccoon population RVNA levels increased from 53% (300/565, 95% CI: 50–57%) to 82.0% (596/727, 95% CI: 79–85%) during this study, and skunk population RVNA levels increased from 11% (8/72, 95% CI: 6–20%) to 39% (51/130, 95% CI: 31–48%). The RVNA seroprevalence pre-ORV demonstrated an increasing trend across study years for both bait densities and species, indicating that multiple years of ORV may be necessary to achieve and maintain RVNA seroprevalence in target wildlife populations for the control and elimination of raccoon RV in the eastern USA.
Collapse
Affiliation(s)
- Shylo R. Johnson
- USDA/APHIS/WS/National Wildlife Research Center, 4101 LaPorte Ave., Fort Collins, CO 80521, USA; (A.J.D.); (K.C.V.); (A.T.G.)
- Correspondence:
| | - Dennis Slate
- USDA/APHIS/WS/National Rabies Management Program, 59 Chenell Dr., Concord, NH 03301, USA; (D.S.); (K.M.N.); (R.B.C.)
| | - Kathleen M. Nelson
- USDA/APHIS/WS/National Rabies Management Program, 59 Chenell Dr., Concord, NH 03301, USA; (D.S.); (K.M.N.); (R.B.C.)
| | - Amy J. Davis
- USDA/APHIS/WS/National Wildlife Research Center, 4101 LaPorte Ave., Fort Collins, CO 80521, USA; (A.J.D.); (K.C.V.); (A.T.G.)
| | - Samual A. Mills
- USDA/APHIS/Wildlife Services, 730 Yokum St., Elkins, WV 26241, USA; (S.A.M.); (J.T.F.)
| | - John T. Forbes
- USDA/APHIS/Wildlife Services, 730 Yokum St., Elkins, WV 26241, USA; (S.A.M.); (J.T.F.)
| | - Kurt C. VerCauteren
- USDA/APHIS/WS/National Wildlife Research Center, 4101 LaPorte Ave., Fort Collins, CO 80521, USA; (A.J.D.); (K.C.V.); (A.T.G.)
| | - Amy T. Gilbert
- USDA/APHIS/WS/National Wildlife Research Center, 4101 LaPorte Ave., Fort Collins, CO 80521, USA; (A.J.D.); (K.C.V.); (A.T.G.)
| | - Richard B. Chipman
- USDA/APHIS/WS/National Rabies Management Program, 59 Chenell Dr., Concord, NH 03301, USA; (D.S.); (K.M.N.); (R.B.C.)
| |
Collapse
|
9
|
Prioritisation of areas for early detection of southward movement of arctic fox rabies based on historical surveillance data in Quebec, Canada. Epidemiol Infect 2020; 149:e20. [PMID: 33327978 PMCID: PMC8057433 DOI: 10.1017/s0950268820003003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Arctic rabies virus variant (ARVV) is enzootic in Quebec (Canada) north of the 55th parallel. With climate change, increased risk of re-incursion of ARVV in more densely populated southern regions raises public and animal health concerns. The objective of this study was to prioritise geographical areas to target for an early detection of ARVV incursion south of the 55th parallel based on the historical spatio-temporal trends of reported rabies in foxes in Quebec. Descriptive analyses of fox rabies cases from 1953 to 2017 were conducted. Three periods show increases in the number of fox rabies cases in southern regions and indicate incursion from northern areas or neighbouring provinces. The available data, particularly in central and northern regions of the province, were scarce and of low spatial resolution, making it impossible to identify the path of spread with precision. Hence, we investigated the use of multiple criteria, such as historical rabies cases, human population density and red fox (Vulpes vulpes) relative abundance, to prioritise areas for enhanced surveillance. This study underscores the need to define and maintain new criteria for selecting samples to be analysed in order to detect rapidly ARVV cases outside the current enzootic area and any potential re-incursion of the virus into central and southern regions of the province.
Collapse
|
10
|
Rohde RE, Rupprecht CE. Update on lyssaviruses and rabies: will past progress play as prologue in the near term towards future elimination? Fac Rev 2020; 9:9. [PMID: 33659941 PMCID: PMC7886060 DOI: 10.12703/b/9-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rabies is an ancient, much-feared, and neglected infectious disease. Caused by pathogens in the family Rhabdoviridae, genus Lyssavirus, and distributed globally, this viral zoonosis results in tens of thousands of human fatalities and millions of exposures annually. All mammals are believed susceptible, but only certain taxa act as reservoirs. Dependence upon direct routing to, replication within, and passage from the central nervous system serves as a basic viral strategy for perpetuation. By a combination of stealth and subversion, lyssaviruses are quintessential neurotropic agents and cause an acute, progressive encephalitis. No treatment exists, so prevention is the key. Although not a disease considered for eradication, something of a modern rebirth has been occurring within the field as of late with regard to detection, prevention, and management as well as applied research. For example, within the past decade, new lyssaviruses have been characterized; sensitive and specific diagnostics have been optimized; pure, potent, safe, and efficacious human biologics have improved human prophylaxis; regional efforts have controlled canine rabies by mass immunization; wildlife rabies has been controlled by oral rabies vaccination over large geographic areas in Europe and North America; and debate has resumed over the controversial topic of therapy. Based upon such progress to date, there are certain expectations for the next 10 years. These include pathogen discovery, to uncover additional lyssaviruses in the Old World; laboratory-based surveillance enhancement by simplified, rapid testing; anti-viral drug appearance, based upon an improved appreciation of viral pathobiology and host response; and improvements to canine rabies elimination regionally throughout Africa, Asia, and the Americas by application of the best technical, organizational, economic, and socio-political practices. Significantly, anticipated Gavi support will enable improved access of human rabies vaccines in lesser developed countries at a national level, with integrated bite management, dose-sparing regimens, and a 1 week vaccination schedule.
Collapse
Affiliation(s)
- Rodney E Rohde
- Clinical Laboratory Science, Texas State University, San Marcos, TX, 78666, USA
| | | |
Collapse
|
11
|
|