1
|
Yang Y, Jiang G, He W, Tian X, Zheng H, Xiang B, Sun Y. Network of Interactions between the Mut Domains of the E2 Protein of Atypical Porcine Pestivirus and Host Proteins. Genes (Basel) 2024; 15:991. [PMID: 39202352 PMCID: PMC11354059 DOI: 10.3390/genes15080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Atypical porcine pestivirus (APPV) can cause congenital tremor type A-II in neonatal piglets, posing a significant threat to swine herd health globally. Our previous study demonstrated that the Mut domains, comprising 112 amino acids at the N-terminus, are the primary functional regions of the E2 protein of APPV. This study identified 14 host cellular proteins that exhibit potential interactions with the Mut domains of the E2 protein using yeast two-hybrid screening. Using bioinformatics analysis, we discovered that the Mut domains of the E2 protein might exert regulatory effects on apoptosis by modulating energy metabolism within the mitochondria. We also conducted co-immunoprecipitation, glutathione S-transferase pull-down, and immunofluorescence assays to confirm the interaction between the Mut domains of the E2 protein and cathepsin H and signal sequence receptor subunit 4 (SSR4). Ultimately, SSR4 enhanced APPV replication in vitro. In summary, our study successfully elucidated the interactions between the Mut domains of the E2 protein and host cell protein, predicted the potential pathways implicated in these interactions, and demonstrated SSR4 involvement in APPV infection. These significant findings contribute valuable knowledge toward a deeper understanding of APPV pathogenesis and the role of the Mut domains of the E2 protein in this intricate process.
Collapse
Affiliation(s)
- Yuai Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Guangfei Jiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Weiqi He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Xin Tian
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Huanli Zheng
- Yunnan Animal Health Supervision Institute, Kunming 650201, China;
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Yongke Sun
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| |
Collapse
|
2
|
Faustini G, Tucciarone CM, Franzo G, Donneschi A, Boniotti MB, Alborali GL, Drigo M. Molecular Survey on Porcine Parvoviruses (PPV1-7) and Their Association with Major Pathogens in Reproductive Failure Outbreaks in Northern Italy. Viruses 2024; 16:157. [PMID: 38275967 PMCID: PMC10818816 DOI: 10.3390/v16010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Successful reproductive performance is key to farm competitiveness in the global marketplace. Porcine parvovirus 1 (PPV1) has been identified as a major cause of reproductive failure, and since 2001 new species of porcine parvoviruses, namely PPV2-7, have been identified, although their role is not yet fully understood yet. The present study aimed to investigate PPVs' presence in reproductive failure outbreaks occurring in 124 farms of northern Italy. Fetuses were collected from 338 sows between 2019 and 2021 and tested for PPVs by real-time PCR-based assays and for other viruses responsible for reproductive disease. At least one PPV species was detected in 59.7% (74/124) of the tested farms. In order, PPV1, PPV5, PPV6, PPV7 and PPV4 were the most frequently detected species, whereas fewer detections were registered for PPV2 and PPV3. Overall, the new PPV2-7 species were detected in 26.6% (90/338) of the cases, both alone or in co-infections: PCV-2 (7.1%, 24/338), PCV-3 (8.2%, 28/338), and PRRSV-1 (6.2%, 21/338) were frequently identified in association with PPVs. Single PPVs detections or co-infections with other agents commonly responsible for reproductive failure should encourage future studies investigating their biological, clinical, and epidemiological role, for a better preparedness for potential emerging challenges in intensive pig production.
Collapse
Affiliation(s)
- Giulia Faustini
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (G.F.); (G.F.); (M.D.)
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (G.F.); (G.F.); (M.D.)
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (G.F.); (G.F.); (M.D.)
| | - Anna Donneschi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER) “B. Ubertini”, Via Bianchi 9, 25124 Brescia, Italy; (A.D.); (M.B.B.); (G.L.A.)
| | - Maria Beatrice Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER) “B. Ubertini”, Via Bianchi 9, 25124 Brescia, Italy; (A.D.); (M.B.B.); (G.L.A.)
| | - Giovanni Loris Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER) “B. Ubertini”, Via Bianchi 9, 25124 Brescia, Italy; (A.D.); (M.B.B.); (G.L.A.)
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (G.F.); (G.F.); (M.D.)
| |
Collapse
|
3
|
Song H, Gao X, Fu Y, Li J, Fan G, Shao L, Zhang J, Qiu HJ, Luo Y. Isolation and Molecular Characterization of Atypical Porcine Pestivirus Emerging in China. Viruses 2023; 15:2149. [PMID: 38005827 PMCID: PMC10675531 DOI: 10.3390/v15112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Atypical porcine pestivirus (APPV) is a recently discovered and very divergent species of the genus Pestivirus within the family Flaviviridae, which causes congenital tremor (CT) in newborn piglets. In this study, an APPV epidemiological investigation was conducted by studying 975 swine samples (562 tissue and 413 serum samples) collected from different parts of China from 2017 to 2021. The results revealed that the overall positive rate of the APPV genome was 7.08% (69/975), among which 50.7% (35/69) of the samples tested positive for one or more other common swine viruses, especially porcine circovirus type 2 (PCV2) with a coinfection rate of 36.2% (25/69). Subsequently, a novel APPV strain, named China/HLJ491/2017, was isolated in porcine kidney (PK)-15 cells for the first time from a weaned piglet that was infected with both APPV and PCV2. The new APPV isolate was confirmed by RT-PCR, sequencing, immunofluorescence assay, and transmission electron microscopy. After clearing PCV2, a pure APPV strain was obtained and further stably propagated in PK-15 cells for more than 30 passages. Full genome sequencing and phylogenetic analysis showed that the China/HLJ491/2017 strain was classified as genotype 2, sharing 80.8 to 97.6% of its nucleotide identity with previously published APPV strains. In conclusion, this study enhanced our knowledge of this new pestivirus and the successful isolation of the APPV strain provides critical material for the investigation of the biological and pathogenic properties of this emerging virus, as well as the development of vaccines and diagnostic reagents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China; (H.S.); (X.G.); (Y.F.); (J.L.); (G.F.); (L.S.); (J.Z.)
| | - Yuzi Luo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China; (H.S.); (X.G.); (Y.F.); (J.L.); (G.F.); (L.S.); (J.Z.)
| |
Collapse
|
4
|
Stenberg H, Malmberg M, Hayer J. Screening for atypical porcine pestivirus in Swedish boar semen used for artificial insemination and a characterisation of the seminal RNA microbiome including the virome. BMC Vet Res 2023; 19:219. [PMID: 37864222 PMCID: PMC10588136 DOI: 10.1186/s12917-023-03762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/30/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND This study aimed to characterise the RNA microbiome, including the virome of extended semen from Swedish breeding boars, with particular focus on Atypical porcine pestivirus (APPV). This neurotropic virus, associated with congenital tremor type A-II in piglets, was recently demonstrated to induce the disease through insemination with semen from infected boars. RESULTS From 124 Artificial Insemination (AI) doses from Swedish breeding boars, APPV was detected in one dose in addition to a sparse seminal RNA virome, characterised by retroviruses, phages, and some fecal-associated contaminants. The detected seminal microbiome was large and characterized by Gram-negative bacteria from the phylum Proteobacteria, mainly consisting of apathogenic or opportunistic bacteria. The proportion of bacteria with a pathogenic potential was low, and no antimicrobial resistance genes (ARGs) were detected in the datasets. CONCLUSION Overall, the results indicate a good health status among Swedish breeding boars. The detection of APPV in semen raises the question of whether routine screening for APPV in breeding boars should be instigated.
Collapse
Affiliation(s)
- Hedvig Stenberg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden.
| | - Maja Malmberg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden
| | - Juliette Hayer
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
5
|
Liu H, Shi K, Feng S, Yin Y, Long F, Si H. Development of a Crystal Digital RT-PCR for the Detection of Atypical Porcine Pestivirus. Vet Sci 2023; 10:vetsci10050330. [PMID: 37235413 DOI: 10.3390/vetsci10050330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Atypical porcine pestivirus (APPV), a newly discovered virus, is associated with the type A-II congenital tremor (CT) in neonatal piglets. APPV distributes throughout the world and causes certain economic losses to the swine industry. The specific primers and probe were designed targeting the 5' untranslated region (UTR) of APPV to amplify a 90 bp fragment, and the recombinant standard plasmid was constructed. After optimizing the concentrations of primers and probe, annealing temperature, and reaction cycles, a crystal digital RT-PCR (cdRT-PCR) and real-time quantitative RT-PCR (qRT-PCR) were successfully established. The results showed that the standard curves of the qRT-PCR and the cdRT-PCR had R2 values of 0.999 and 0.9998, respectively. Both methods could specifically detect APPV, and no amplification signal was obtained from other swine viruses. The limit of detection (LOD) of the cdRT-PCR was 0.1 copies/µL, and that of the qRT-PCR was 10 copies/µL. The intra-assay and inter-assay coefficients of variation of repeatability and reproducibility were less than 0.90% for the qRT-PCR and less than 5.27% for the cdRT-PCR. The 60 clinical tissue samples were analyzed using both methods, and the positivity rates of APPV were 23.33% by the qRT-PCR and 25% by the cdRT-PCR, with a coincidence rate of 98.33%. The results indicated that the cdRT-PCR and the qRT-PCR developed here are highly specific, sensitive methods for the rapid and accurate detection of APPV.
Collapse
Affiliation(s)
- Huixin Liu
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
6
|
DNAJC14-Independent Replication of the Atypical Porcine Pestivirus. J Virol 2022; 96:e0198021. [PMID: 35852352 PMCID: PMC9364808 DOI: 10.1128/jvi.01980-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atypical porcine pestiviruses (APPV; Pestivirus K) are a recently discovered, very divergent species of the genus Pestivirus within the family Flaviviridae. The presence of APPV in piglet-producing farms is associated with the occurrence of so-called “shaking piglets,” suffering from mild to severe congenital tremor type A-II. Previous studies showed that the cellular protein DNAJC14 is an essential cofactor of the NS2 autoprotease of all classical pestiviruses. Consequently, genetically engineered DNAJC14 knockout cell lines were resistant to all tested noncytopathogenic (non-cp) pestiviruses. Surprisingly, we found that the non-cp APPV can replicate in these cells in the absence of DNAJC14, suggesting a divergent mechanism of polyprotein processing. A complete laboratory system for the study of APPV was established to learn more about the replication of this unusual virus. The inactivation of the APPV NS2 autoprotease using reverse genetics resulted in nonreplicative genomes. To further investigate whether a regulation of the NS2-3 cleavage is also existing in APPV, we constructed synthetic viral genomes with deletions and duplications leading to the NS2 independent release of mature NS3. As observed with other pestiviruses, the increase of mature NS3 resulted in elevated viral RNA replication levels and increased protein expression. Our data suggest that APPV exhibit a divergent mechanism for the regulation of the NS2 autoprotease activity most likely utilizing a different cellular protein for the adjustment of replication levels. IMPORTANCE DNAJC14 is an essential cofactor of the pestiviral NS2 autoprotease, limiting replication to tolerable levels as a prerequisite for the noncytopathogenic biotype of pestiviruses. Surprisingly, we found that the atypical porcine pestivirus (APPV) is able to replicate in the absence of DNAJC14. We further investigated the NS2-3 processing of APPV using a molecular clone, monoclonal antibodies, and DNAJC14 knockout cells. We identified two potential active site residues of the NS2 autoprotease and could demonstrate that the release of NS3 by the NS2 autoprotease is essential for APPV replication. Defective interfering genomes and viral genomes with duplicated NS3 sequences that produce mature NS3 independent of the NS2 autoprotease activity showed increased replication and antigen expression. It seems likely that an alternative cellular cofactor controls NS2-3 cleavage and thus replication of APPV. The replication-optimized synthetic APPV genomes might be suitable live vaccine candidates, whose establishment and testing warrant further research.
Collapse
|
7
|
Dénes L, Ruedas-Torres I, Szilasi A, Balka G. Detection and localization of atypical porcine pestivirus in the testicles of naturally infected, congenital tremor affected piglets. Transbound Emerg Dis 2021; 69:e621-e629. [PMID: 34705340 PMCID: PMC9541069 DOI: 10.1111/tbed.14355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
Atypical porcine pestivirus (APPV) belongs to the genus Pestivirus within the family Flaviviridae. Recently, APPV has been identified as the causative agent of congenital tremor (CT) type AII. The disease is a neurological disorder that affects newborn piglets and is characterized by generalized trembling of the animals and often splay legs. CT is well known worldwide, and the virus seems to be highly prevalent in major swine producing areas. However, little is known about the epidemiology of the infection, transmission and spread of the virus between herds. Here, we show the high prevalence of APPV in processing fluid samples collected from Hungarian pig herds which led us to investigate the cellular targets of the virus in the testicles of newborn piglets affected by CT. By the development of an RNA in situ hybridization assay and the use of immunohistochemistry on consecutive slides, we identified the target cells of APPV in the testicle: interstitial Leydig cells, peritubular myoid cells and smooth muscle cells of medium-sized arteries. Previous studies have shown that APPV can be found in the semen of sexually mature boars suggesting the role of infected boars and their semen in the transmission of the virus similar to many other members of the Flaviviridae family. As in our case, the virus has not been identified in cells beyond the Sertoli cell barrier, further studies on infected adult boars' testicles and other reproductive glands are needed to analyze the possible changes in the cell tropism of APPV that might contribute to its prolonged extraction by the semen beyond the period of viraemia.
Collapse
Affiliation(s)
- Lilla Dénes
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Anna Szilasi
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
8
|
Stenberg H, Leveringhaus E, Malmsten A, Dalin AM, Postel A, Malmberg M. Atypical porcine pestivirus-A widespread virus in the Swedish wild boar population. Transbound Emerg Dis 2021; 69:2349-2360. [PMID: 34331830 DOI: 10.1111/tbed.14251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 01/23/2023]
Abstract
The recently identified causative agent of congenital tremor in domestic piglets, atypical porcine pestivirus (APPV), was detected in serum from Swedish wild boar. A previous study from Sweden described APPV in domestic piglets suffering from congenital tremor, but the APPV situation in the wild boar population was unknown. In this study, 595 serum samples from wild boar originating from 13 counties in the south and central parts of Sweden, collected between 2000 and 2018, were analysed for the presence of the APPV-genome and for antibodies against the APPV-glycoprotein Erns . The results revealed that APPV is highly abundant in the Swedish wild boar population; 12% (73/595) were APPV-genome positive in serum and 72% (433/595) of the tested wild boars displayed APPV-specific antibodies. The present study also shows that APPV has been present in the Swedish wild boar population since at least the year 2000. The viral sequences obtained from the wild boars were highly similar to those obtained from Swedish domestic pigs positive for APPV and suffering from congenital tremor, suggesting a viral exchange between wild boars and domestic pigs. The high proportion of viraemic and seropositive wild boar is indicative of wild boar being an important reservoir for APPV.
Collapse
Affiliation(s)
- Hedvig Stenberg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Elena Leveringhaus
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Anne-Marie Dalin
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Alexander Postel
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maja Malmberg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.,SLU Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
9
|
Development of a quantitative real time RT-PCR assay for sensitive and rapid detection of emerging Atypical Porcine Pestivirus associated with congenital tremor in pigs. J Virol Methods 2021; 296:114220. [PMID: 34182037 DOI: 10.1016/j.jviromet.2021.114220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 11/23/2022]
Abstract
Atypical Porcine Pestivirus (APPV) is reported as the etiologic agent for type AII congenital tremors in newborn piglets. Initial PCR-based diagnostic tests to detect APPV were designed based on the limited sequence information and are not capable of detecting the majority of APPV strains. A sensitive and reliable PCR-based diagnostic test is critical for accurate detection of APPV. In this study, a quantitative reverse transcription PCR (RT-qPCR) assay was developed for reliable detection of all currently known APPV strains. The assay design also included swine 18S rRNA gene as an internal control to monitor RNA extraction efficiency. Two APPV gene fragments, one each from NS5b and NS3, were cloned and used to determine the dynamic range of detection, linearity and analytical sensitivity/limit of detection (LOD). Both individual and multiplex assays (duplex and triplex) had correlation coefficients of >0.99 and PCR amplification efficiencies of >90 %. Comparison of detection limit and analytical sensitivity between individual, and multiplex assays indicated no inhibition of PCR sensitivity upon multiplexing. The detection limit for APPV target, based on analytical sensitivity, is 7.75 copies (NS5b) and 5.2 copies (NS3) per reaction. Assay specificity was verified by testing nucleic acids of other closely related pestiviruses and clinical samples that are positive for other common swine pathogens. Assay sensitivity was also assessed on synthesized gene fragments of the most divergent China strains. Testing 339 known APPV-positive and 202 negative clinical samples demonstrated a good diagnostic sensitivity and specificity. Data from six independent runs, including 5 replicates of three clinical samples with three Ct ranges, were utilized to assess inter-assay repeatability and intra-assay reproducibility. This analysis demonstrated intra-assay/inter-assay coefficients of variation of 0.71 % and 0.01 %, respectively, with a PCR efficiency of 92.71 % for the triplex assay. Testing of 1785 clinical samples revealed ∼19 % prevalence of APPV in the US swine herds and oral fluids demonstrates to be a reliable specimen for viral detection. This multiplex RT-qPCR assay offers a rapid and reliable detection of APPV in swine herds and serves as useful tool in APPV surveillance and epidemiological investigations.
Collapse
|
10
|
Kasahara-Kamiie M, Kagawa M, Shiokawa M, Sunaga F, Fukase Y, Aihara N, Shiga T, Kamiie J, Aoki H, Nagai M. Detection and genetic analysis of a novel atypical porcine pestivirus from piglets with congenital tremor in Japan. Transbound Emerg Dis 2021; 69:1761-1769. [PMID: 33978312 DOI: 10.1111/tbed.14149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/23/2023]
Abstract
Atypical porcine pestivirus (APPV), which has been confirmed to be associated with congenital tremor (CT) in pigs, is a newly discovered porcine virus that has been found in the Americas, Europe and Asia; however, no report of APPV in Japan has been published. We identified an APPV in the central nervous system of Japanese piglets with CT and firstly determined and analysed the complete genome sequence. Phylogenetic analysis using the complete genome nucleotide sequence of the Japanese APPV, named Anna/2020, and those of APPVs from the NCBI database showed that APPVs were divided into three genotypes (genotypes 1 to 3), and that Anna/2020 clustered with the genotype 3 APPV strains, but distantly branched from these strains. Pairwise complete coding region nucleotide sequence comparisons revealed that there was 94.0%- 99.7% sequence identity among the genotype 3 strains, while Anna/2020 showed 87.0%-89.3% identity to those genotype 3 strains, suggesting that Anna/2020 represents a novel APPV lineage within genotype 3. Retrospective examinations using RT-PCR revealed one genotype 1 and two novel genotype 3 APPVs from pigs without CT, and that novel genotype 3 APPVs have been prevalent in Japan since at least 2007.
Collapse
Affiliation(s)
| | | | - Mai Shiokawa
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Fujiko Sunaga
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Yuka Fukase
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Naoyuki Aihara
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Takanori Shiga
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Junichi Kamiie
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Hiroshi Aoki
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Makoto Nagai
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| |
Collapse
|
11
|
Riedel C, Aitkenhead H, El Omari K, Rümenapf T. Atypical Porcine Pestiviruses: Relationships and Conserved Structural Features. Viruses 2021; 13:v13050760. [PMID: 33926056 PMCID: PMC8146772 DOI: 10.3390/v13050760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 01/22/2023] Open
Abstract
For two decades, the genus pestivirus has been expanding and the host range now extends to rodents, bats and marine mammals. In this review, we focus on one of the most diverse pestiviruses, atypical porcine pestivirus or pestivirus K, comparing its special traits to what is already known at the structural and functional level from other pestiviruses.
Collapse
Affiliation(s)
- Christiane Riedel
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Correspondence:
| | - Hazel Aitkenhead
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (H.A.); (K.E.O.)
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (H.A.); (K.E.O.)
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| |
Collapse
|
12
|
Detection of Atypical Porcine Pestivirus in Piglets from Danish Sow Herds. Viruses 2021; 13:v13050717. [PMID: 33919031 PMCID: PMC8142981 DOI: 10.3390/v13050717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/22/2023] Open
Abstract
Atypical porcine pestivirus (APPV) was first discovered in North America in 2015 and was later shown to be associated with congenital tremor (CT) in piglets. CT is an occasional challenge in some Danish sow herds. Therefore, we initiated an observational case control study to clarify a possible relationship between CT and APPV in Danish pig production. Blood samples were collected from piglets affected by CT (n = 55) in ten different sow herds and from healthy piglets in five sow herds without a history of CT piglets (n = 25), as well as one sow herd with a sporadic occurrence of CT (n = 5). APPV was detected by RT-qPCR in all samples from piglets affected by CT and in three out of five samples from piglets in the herd with a sporadic occurrence of CT. In the herds without a history of CT, only one out of 25 piglets were positive for APPV. In addition, farmers or veterinarians in CT-affected herds were asked about their experience of the issue. CT is most often seen in gilt litters, and a substantial increase in pre-weaning mortality is only observed in severe cases. According to our investigations, APPV is a common finding in piglets suffering from CT in Denmark.
Collapse
|
13
|
Yuan F, Feng Y, Bai J, Liu X, Arruda B, Anbalagan S, Peddireddi L. Genetic diversity and prevalence of Atypical Porcine Pestivirus in the Midwest of US swine herds during 2016-2018. Transbound Emerg Dis 2021; 69:753-763. [PMID: 33621429 DOI: 10.1111/tbed.14046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 01/17/2023]
Abstract
Atypical porcine pestivirus (APPV), a highly divergent pestivirus, has a wide geographical distribution around the world. APPV is known to cause type A-II congenital tremors in newborn piglets. The main objective of this study is to access APPV prevalence in the US swine herds utilizing a newly developed quantitative real-time RT-PCR assay. Retrospective analysis of 1,785 samples revealed a 19.0% prevalence in Midwest swine herds over a period of three years (2016-2018). Among all clinical and field samples that were APPV positive, 82 samples (24.19%) were also positive for one or more swine viral pathogens. Two APPV US strains identified in this study demonstrated significant sequence diversity (~12% in full genome) compared to the first reported APPV strain from the United States in 2014. Of the two strains identified in this study, USA/023005/2016 is closer to two strains identified in Germany, and USA/047310/2017 shares more similarities with two US strains including Minnesota-1 and ISDVDL2014016573. Partial NS5B sequences (9127-9836 nt of the polyprotein gene) obtained from 54 APPV-positive samples revealed considerable sequence diversity, ranging from 85.8% to 100% nucleotide identity, within the US strains in samples from different geographic regions. Analysis of all US samples indicates high prevalence of APPV in Minnesota (37.35%), followed by Illinois (32.86%), Iowa (30.60%) and Kansas (21.89%). APPV was detected in 15.48% of samples assayed from 2017, slightly higher than that in 2016 (13.08%), but much lower than 2018 (28.77%). Among the various sample types tested, oral fluid samples had the highest prevalence and lowest average Ct value suggesting their suitability as a reliable diagnostic specimen for APPV detection. Overall, sequence variation among APPV strains and prevalence of the pathogen within the United States provides a basis for understanding the genetic diversity and molecular epidemiology of APPV in the US swine herds.
Collapse
Affiliation(s)
- Fangfeng Yuan
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.,Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuan Feng
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Xuming Liu
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.,Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, USA
| | - Bailey Arruda
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | | | - Lalitha Peddireddi
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.,North Carolina Veterinary Diagnostic Laboratories, Raleigh, NC, USA
| |
Collapse
|
14
|
Shi K, Xie S, Sun W, Liu H, Zhao J, Yin Y, Si H, Qu S, Lu W. Evolution and genetic diversity of atypical porcine pestivirus (APPV) from piglets with congenital tremor in Guangxi Province, Southern China. Vet Med Sci 2020; 7:714-723. [PMID: 33314734 PMCID: PMC8136935 DOI: 10.1002/vms3.407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/07/2020] [Accepted: 11/20/2020] [Indexed: 11/23/2022] Open
Abstract
Atypical porcine pestivirus (APPV) was identified and associated with congenital tremor (CT) type A‐II in new born piglets and has been reported in many countries. In China, the first APPV identification in swine herds was reported in Guangdong province in 2016. To investigate the genetic characteristics of APPV in Guangxi province, 53 tissue samples from neonatal piglets with CT were collected and detected from October 2017 to May 2019. Five APPV strains which were named as GX04/2017, GX01‐2018, GX02‐2018, GX01‐2019 and GX02‐2019 were obtained. Sequence analysis revealed that all six APPV strains from Guangxi province, including five strains from this study and one from a previous report, shared 83.3%‐97.5% nucleotide identity of complete genome and 91.7%‐99.1% amino acid identity of the open reading frame (ORF), and shared 77.7%‐97.7% nucleotide identity of complete genome and 90.6%‐99.3% amino acid identity of ORF with reference strains. Phylogenetic analysis indicated that all APPV strains could be divided into three clades based on the complete genome, Npro, Erns and E2 gene sequences, respectively; and the APPV strains from Guangxi province distributed in two clades (clades I and II). No sign of recombination was observed from Guangxi strains. Evolution analysis performed on the complete genome of 58 APPV strains showed that America, Europe and Asia strains during 2006–2019 evolved at a mean rate of 1.37 × 10–4 substitutions/site/year, and the most recent common ancestor (tMRCA) of them was estimated as 1,700.5 years ago. The findings of this study indicated that there existed a high degree of genetic diversity of APPV from Guangxi province, Southern China, which provided important information on the epidemiological features and evolutionary relationships of APPV.
Collapse
Affiliation(s)
- Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China.,Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Shouyu Xie
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Wenchao Sun
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Huixin Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jing Zhao
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Sujie Qu
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Wenjun Lu
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| |
Collapse
|
15
|
Special Issue: Bovine Viral Diarrhea Virus and Related Pestiviruses. Viruses 2020; 12:v12101181. [PMID: 33086661 PMCID: PMC7588974 DOI: 10.3390/v12101181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
|
16
|
Dall Agnol AM, Alfieri AF, Alfieri AA. Pestivirus K (Atypical Porcine Pestivirus): Update on the Virus, Viral Infection, and the Association with Congenital Tremor in Newborn Piglets. Viruses 2020; 12:v12080903. [PMID: 32824845 PMCID: PMC7472392 DOI: 10.3390/v12080903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
The atypical porcine pestivirus (APPV) belongs to the species Pestivirus K of the genus Pestivirus and the family Flaviviridae, and it has been associated with congenital tremor (CT) type A-II in newborn piglets. Although APPV was discovered in 2015, evidence shows that APPV has circulated in pig herds for many years, at least since 1986. Due to the frequently reported outbreaks of CT on different continents, the importance of this virus for global pig production is notable. Since 2015, several studies have been conducted to clarify the association between APPV and CT. However, some findings regarding APPV infection and the measures taken to control and prevent the spread of this virus need to be contextualized to understand the infection better. This review attempts to highlight advances in the understanding of APPV associated with type A-II CT, such as etiology, epidemiology, diagnosis, and control and prevention measures, and also describes the pathophysiology of the infection and its consequences for pig production. Further research still needs to be conducted to elucidate the host's immune response to APPV infection, the control and prevention of this infection, and the possible development of vaccines.
Collapse
Affiliation(s)
- Alais M. Dall Agnol
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, CEP 86057-970 Paraná, Brazil; (A.M.D.A.); (A.F.A.)
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, CEP 86057-970 Paraná, Brazil
- Rodovia Celso Garcia Cid Road-Campus Universitário, Londrina, PO Box 10011, CEP 86057-970 Paraná, Brazil
| | - Alice F. Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, CEP 86057-970 Paraná, Brazil; (A.M.D.A.); (A.F.A.)
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, CEP 86057-970 Paraná, Brazil
- Rodovia Celso Garcia Cid Road-Campus Universitário, Londrina, PO Box 10011, CEP 86057-970 Paraná, Brazil
| | - Amauri A. Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, CEP 86057-970 Paraná, Brazil; (A.M.D.A.); (A.F.A.)
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, CEP 86057-970 Paraná, Brazil
- Rodovia Celso Garcia Cid Road-Campus Universitário, Londrina, PO Box 10011, CEP 86057-970 Paraná, Brazil
- Correspondence: ; Tel.: +55-43-3371-5876; Fax: +55-43-3371-4485
| |
Collapse
|
17
|
Choe S, Park GN, Cha RM, Hyun BH, Park BK, An DJ. Prevalence and Genetic Diversity of Atypical Porcine Pestivirus (APPV) Detected in South Korean Wild Boars. Viruses 2020; 12:v12060680. [PMID: 32599836 PMCID: PMC7354535 DOI: 10.3390/v12060680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 11/16/2022] Open
Abstract
Atypical porcine pestivirus (APPV), currently classified as pestivirus K, causes congenital tremor (CT) type A-II in piglets. Eighteen APPV strains were identified from 2297 South Korean wild boars captured in 2019. Phylogenetic analysis of the structural protein E2 and nonstructural proteins NS3 and Npro classified the APPV viruses, including reference strains, into Clades I, II and III. Clade I was divided into four subclades; however, the strains belonging to the four subclades differed slightly, depending on the tree analysis, the NS3, E2, and Npro genes. The maximum-likelihood method was assigned to South Korean wild boar APPV strains to various subclades within the three trees: subclades I.1 and I.2 in the E2 tree, subclade I.1 in the Npro tree, and subclades I.1 and I.4 in the NS3 ML tree. In conclusion, APPV among South Korean wild boars belonging to Clade I may be circulating at a higher level than among the South Korean domestic pig populations.
Collapse
Affiliation(s)
- SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
| | - Gyu-Nam Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
| | - Ra Mi Cha
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
| | - Bang-Hun Hyun
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
| | - Bong-Kyun Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
- College of Veterinary Medicine, Seoul University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
- Correspondence: ; Tel.: +82-54-912-0795
| |
Collapse
|