1
|
Liu D, Li T, Liu L, Che X, Li X, Liu C, Wu G. Adeno-associated virus therapies: Pioneering solutions for human genetic diseases. Cytokine Growth Factor Rev 2024; 80:109-120. [PMID: 39322487 DOI: 10.1016/j.cytogfr.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Adeno-associated virus (AAV) has emerged as a fundamental component in the gene therapy landscape, widely acknowledged for its effectiveness in therapeutic gene delivery. The success of AAV-based therapies, such as Luxturna and Zolgensma, underscores their potential as a leading vector in gene therapy. This article provides an in-depth review of the development and mechanisms of AAV vector-based therapies, offering a comprehensive analysis of the latest clinical trial outcomes in central nervous system (CNS) diseases, ocular conditions, and hemophilia, where AAV therapies have shown promising results. Additionally, we discusse the selection of administration methods and serotypes tailored to specific diseases. Our objective is to showcase the innovative applications and future potential of AAV-based gene therapy, laying the groundwork for continued clinical advancements.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaorui Li
- Department of oncology, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China.
| | - Chang Liu
- Department of thoracic surgery, Shenyang Tenth People's Hospital, Shenyang 110042, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
2
|
Lengler J, Gavrila M, Brandis J, Palavra K, Dieringer F, Unterthurner S, Fuchsberger F, Kraus B, Bort JAH. Crucial aspects for maintaining rAAV stability. Sci Rep 2024; 14:27685. [PMID: 39533000 PMCID: PMC11557909 DOI: 10.1038/s41598-024-79369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
The storage of rAAV vectors for gene therapy applications is critical for ensuring a constant product quality and defined amount of medication at the time of administration. Therefore, we determined the influence of different storage conditions on the physicochemical and biological properties of rAAV8 and rAAV9 preparations. Particular attention was paid to short-term storage, which plays a crucial role in both the manufacturing process and in clinical applications. Additionally, we addressed the question, of viability of rAAV8 and rAAV9 when subjected to very low-temperature storage conditions (below -65 °C) or lyophilization. To determine the impact on rAAV vectors, various analyses were used, including the quantification of capsid and genome titers, as well as biopotency assessments, which are pivotal determinants in characterizing vector behavior and efficacy. Our data showed that freeze/thaw cycles hardly affected the functionality of rAAV9-aGAL vectors. In contrast, prolonged storage at room temperature for several days, resulted in a discernible decrease in biopotency despite consistent capsid and genome titers. When the storage temperature was further increased, the rAAV8-aGAL decay accelerated. For example, a short-term exposure of + 40 °C and more, led to a reduction in the physical viral titer and to an even faster decline in efficacy determined by biopotency. However, the addition of sucrose and sorbitol to the rAAV9-aGAL and rAAV9-GAA preparations reduced the temperature sensitivity of rAAV and improved its stability. Furthermore, exposure of rAAV9-aGAL to highly acidic conditions (pH 2.5) dramatically reduced its biopotency by 70% or more. Most interestingly, a long-term storage of rAAV9-aGAL and rAAV8-FVIII vectors over 12 and 36 months, respectively, demonstrated exceptional stability at storage temperatures below -65 °C. Also, lyophilization conserved functionality for at least 10 months. Our data showed how to maintain rAAV biopotency levels over the time without substantial loss. Storage at very low temperatures (below -65 °C) preserved its effectiveness over years. Overall, pH and temperature conditions during the manufacturing process, storage and clinical application are worth considering. Consistency in the rAAV capsid titer determination did not necessarily indicate the preservation of biopotency. In conclusion, our approach determined several options for maximizing rAAV stability.
Collapse
Affiliation(s)
- Johannes Lengler
- Gene Therapy Process Development, Baxalta Innovations GmbH, a Part of Takeda Companies, Uferstraße 15, 2304, Orth an Der Donau, Austria
| | - Mia Gavrila
- Gene Therapy Process Development, Baxalta Innovations GmbH, a Part of Takeda Companies, Uferstraße 15, 2304, Orth an Der Donau, Austria
| | - Janina Brandis
- Drug Product Development EU, Baxalta Innovations GmbH, a Part of Takeda Companies, Industriestraße 72, 1221, Vienna, Austria
| | - Kristina Palavra
- Gene Therapy Process Development, Baxalta Innovations GmbH, a Part of Takeda Companies, Uferstraße 15, 2304, Orth an Der Donau, Austria
| | - Felix Dieringer
- Gene Therapy Process Development, Baxalta Innovations GmbH, a Part of Takeda Companies, Uferstraße 15, 2304, Orth an Der Donau, Austria
| | - Sabine Unterthurner
- Gene Therapy Process Development, Baxalta Innovations GmbH, a Part of Takeda Companies, Uferstraße 15, 2304, Orth an Der Donau, Austria
| | - Felix Fuchsberger
- Gene Therapy Process Development, Baxalta Innovations GmbH, a Part of Takeda Companies, Uferstraße 15, 2304, Orth an Der Donau, Austria
| | - Barbara Kraus
- Gene Therapy Process Development, Baxalta Innovations GmbH, a Part of Takeda Companies, Uferstraße 15, 2304, Orth an Der Donau, Austria
| | - Juan A Hernandez Bort
- Gene Therapy Process Development, Baxalta Innovations GmbH, a Part of Takeda Companies, Uferstraße 15, 2304, Orth an Der Donau, Austria.
- Department of Applied Life Sciences, Bioengineering, University of Applied Sciences Campus Vienna, 1100, Vienna, Austria.
| |
Collapse
|
3
|
Porter JM, Oswald MS, Busuttil K, Emmanuel SN, Bennett A, McKenna R, Smith JG. Mechanisms of AAV2 neutralization by human alpha-defensins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614754. [PMID: 39386661 PMCID: PMC11463608 DOI: 10.1101/2024.09.25.614754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Antiviral immunity compromises the efficacy of adeno-associated virus (AAV) vectors used for gene therapy. This is well understood for the adaptive immune response. However, innate immune effectors like alpha-defensin antimicrobial peptides also block AAV infection, although their mechanisms of action are unknown. To address this gap in knowledge, we investigated AAV2 neutralization by human neutrophil peptide 1 (HNP1), a myeloid alpha-defensin, and human defensin 5 (HD5), an enteric alpha-defensin. We found that both defensins bind to AAV2 and inhibit infection at low micromolar concentrations. While HD5 prevents AAV2 from binding to cells, HNP1 does not. However, AAV2 exposed to HD5 after binding to cells is still neutralized, indicating an additional block to infection. Accordingly, both HD5 and HNP1 inhibit externalization of the VP1 unique domain, which contains a phospholipase A 2 enzyme required for endosome escape and nuclear localization signals required for nuclear entry. Consequently, both defensins prevent AAV2 from reaching the nucleus. Disruption of intracellular trafficking of the viral genome to the nucleus is reminiscent of how alpha-defensins neutralize other non-enveloped viruses, suggesting a common mechanism of inhibition. These results will inform the development of vectors capable of overcoming these hurdles to improve the efficiency of gene therapy. Author Summary AAVs are commonly used as gene therapy vectors due to their broad tropism and lack of disease association; however, host innate immune factors, such as human alpha-defensin antimicrobial peptides, can hinder gene delivery. Although it is becoming increasingly evident that human alpha-defensins can block infection by a wide range of nonenveloped viruses, including AAVs, their mechanism of action remains poorly understood. In this study, we describe for the first time how two types of abundant human alpha-defensins neutralize a specific AAV serotype, AAV2. We found that one defensin prevents AAV2 from binding to cells, the first step in infection, while both defensins block a critical later step in AAV2 entry. Our findings support the emerging idea that defensins use a common strategy to block infection by DNA viruses that replicate in the nucleus. Through understanding how innate immune effectors interact with and impede AAV infection, vectors can be developed to bypass these interventions and allow more efficient gene delivery.
Collapse
|
4
|
Araujo AE, Bentler M, Perez Garmendia X, Kaleem A, Fabian C, Morgan M, Hacker UT, Büning H. Adeno-Associated Virus Vectors-a Target of Cellular and Humoral Immunity-are Expanding Their Reach Toward Hematopoietic Stem Cell Modification and Immunotherapies. Hum Gene Ther 2024; 35:586-603. [PMID: 39193633 DOI: 10.1089/hum.2024.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
All current market-approved gene therapy medical products for in vivo gene therapy of monogenic diseases rely on adeno-associated virus (AAV) vectors. Advances in gene editing technologies and vector engineering have expanded the spectrum of target cells and, thus, diseases that can be addressed. Consequently, AAV vectors are now being explored to modify cells of the hematopoietic system, including hematopoietic stem and progenitor cells (HSPCs), to develop novel strategies to treat monogenic diseases, but also to generate cell- and vaccine-based immunotherapies. However, the cell types that represent important new targets for the AAV vector system are centrally involved in immune responses against the vector and its transgene product as discussed briefly in the first part of this review. In the second part, studies exploring AAV vectors for genetic engineering of HSPCs, T and B lymphocytes, and beyond are presented.
Collapse
Affiliation(s)
- Angela E Araujo
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Martin Bentler
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Asma Kaleem
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Claire Fabian
- Laboratory for Vector based immunotherapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Medical Department II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Cancer Center Central Germany, Leipzig, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Ulrich T Hacker
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Laboratory for Vector based immunotherapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Medical Department II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Cancer Center Central Germany, Leipzig, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
5
|
Matsuzaka Y, Yashiro R. Therapeutic Application and Structural Features of Adeno-Associated Virus Vector. Curr Issues Mol Biol 2024; 46:8464-8498. [PMID: 39194716 DOI: 10.3390/cimb46080499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Adeno-associated virus (AAV) is characterized by non-pathogenicity, long-term infection, and broad tropism and is actively developed as a vector virus for gene therapy products. AAV is classified into more than 100 serotypes based on differences in the amino acid sequence of the capsid protein. Endocytosis involves the uptake of viral particles by AAV and accessory receptors during AAV infection. After entry into the cell, they are transported to the nucleus through the nuclear pore complex. AAVs mainly use proteoglycans as receptors to enter cells, but the types of sugar chains in proteoglycans that have binding ability are different. Therefore, it is necessary to properly evaluate the primary structure of receptor proteins, such as amino acid sequences and post-translational modifications, including glycosylation, and the higher-order structure of proteins, such as the folding of the entire capsid structure and the three-dimensional (3D) structure of functional domains, to ensure the efficacy and safety of biopharmaceuticals. To further enhance safety, it is necessary to further improve the efficiency of gene transfer into target cells, reduce the amount of vector administered, and prevent infection of non-target cells.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
6
|
Som M, Gikanga B, Kanapuram V, Yadav S. Drug product Formulation and Fill/Finish Manufacturing Process Considerations for AAV-Based Genomic Medicines. J Pharm Sci 2024; 113:1711-1725. [PMID: 38570073 DOI: 10.1016/j.xphs.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Adeno-associated viruses (AAVs) have become the delivery medium of choice for a variety of genomic medicine applications i.e., gene therapy, gene editing/regulation, and ex-vivo cell therapy. AAVs are protein-DNA complexes which have unique stability characteristics that are susceptible to various stress exposure conditions commonly seen in the drug product (DP) life cycle. This review takes a comprehensive look at AAV DP formulation and process development considerations that could impact critical quality attributes (CQAs) during manufacturing, packaging, shipping, and clinical use. Additional aspects related to AAV development reviewed herein are: (1) Different AAV serotypes with unique protein sequences and charge characteristics potentially leading to discrete stability profiles; (2) Manufacturing process challenges and optimization efforts to improve yield, recovery and purity especially during early development activities; and (3) Defining and identifying CQAs with analytical methods which are constantly evolving and present unique characterization challenges for AAV-based products.
Collapse
Affiliation(s)
- Madhura Som
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States.
| | - Benson Gikanga
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States
| | - Varna Kanapuram
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States
| | - Sandeep Yadav
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States.
| |
Collapse
|
7
|
Kurosawa Y, Tsunekawa Y, Wada M, Aizen Y, Nitahara-Kasahara Y, Okada T. Purification of Adeno-Associated Viral Vector Serotype 9 Using Ceramic Hydroxyapatite Chromatography and its Analysis. Curr Protoc 2024; 4:e1068. [PMID: 38837274 DOI: 10.1002/cpz1.1068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Adeno-associated virus (AAV) vectors can efficiently transduce exogenous genes into various tissues in vivo. Owing to their convenience, high efficiency, long-term stable gene expression, and minimal side effects, AAV vectors have become one of the gold standards for investigating gene functions in vivo, especially in non-clinical studies. However, challenges persist in efficiently preparing a substantial quantity of high-quality AAV vectors. Commercial AAV vectors are typically associated with high costs. Further, in-laboratory production is hindered by the lack of specific laboratory equipment, such as ultracentrifuges. Therefore, a simple, quick, and scalable preparation method for AAV vectors is needed for proof-of-concept experiments. Herein, we present an optimized method for producing and purifying high-quality AAV serotype 9 (AAV9) vectors using standard laboratory equipment and chromatography. Using ceramic hydroxyapatite as a mixed-mode chromatography medium can markedly increase the quality of purified AAV vectors. Basic Protocols and optional methods for evaluating purified AAV vectors are also described. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production of AAV9 vectors in 293EB cells Basic Protocol 2: Concentration and buffer exchange of AAV9 vectors from 293EB cell culture supernatants using tangential flow filtration Basic Protocol 3: Purification of AAV9 vectors from TFF samples using ceramic hydroxyapatite chromatography Basic Protocol 4: Analysis of the purified AAV9 vectors.
Collapse
Affiliation(s)
- Yae Kurosawa
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Chromatography Media Business Division, HOYA Technosurgical Corporation, Tokyo, Japan
| | - Yuji Tsunekawa
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mikako Wada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuko Aizen
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Kilgore R, Minzoni A, Shastry S, Smith W, Barbieri E, Wu Y, LeBarre JP, Chu W, O'Brien J, Menegatti S. The downstream bioprocess toolbox for therapeutic viral vectors. J Chromatogr A 2023; 1709:464337. [PMID: 37722177 DOI: 10.1016/j.chroma.2023.464337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023]
Abstract
Viral vectors are poised to acquire a prominent position in modern medicine and biotechnology owing to their role as delivery agents for gene therapies, oncolytic agents, vaccine platforms, and a gateway to engineer cell therapies as well as plants and animals for sustainable agriculture. The success of viral vectors will critically depend on the availability of flexible and affordable biomanufacturing strategies that can meet the growing demand by clinics and biotech companies worldwide. In this context, a key role will be played by downstream process technology: while initially adapted from protein purification media, the purification toolbox for viral vectors is currently undergoing a rapid expansion to fit the unique biomolecular characteristics of these products. Innovation efforts are articulated on two fronts, namely (i) the discovery of affinity ligands that target adeno-associated virus, lentivirus, adenovirus, etc.; (ii) the development of adsorbents with innovative morphologies, such as membranes and 3D printed monoliths, that fit the size of viral vectors. Complementing these efforts are the design of novel process layouts that capitalize on novel ligands and adsorbents to ensure high yield and purity of the product while safeguarding its therapeutic efficacy and safety; and a growing panel of analytical methods that monitor the complex array of critical quality attributes of viral vectors and correlate them to the purification strategies. To help explore this complex and evolving environment, this study presents a comprehensive overview of the downstream bioprocess toolbox for viral vectors established in the last decade, and discusses present efforts and future directions contributing to the success of this promising class of biological medicines.
Collapse
Affiliation(s)
- Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| | - Arianna Minzoni
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Will Smith
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Yuxuan Wu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Jacob P LeBarre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Juliana O'Brien
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States; North Carolina Viral Vector Initiative in Research and Learning, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
9
|
Vervoorn MT, Amelink JJGJ, Ballan EM, Doevendans PA, Sluijter JPG, Mishra M, Boink GJJ, Bowles DE, van der Kaaij NP. Gene therapy during ex situ heart perfusion: a new frontier in cardiac regenerative medicine? Front Cardiovasc Med 2023; 10:1264449. [PMID: 37908499 PMCID: PMC10614057 DOI: 10.3389/fcvm.2023.1264449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Ex situ organ preservation by machine perfusion can improve preservation of organs for transplantation. Furthermore, machine perfusion opens up the possibilities for selective immunomodulation, creation of tolerance to ischemia-reperfusion injury and/or correction of a pathogenic genetic defect. The application of gene modifying therapies to treat heart diseases caused by pathogenic mutations during ex situ heart perfusion seems promising, especially given the limitations related to delivery of vectors that were encountered during clinical trials using in vivo cardiac gene therapy. By isolating the heart in a metabolically and immunologically favorable environment and preventing off-target effects and dilution, it is possible to directly control factors that enhance the success rate of cardiac gene therapy. A literature search of PubMed and Embase databases was performed to identify all relevant studies regarding gene therapy during ex situ heart perfusion, aiming to highlight important lessons learned and discuss future clinical prospects of this promising approach.
Collapse
Affiliation(s)
- Mats T. Vervoorn
- Division of Heart & Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jantijn J. G. J. Amelink
- Division of Heart & Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Elisa M. Ballan
- Division of Heart & Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- Laboratory of Experimental Cardiology, Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
| | - Pieter A. Doevendans
- Netherlands Heart Institute, Utrecht, Netherlands
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joost P. G. Sluijter
- Laboratory of Experimental Cardiology, Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Regenerative Medicine Utrecht, Circulatory Health Research Center, University Utrecht, Utrecht, Netherlands
| | - Mudit Mishra
- Laboratory of Experimental Cardiology, Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Gerard J. J. Boink
- Amsterdam Cardiovascular Sciences, Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Department of Cardiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Dawn E. Bowles
- Divison of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Niels P. van der Kaaij
- Division of Heart & Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
10
|
Jiang Z, Dalby PA. Challenges in scaling up AAV-based gene therapy manufacturing. Trends Biotechnol 2023; 41:1268-1281. [PMID: 37127491 DOI: 10.1016/j.tibtech.2023.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Accelerating the scale up of adeno-associated virus (AAV) manufacture is highly desirable to meet the increased demand for gene therapies. However, the development of bioprocesses for AAV gene therapies remains time-consuming and challenging. The quality by design (QbD) approach ensures bioprocess designs that meet the desired product quality and safety profile. Rapid stress tests, developability screens, and scale-down technologies have the potential to streamline AAV product and manufacturing bioprocess development within the QbD framework. Here we review how their successful use for antibody manufacture development is translating to AAV, but also how this will depend critically on improved analytical methods and adaptation of the tools as more understanding is gained on the critical attributes of AAV required for successful therapy.
Collapse
Affiliation(s)
- Ziyu Jiang
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| | - Paul A Dalby
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
11
|
Moço PD, Xu X, Silva CAT, Kamen AA. Production of adeno-associated viral vector serotype 6 by triple transfection of suspension HEK293 cells at higher cell densities. Biotechnol J 2023; 18:e2300051. [PMID: 37337925 DOI: 10.1002/biot.202300051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
In recent years, the use of adeno-associated viruses (AAVs) as vectors for gene and cell therapy has increased, leading to a rise in the amount of AAV vectors required during pre-clinical and clinical trials. AAV serotype 6 (AAV6) has been found to be efficient in transducing different cell types and has been successfully used in gene and cell therapy protocols. However, the number of vectors required to effectively deliver the transgene to one single cell has been estimated at 106 viral genomes (VG), making large-scale production of AAV6 necessary. Suspension cell-based platforms are currently limited to low cell density productions due to the widely reported cell density effect (CDE), which results in diminished production at high cell densities and decreased cell-specific productivity. This limitation hinders the potential of the suspension cell-based production process to increase yields. In this study, we investigated the improvement of the production of AAV6 at higher cell densities by transiently transfecting HEK293SF cells. The results showed that when the plasmid DNA was provided on a cell basis, the production could be carried out at medium cell density (MCD, 4 × 106 cells mL-1 ) resulting in titers above 1010 VG mL-1 . No detrimental effects on cell-specific virus yield or cell-specific functional titer were observed at MCD production. Furthermore, while medium supplementation alleviated the CDE in terms of VG/cell at high cell density (HCD, 10 × 106 cells mL-1 ) productions, the cell-specific functional titer was not maintained, and further studies are necessary to understand the observed limitations for AAV production in HCD processes. The MCD production method reported here lays the foundation for large-scale process operations, potentially solving the current vector shortage in AAV manufacturing.
Collapse
Affiliation(s)
- Pablo D Moço
- Department of Bioengineering, McGill University, Montreal, Canada
| | - Xingge Xu
- Department of Bioengineering, McGill University, Montreal, Canada
| | - Cristina A T Silva
- Department of Bioengineering, McGill University, Montreal, Canada
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, Montreal, Canada
| |
Collapse
|
12
|
Grossen P, Skaripa Koukelli I, van Haasteren J, H E Machado A, Dürr C. The ice age - A review on formulation of Adeno-associated virus therapeutics. Eur J Pharm Biopharm 2023; 190:1-23. [PMID: 37423416 DOI: 10.1016/j.ejpb.2023.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Gene therapies offer promising therapeutic alternatives for many disorders that currently lack efficient treatment options. Due to their chemical nature and physico-chemical properties, delivery of polynucleic acids into target cells and subcellular compartments remains a significant challenge. Adeno-associated viruses (AAV) have gained a lot of interest for the efficient delivery of therapeutic single-stranded DNA (ssDNA) genomes over the past decades. More than a hundred products have been tested in clinical settings and three products have received market authorization by the US FDA in recent years. A lot of effort is being made to generate potent recombinant AAV (rAAV) vectors that show favorable safety and immunogenicity profiles for either local or systemic administration. Manufacturing processes are gradually being optimized to deliver a consistently high product quality and to serve potential market needs beyond rare indications. In contrast to protein therapeutics, most rAAV products are still supplied as frozen liquids within rather simple formulation buffers to enable sufficient product shelf life, significantly hampering global distribution and access. In this review, we aim to outline the hurdles of rAAV drug product development and discuss critical formulation and composition aspects of rAAV products under clinical evaluation. Further, we highlight recent development efforts in order to achieve stable liquid or lyophilized products. This review therefore provides a comprehensive overview on current state-of-the-art rAAV formulations and can further serve as a map for rational formulation development activities in the future.
Collapse
Affiliation(s)
- Philip Grossen
- F.Hoffmann-La Roche AG, Pharma Technical Development, Pharmaceutical Development and Supplies EU, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| | - Irini Skaripa Koukelli
- F.Hoffmann-La Roche AG, Pharma Technical Development, Pharmaceutical Development and Supplies EU, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Joost van Haasteren
- F.Hoffmann-La Roche AG, Cell and Gene Therapy Unit, Gene Therapy Development Clinical Manufacturing, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Alexandra H E Machado
- F.Hoffmann-La Roche AG, Pharma Technical Development, Pharmaceutical Development and Supplies EU, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Christoph Dürr
- F.Hoffmann-La Roche AG, Pharma Technical Development, Pharmaceutical Development and Supplies EU, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
13
|
Chu W, Shastry S, Barbieri E, Prodromou R, Greback-Clarke P, Smith W, Moore B, Kilgore R, Cummings C, Pancorbo J, Gilleskie G, Daniele MA, Menegatti S. Peptide ligands for the affinity purification of adeno-associated viruses from HEK 293 cell lysates. Biotechnol Bioeng 2023; 120:2283-2300. [PMID: 37435968 PMCID: PMC10440015 DOI: 10.1002/bit.28495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023]
Abstract
Adeno-associated viruses (AAVs) are the vector of choice for delivering gene therapies that can cure inherited and acquired diseases. Clinical research on various AAV serotypes significantly increased in recent years alongside regulatory approvals of AAV-based therapies. The current AAV purification platform hinges on the capture step, for which several affinity resins are commercially available. These adsorbents rely on protein ligands-typically camelid antibodies-that provide high binding capacity and selectivity, but suffer from low biochemical stability and high cost, and impose harsh elution conditions (pH < 3) that can harm the transduction activity of recovered AAVs. Addressing these challenges, this study introduces peptide ligands that selectively capture AAVs and release them under mild conditions (pH = 6.0). The peptide sequences were identified by screening a focused library and modeled in silico against AAV serotypes 2 and 9 (AAV2 and AAV9) to select candidate ligands that target homologous sites at the interface of the VP1-VP2 and VP2-VP3 virion proteins with mild binding strength (KD ~ 10-5 -10- 6 M). Selected peptides were conjugated to Toyopearl resin and evaluated via binding studies against AAV2 and AAV9, demonstrating the ability to target both serotypes with values of dynamic binding capacity (DBC10% > 1013 vp/mL of resin) and product yields (~50%-80%) on par with commercial adsorbents. The peptide-based adsorbents were finally utilized to purify AAV2 from a HEK 293 cell lysate, affording high recovery (50%-80%), 80- to 400-fold reduction of host cell proteins (HCPs), and high transduction activity (up to 80%) of the purified viruses.
Collapse
Affiliation(s)
- Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Paul Greback-Clarke
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Will Smith
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Brandyn Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Christopher Cummings
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Jennifer Pancorbo
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Gary Gilleskie
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Michael A Daniele
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
- LigaTrap Technologies LLC, Raleigh, North Carolina, USA
| |
Collapse
|
14
|
Zane G, Silveria M, Meyer N, White T, Duan R, Zou X, Chapman M. Cryo-EM structure of adeno-associated virus 4 at 2.2 Å resolution. Acta Crystallogr D Struct Biol 2023; 79:140-153. [PMID: 36762860 PMCID: PMC9912921 DOI: 10.1107/s2059798322012190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/26/2022] [Indexed: 01/21/2023] Open
Abstract
Adeno-associated virus (AAV) is the vector of choice for several approved gene-therapy treatments and is the basis for many ongoing clinical trials. Various strains of AAV exist (referred to as serotypes), each with their own transfection characteristics. Here, a high-resolution cryo-electron microscopy structure (2.2 Å) of AAV serotype 4 (AAV4) is presented. The receptor responsible for transduction of the AAV4 clade of AAV viruses (including AAV11, AAV12 and AAVrh32.33) is unknown. Other AAVs interact with the same cell receptor, adeno-associated virus receptor (AAVR), in one of two different ways. AAV5-like viruses interact exclusively with the polycystic kidney disease-like 1 (PKD1) domain of AAVR, while most other AAVs interact primarily with the PKD2 domain. A comparison of the present AAV4 structure with prior corresponding structures of AAV5, AAV2 and AAV1 in complex with AAVR provides a foundation for understanding why the AAV4-like clade is unable to interact with either PKD1 or PKD2 of AAVR. The conformation of the AAV4 capsid in variable regions I, III, IV and V on the viral surface appears to be sufficiently different from AAV2 to ablate binding with PKD2. Differences between AAV4 and AAV5 in variable region VII appear to be sufficient to exclude binding with PKD1.
Collapse
Affiliation(s)
- Grant Zane
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Mark Silveria
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Nancy Meyer
- Center for Spatial Systems Biomedicine, Oregon Health Sciences University, Portland, Oregon, USA
| | - Tommi White
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
- Bayer Crop Science, Bayer (United States), Chesterfield, MO 63017, USA
- Electron Microscopy Core, University of Missouri, Columbia, MO 65211, USA
| | - Rui Duan
- Dalton Cardiovascular Center, University of Missouri, Columbia, MO 65211, USA
| | - Xiaoqin Zou
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
- Dalton Cardiovascular Center, University of Missouri, Columbia, MO 65211, USA
- Department of Physics, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Michael Chapman
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
15
|
Huang X, Wang X, Ren Y, Gao P, Xu W, Xie X, Diao Y. Reactive oxygen species enhance rAAV transduction by promoting its escape from late endosomes. Virol J 2023; 20:2. [PMID: 36611172 PMCID: PMC9825130 DOI: 10.1186/s12985-023-01964-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Recent seminal studies have revealed that endosomal reactive oxygen species (ROS) promote rather than inhibit viral infection. Some ROS generators, including shikonin and H2O2, have the potential to enhance recombinant adeno-associated virus (rAAV) transduction. However, the impact of ROS on rAAV intracellular trafficking remains unclear. METHODS To understand the effects of ROS on the transduction of rAAV vectors, especially the rAAV subcellular distribution profiles, this study systematically explored the effect of ROS on each step of rAAV intracellular trafficking pathway using fluorescently-labeled rAAV and qPCR quantification determination. RESULTS The results showed promoted in-vivo and in-vitro rAAV transduction by ROS exposure, regardless of vector serotype or cell type. ROS treatment directed rAAV intracellular trafficking towards a more productive pathway by upregulating the expression of cathepsins B and L, accelerating the rAAV transit in late endosomes, and increasing the rAAV nucleus entry. CONCLUSIONS These data support that ROS generative drugs, such as shikonin, have the potential to promote rAAV vector transduction by promoting rAAV's escape from late endosomes, and enhancing its productive trafficking to the nucleus.
Collapse
Affiliation(s)
- Xiaoping Huang
- grid.449406.b0000 0004 1757 7252College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China
| | - Xiao Wang
- grid.411404.40000 0000 8895 903XSchool of Medicine, Huaqiao University, Quanzhou, China
| | - Yanxuan Ren
- grid.411404.40000 0000 8895 903XSchool of Medicine, Huaqiao University, Quanzhou, China
| | - Pingzhang Gao
- grid.449406.b0000 0004 1757 7252College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China
| | - Wentao Xu
- grid.449406.b0000 0004 1757 7252College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China
| | - Xiaolan Xie
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China.
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, China.
| |
Collapse
|
16
|
Winter SL, Chlanda P. The Art of Viral Membrane Fusion and Penetration. Subcell Biochem 2023; 106:113-152. [PMID: 38159225 DOI: 10.1007/978-3-031-40086-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
As obligate pathogens, viruses have developed diverse mechanisms to deliver their genome across host cell membranes to sites of virus replication. While enveloped viruses utilize viral fusion proteins to accomplish fusion of their envelope with the cellular membrane, non-enveloped viruses rely on machinery that causes local membrane ruptures and creates an opening through which the capsid or viral genome is released. Both membrane fusion and membrane penetration take place at the plasma membrane or in intracellular compartments, often involving the engagement of the cellular machinery and antagonism of host restriction factors. Enveloped and non-enveloped viruses have evolved intricate mechanisms to enable virus uncoating and modulation of membrane fusion in a spatiotemporally controlled manner. This chapter summarizes and discusses the current state of understanding of the mechanisms of viral membrane fusion and penetration. The focus is on the role of lipids, viral scaffold uncoating, viral membrane fusion inhibitors, and host restriction factors as physicochemical modulators. In addition, recent advances in visualizing and detecting viral membrane fusion and penetration using cryo-electron microscopy methods are presented.
Collapse
Affiliation(s)
- Sophie L Winter
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
17
|
Genome concentration, characterization, and integrity analysis of recombinant adeno-associated viral vectors using droplet digital PCR. PLoS One 2023; 18:e0280242. [PMID: 36696399 PMCID: PMC9876284 DOI: 10.1371/journal.pone.0280242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/24/2022] [Indexed: 01/26/2023] Open
Abstract
Precise, reproducible characterization of AAV is critical for comparing preclinical results between laboratories and determining a safe and effective clinical dose for gene therapy applications. In this study, we systematically evaluated numerous parameters to produce a simple and robust ddPCR protocol for AAV characterization. The protocol uses a low ionic strength buffer containing Pluronic-F68 and polyadenylic acid to dilute the AAV into the ddPCR concentration range and a 10-minute thermal capsid lysis prior to assembling ddPCR reactions containing MspI. A critical finding is that the buffer composition affected the ITR concentration of AAV but not the ITR concentration of a double stranded plasmid, which has implications when using a theoretical, stoichiometric conversion factor to obtain the titer based on the ITR concentration. Using this protocol, a more comprehensive analysis of an AAV vector formulation was demonstrated with multiple ddPCR assays distributed throughout the AAV vector genome. These assays amplify the ITR, regulatory elements, and eGFP transgene to provide a more confident estimate of the vector genome concentration and a high-resolution characterization of the vector genome identity. Additionally, we compared two methods of genome integrity analysis for three control sample types at eight different concentrations for each sample. The genome integrity was independent of sample concentration and the expected values were obtained when integrity was determined based on the excess number of positive droplets relative to the number of double positive droplets expected by chance co-encapsulation of two DNA targets. The genome integrity was highly variable and produced unexpected values when the double positive droplet percentage was used to calculate the genome integrity. A protocol using a one-minute thermal capsid lysis prior to assembling ddPCR reactions lacking a restriction enzyme used the non-ITR assays in a duplex ddPCR milepost experiment to determine the genome integrity using linkage analysis.
Collapse
|
18
|
Rafati A, Esmaeili Gouvarchin Ghaleh H, Azarabadi A, Masoudi MR, Afrasiab E, Ghorbani Alvanegh A. Stem cells as an ideal carrier for gene therapy: A new approach to the treatment of hepatitis C virus. Transpl Immunol 2022; 75:101721. [PMID: 36150664 DOI: 10.1016/j.trim.2022.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIM Various chemical drugs have been approved for the treatment of patients with hepatitis C, but most of these treatments are costly, and also have an inadequate response and many side effects. Also, there is no effective vaccine for hepatitis C due to its high genetic diversity. In recent decades, clinical trials have grown dramatically regarding the benefits of stem cell therapy as a modulator of immune system responses and anti-inflammatory drugs. The most promising point in stem cell therapy and similar therapies is that patients with chronic pain and severe injuries are offered drug-free treatment or surgery. In the present study, we examine the various dimensions of the use of stem cells with the approach of gene therapy carriers as a new treatment method in the treatment of Hepatitis C. METHODS Search terms were including gene carrier, stem cell therapy, gene therapy, liver disorders, hepatitis C virus. At first, 1000 article titles related to the mentioned keywords for different diseases were found. After removing duplicate titles and items that did not match the scope of the research, articles that met the criteria for entering the research and had usable information were selected. All abstracts of selected articles were studied by researchers. In the initial review, articles related to the title were identified and categorized based on the type of challenge. CONCLUSION Gene therapy, either directly and in vivo or indirectly and in vitro, requires carriers (vectors) to transfer the gene. These carriers are divided into two groups, viral and non-viral. In indirect gene therapy, living cells are isolated from a person's body and genetically modified. Stem cells have the properties to transfer the desired genes to the patient's body, including the ability to proliferate for a long time and differentiate into the tissue cells in which they are located.
Collapse
Affiliation(s)
- Alireza Rafati
- Department of Medical Genetics, Sirjan School of Medical Sciences, Sirjan, Iran
| | | | - Afsaneh Azarabadi
- Instructor of Nursing, School of Nursing and Midwifery, Urmia University of Medical Sciences
| | - Mahmood Reza Masoudi
- School of Medical Sciences, Emam Reza Hospital Sirjan Faculty of Medical Sciences, Sirjan, Iran
| | - Elmira Afrasiab
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Akbar Ghorbani Alvanegh
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran; Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Lakshmanan RV, Hull JA, Berry L, Burg M, Bothner B, McKenna R, Agbandje-McKenna M. Structural Dynamics and Activity of B19V VP1u during the pHs of Cell Entry and Endosomal Trafficking. Viruses 2022; 14:1922. [PMID: 36146728 PMCID: PMC9505059 DOI: 10.3390/v14091922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 12/28/2022] Open
Abstract
Parvovirus B19 (B19V) is a human pathogen that is the causative agent of fifth disease in children. It is also known to cause hydrops in fetuses, anemia in AIDS patients, and transient aplastic crisis in patients with sickle cell disease. The unique N-terminus of Viral Protein 1 (VP1u) of parvoviruses, including B19V, exhibits phospholipase A2 (PLA2) activity, which is required for endosomal escape. Presented is the structural dynamics of B19V VP1u under conditions that mimic the pHs of cell entry and endosomal trafficking to the nucleus. Using circular dichroism spectroscopy, the receptor-binding domain of B19V VP1u is shown to exhibit an α-helical fold, whereas the PLA2 domain exhibits a probable molten globule state, both of which are pH invariant. Differential scanning calorimetry performed at endosomal pHs shows that the melting temperature (Tm) of VP1u PLA2 domain is tuned to body temperature (37 °C) at pH 7.4. In addition, PLA2 assays performed at temperatures ranging from 25-45 °C show both a temperature and pH-dependent change in activity. We hypothesize that VP1u PLA2 domain differences in Tm at differing pHs have enabled the virus to "switch on/off" the phospholipase activity during capsid trafficking. Furthermore, we propose the environment of the early endosome as the optimal condition for endosomal escape leading to B19V infection.
Collapse
Affiliation(s)
- Renuk V. Lakshmanan
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Joshua A. Hull
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Luke Berry
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Matthew Burg
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
20
|
Characterization of the Serpentine Adeno-Associated Virus (SAAV) Capsid Structure: Receptor Interactions and Antigenicity. J Virol 2022; 96:e0033522. [DOI: 10.1128/jvi.00335-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AAVs are widely studied therapeutic gene delivery vectors. However, preexisting antibodies and their detrimental effect on therapeutic efficacy are a primary challenge encountered during clinical trials.
Collapse
|
21
|
Belova L, Kochergin‐Nikitsky K, Erofeeva A, Lavrov A, Smirnikhina S. Approaches to purification and concentration of rAAV vectors for gene therapy. Bioessays 2022; 44:e2200019. [DOI: 10.1002/bies.202200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/11/2022]
|
22
|
Systematic studies on stabilization of AAV vector formulations by lyophilization. J Pharm Sci 2022; 111:2288-2298. [DOI: 10.1016/j.xphs.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 01/31/2023]
|
23
|
Guapo F, Strasser L, Millán-Martín S, Anderson I, Bones J. Fast and efficient digestion of adeno associated virus (AAV) capsid proteins for liquid chromatography mass spectrometry (LC-MS) based peptide mapping and post translational modification analysis (PTMs). J Pharm Biomed Anal 2022; 207:114427. [PMID: 34757284 DOI: 10.1016/j.jpba.2021.114427] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/19/2022]
Abstract
Adeno-associated virus (AAV) represent a widely used delivery mechanism for gene therapy treatments currently being developed. The size and complexity of these molecules requires the development of sensitive analytical methods for detailed product characterization. Among the quality attributes that need to be monitored, characterization of the AAV capsid protein amino acid sequences and any associated post translational modifications (PTM) present, should be performed. As commonly used for recombinant protein analysis, LC-MS based peptide mapping can provide sequence coverage and PTM information to improve product understanding and the development and deployment of the associated manufacturing processes. In the current study, we report a fast and efficient method to digest AAV5 capsid proteins in only 30 min prior to peptide mapping analysis. The performance of different proteases in digesting AAV5 was compared and the benefits of using nanoflow liquid chromatography for separation prior to high resolution mass spectrometry to obtain 100% sequence coverage are highlighted. Characterization and quantitation of PTMs on AAV5 capsid proteins when using pepsin as a single protease is reported, thereby demonstrating the potential of this method to aid with complete characterization of AAV serotypes in gene therapy development laboratories.
Collapse
Affiliation(s)
- Felipe Guapo
- Characterization and Comparability Laboratory, NIBRT - National Institute for Bioprocessing Research and Training, Foster Avenue, Belfield, Blackrock, Dublin A94 X099, Ireland
| | - Lisa Strasser
- Characterization and Comparability Laboratory, NIBRT - National Institute for Bioprocessing Research and Training, Foster Avenue, Belfield, Blackrock, Dublin A94 X099, Ireland
| | - Silvia Millán-Martín
- Characterization and Comparability Laboratory, NIBRT - National Institute for Bioprocessing Research and Training, Foster Avenue, Belfield, Blackrock, Dublin A94 X099, Ireland
| | - Ian Anderson
- Pharmaron, 12 Estuary Banks, Speke, Liverpool L24 8RB, United Kingdom
| | - Jonathan Bones
- Characterization and Comparability Laboratory, NIBRT - National Institute for Bioprocessing Research and Training, Foster Avenue, Belfield, Blackrock, Dublin A94 X099, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin D04 V1W8, Ireland.
| |
Collapse
|
24
|
Bennett A, Hull J, Jolinon N, Tordo J, Moss K, Binns E, Mietzsch M, Hagemann C, Linden RM, Serio A, Chipman P, Sousa D, Broecker F, Seeberger P, Henckaerts E, McKenna R, Agbandje-McKenna M. Comparative structural, biophysical, and receptor binding study of true type and wild type AAV2. J Struct Biol 2021; 213:107795. [PMID: 34509611 PMCID: PMC9918372 DOI: 10.1016/j.jsb.2021.107795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/27/2021] [Accepted: 09/05/2021] [Indexed: 01/25/2023]
Abstract
Adeno-associated viruses (AAV) are utilized as gene transfer vectors in the treatment of monogenic disorders. A variant, rationally engineered based on natural AAV2 isolates, designated AAV-True Type (AAV-TT), is highly neurotropic compared to wild type AAV2 in vivo, and vectors based on it, are currently being evaluated for central nervous system applications. AAV-TT differs from AAV2 by 14 amino acids, including R585S and R588T, two residues previously shown to be essential for heparan sulfate binding of AAV2. The capsid structures of AAV-TT and AAV2 visualized by cryo-electron microscopy at 3.4 and 3.0 Å resolution, respectively, highlighted structural perturbations at specific amino acid differences. Differential scanning fluorimetry (DSF) performed at different pH conditions demonstrated that the melting temperature (Tm) of AAV2 was consistently ∼5 °C lower than AAV-TT, but both showed maximal stability at pH 5.5, corresponding to the pH in the late endosome, proposed as required for VP1u externalization to facilitate endosomal escape. Reintroduction of arginines at positions 585 and 588 in AAV-TT caused a reduction in Tm, demonstrating that the lack of basic amino acids at these positions are associated with capsid stability. These results provide structural and thermal annotation of AAV2/AAV-TT residue differences, that account for divergent cell binding, transduction, antigenic reactivity, and transduction of permissive tissues between the two viruses. Specifically, these data indicate that AAV-TT may not utilize a glycan receptor mediated pathway to enter cells and may have lower antigenic properties as compared to AAV2.
Collapse
Affiliation(s)
- Antonette Bennett
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Joshua Hull
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nelly Jolinon
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | | | - Katie Moss
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Enswert Binns
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mario Mietzsch
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Cathleen Hagemann
- Centre for Craniofacial & Regenerative Biology, King's College London, London SE19RT, UK; The Francis Crick Institute, London NW1 1AT, UK
| | | | - Andrea Serio
- Centre for Craniofacial & Regenerative Biology, King's College London, London SE19RT, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Paul Chipman
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Duncan Sousa
- Biological Science Imaging Resource, Department of Biological Sciences, Florida State University, 89 Chieftan Way Rm 119, Tallahassee, FL 32306, USA
| | - Felix Broecker
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Peter Seeberger
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Els Henckaerts
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Laboratory of Viral Cell Biology and Therapeutics, Department of Cellular and Molecular Medicine, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium.
| | - Robert McKenna
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Mavis Agbandje-McKenna
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
25
|
Bie Nkowska-Tokarczyk A, Małecki M. Stability of Recombinant Mosaic Adeno-Associated Virus Vector rAAV/DJ/CAG at Different Temperature Conditions. J Biomed Nanotechnol 2021; 17:2114-2124. [PMID: 34906273 DOI: 10.1166/jbn.2021.3183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The nanometer size and biological characteristics of recombinant adeno-associated virus vectors (rAAV) make them particularly useful as gene therapy vectors and they have been successfully used in this role. Our latest research revealed that the rAAV/DJ/CAG mosaic vector offers highly efficient targeted gene delivery to melanoma cells metastasized to the lungs and that the transduction is temperature dependent. In order to further explore the ability of the rAAV/DJ/CAG vector to deliver highly selective transduction, this study was designed to identify the transduction stability of rAAV/DJ/CAG under various conditions. The temperatures used in this study ranged from -196 ° (liquid nitrogen) to 90 °, and the effect of temperature fluctuations (freeze-thaw, cooling-heating cycles) was also studied. This research also investigated the effects of UV radiation (ultraviolet) on the rAAV/DJ/CAG activity. Changes in the transduction efficiency were assessed via fluorescence microscopy imaging and the qPCR method. Under the test conditions, the transduction efficiency was reduced by approx. 35%, on average. High temperatures (70 °/90 °) and UV light proved to have the most detrimental impact. Changes in the stability of the rAAV/DJ/CAG structure are manifested by variations in the number of genome copies (gc) and GFP+ cells. Temperature fluctuations resulted in differences in the number of gc while maintaining a similar number of GFP+ cells, which may indicate specific changes in the rAAV/DJ/CAG structure, triggering disorders or degradation in the vector entry. This study provides interesting insights into rAAV/DJ/CAG, and the implications of these findings provide a basis for developing new protocols in cancer gene therapy.
Collapse
Affiliation(s)
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| |
Collapse
|
26
|
Proteomic Landscape of Adeno-Associated Virus (AAV)-Producing HEK293 Cells. Int J Mol Sci 2021; 22:ijms222111499. [PMID: 34768929 PMCID: PMC8584267 DOI: 10.3390/ijms222111499] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viral (AAV) vectors are widely used for gene therapy, providing treatment for diseases caused by absent or defective genes. Despite the success of gene therapy, AAV manufacturing is still challenging, with production yields being limited. With increased patient demand, improvements in host cell productivity through various engineering strategies will be necessary. Here, we study the host cell proteome of AAV5-producing HEK293 cells using reversed phase nano-liquid chromatography and tandem mass spectrometry (RPLC-MS/MS). Relative label-free quantitation (LFQ) was performed, allowing a comparison of transfected vs. untransfected cells. Gene ontology enrichment and pathway analysis revealed differential expression of proteins involved in fundamental cellular processes such as metabolism, proliferation, and cell death. Furthermore, changes in expression of proteins involved in endocytosis and lysosomal degradation were observed. Our data provides highly valuable insights into cellular mechanisms involved during recombinant AAV production by HEK293 cells, thus potentially enabling further improvements of gene therapy product manufacturing.
Collapse
|
27
|
Si Y, Zhang Y, Ngo HG, Guan JS, Chen K, Wang Q, Singh AP, Xu Y, Zhou L, Yang ES, Liu X(M. Targeted Liposomal Chemotherapies to Treat Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13153749. [PMID: 34359650 PMCID: PMC8345094 DOI: 10.3390/cancers13153749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Triple-negative breast cancers (TNBCs) are mainly treated with standard chemotherapies. Combined therapies have been demonstrated as a promising treatment strategy in clinics. The aim of this study was to develop a new formulation of combined chemotherapies facilitated with a targeted delivery vehicle. We found that the mertansine and gemcitabine with different anti-cancer mechanisms resulted in high cytotoxicity in TNBC cells. The in vivo evaluations using two TNBC xenograft models confirmed the anti-tumor efficacy, i.e., significantly reduced tumor growth rate. Furthermore, the antibody-tagged liposomes effectively delivered the therapeutic drugs to TNBC tumor, which could reduce the side effects. This study is highly translational and the targeted liposomal drug formulation can be further investigated in future clinical trials for TNBC treatment. Abstract Triple-negative breast cancers (TNBCs) are highly aggressive and recurrent. Standard cytotoxic chemotherapies are currently the main treatment options, but their clinical efficacies are limited and patients usually suffer from severe side effects. The goal of this study was to develop and evaluate targeted liposomes-delivered combined chemotherapies to treat TNBCs. Specifically, the IC50 values of the microtubule polymerization inhibitor mertansine (DM1), mitotic spindle assembly defecting taxane (paclitaxel, PTX), DNA synthesis inhibitor gemcitabine (GC), and DNA damage inducer doxorubicin (AC) were tested in both TNBC MDA-MB-231 and MDA-MB-468 cells. Then we constructed the anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) tagged liposomes and confirmed its TNBC cell surface binding using flow cytometry, internalization with confocal laser scanning microscopy, and TNBC xenograft targeting in NSG female mice using In Vivo Imaging System. The safe dosage of anti-EGFR liposomal chemotherapies, i.e., <20% body weight change, was identified. Finally, the in vivo anti-tumor efficacy studies in TNBC cell line-derived xenograft and patient-derived xenograft models revealed that the targeted delivery of chemotherapies (mertansine and gemcitabine) can effectively inhibit tumor growth. This study demonstrated that the targeted liposomes enable the new formulations of combined therapies that improve anti-TNBC efficacy.
Collapse
Affiliation(s)
- Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Ya Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Hanh Giai Ngo
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Jia-Shiung Guan
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, Birmingham, AL 35294, USA; (J.-S.G.); (Y.X.)
| | - Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Qing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Ajeet Pal Singh
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Yuanxin Xu
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, Birmingham, AL 35294, USA; (J.-S.G.); (Y.X.)
| | - Lufang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, Birmingham, AL 35294, USA; (J.-S.G.); (Y.X.)
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, 1808 7th Avenue South, Birmingham, AL 35294, USA;
| | - Xiaoguang (Margaret) Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
- Correspondence:
| |
Collapse
|
28
|
Pandharipande P, Bhowmik T, Singh N. Considerations for Buffering Agent Selection for Frozen rAAV2 Mediated Gene Therapy Products. J Pharm Sci 2021; 110:3535-3539. [PMID: 34126117 DOI: 10.1016/j.xphs.2021.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
The buffering component selection is a key criterion for the formulation development process for biopharmaceuticals. This decision for recombinant adeno-associated virus (rAAV) mediated gene therapies is receiving special attention due to their rise in clinical trials which may require high concentration, frozen supply chain, and direct delivery to eye and central nervous system related sites. In the present study, we investigate the impact of rates of freezing and thawing on rAAV2 as a model serotype. It was observed that slow rate of thawing impacts rAAV2 colloidal stability in Phosphate based buffering system. Our pre-formulation workflow suggests that rAAV2 has maximum aggregation propensity between pH of 5.5 to 6.5. Thus, the overlap of maximum aggregation propensity pH range with acidic pH shift in Phosphate based buffering system during freezing and thawing appears to be responsible for 42-75% concentration drop noticed for rAAV2. This impact appears to be fully mitigated upon replacement of Phosphate based buffering system with an alternate buffer system such as Tris. The results reported in this study highlight associated risks and provide preliminary guidance on handling of early stage frozen rAAV mediated gene therapies.
Collapse
Affiliation(s)
- Pranav Pandharipande
- Voyager Therapeutics, Biopharmaceutical Development, Lexington, MA 02421, United States.
| | - Tuhin Bhowmik
- Voyager Therapeutics, Biopharmaceutical Development, Lexington, MA 02421, United States
| | - Nripen Singh
- Voyager Therapeutics, Biopharmaceutical Development, Lexington, MA 02421, United States
| |
Collapse
|
29
|
Rieser R, Koch J, Faccioli G, Richter K, Menzen T, Biel M, Winter G, Michalakis S. Comparison of Different Liquid Chromatography-Based Purification Strategies for Adeno-Associated Virus Vectors. Pharmaceutics 2021; 13:pharmaceutics13050748. [PMID: 34070226 PMCID: PMC8158740 DOI: 10.3390/pharmaceutics13050748] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have evolved as one of the most promising technologies for gene therapy due to their good safety profile, high transduction efficacy, and long-term gene expression in nondividing cells. rAAV-based gene therapy holds great promise for treating genetic disorders like inherited blindness, muscular atrophy, or bleeding disorders. There is a high demand for efficient and scalable production and purification methods for rAAVs. This is particularly true for the downstream purification methods. The current standard methods are based on multiple steps of gradient ultracentrifugation, which allow for the purification and enrichment of full rAAV particles, but the scale up of this method is challenging. Here, we explored fast, scalable, and universal liquid chromatography-based strategies for the purification of rAAVs. In contrast to the hydrophobic interaction chromatography (HIC), where a substantial amount of AAV was lost, the cation exchange chromatography (CEX) was performed robustly for multiple tested serotypes and resulted in a mixture of full and empty rAAVs with a good purity profile. For the used affinity chromatography (AC), a serotype dependence was observed. Anion exchange chromatography (AEX) worked well for the AAV8 serotype and achieved high levels of purification and a baseline separation of full and empty rAAVs. Depending on the AAV serotype, a combination of CEX and AEX or AC and AEX is recommended and holds promise for future translational projects that require highly pure and full particle-enriched rAAVs.
Collapse
Affiliation(s)
- Ruth Rieser
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany; (R.R.); (J.K.); (G.F.); (M.B.)
| | - Johanna Koch
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany; (R.R.); (J.K.); (G.F.); (M.B.)
| | - Greta Faccioli
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany; (R.R.); (J.K.); (G.F.); (M.B.)
| | - Klaus Richter
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany; (K.R.); (T.M.)
| | - Tim Menzen
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany; (K.R.); (T.M.)
| | - Martin Biel
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany; (R.R.); (J.K.); (G.F.); (M.B.)
| | - Gerhard Winter
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany; (R.R.); (J.K.); (G.F.); (M.B.)
- Correspondence: (G.W.); (S.M.)
| | - Stylianos Michalakis
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany; (R.R.); (J.K.); (G.F.); (M.B.)
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336 Munich, Germany
- Correspondence: (G.W.); (S.M.)
| |
Collapse
|
30
|
Srivastava A, Mallela KMG, Deorkar N, Brophy G. Manufacturing Challenges and Rational Formulation Development for AAV Viral Vectors. J Pharm Sci 2021; 110:2609-2624. [PMID: 33812887 DOI: 10.1016/j.xphs.2021.03.024] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
Adeno-associated virus (AAV) has emerged as a leading platform for gene delivery for treating various diseases due to its excellent safety profile and efficient transduction to various target tissues. However, the large-scale production and long-term storage of viral vectors is not efficient resulting in lower yields, moderate purity, and shorter shelf-life compared to recombinant protein therapeutics. This review provides a comprehensive analysis of upstream, downstream and formulation unit operation challenges encountered during AAV vector manufacturing, and discusses how desired product quality attributes can be maintained throughout product shelf-life by understanding the degradation mechanisms and formulation strategies. The mechanisms of various physical and chemical instabilities that the viral vector may encounter during its production and shelf-life because of various stressed conditions such as thermal, shear, freeze-thaw, and light exposure are highlighted. The role of buffer, pH, excipients, and impurities on the stability of viral vectors is also discussed. As such, the aim of this review is to outline the tools and a potential roadmap for improving the quality of AAV-based drug products by stressing the need for a mechanistic understanding of the involved processes.
Collapse
Affiliation(s)
- Arvind Srivastava
- Biopharma Production, Avantor, Inc., 1013 US Highway, 202/206, Bridgewater, NJ, United States.
| | - Krishna M G Mallela
- Center for Pharmaceutical Biotechnology, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, MS C238-V20, Aurora, CO 80045, United States.
| | - Nandkumar Deorkar
- Biopharma Production, Avantor, Inc., 1013 US Highway, 202/206, Bridgewater, NJ, United States
| | - Ger Brophy
- Biopharma Production, Avantor, Inc., 1013 US Highway, 202/206, Bridgewater, NJ, United States
| |
Collapse
|
31
|
Abstract
Human bocavirus 1 (HBoV1) and HBoV2-4 infect children and immunocompromised individuals, resulting in respiratory and gastrointestinal infections, respectively. Using cryo-electron microscopy and image reconstruction, the HBoV2 capsid structure was determined to 2.7 Å resolution at pH 7.4 and compared to the previously determined HBoV1, HBoV3, and HBoV4 structures. Consistent with previous findings, surface variable region (VR) III of the capsid protein VP3, proposed as a host tissue-tropism determinant, was structurally similar among the gastrointestinal strains HBoV2-4, but differed from HBoV1 with its tropism for the respiratory tract. Towards understanding the entry and trafficking properties of these viruses, HBoV1 and HBoV2 were further analyzed as species representatives of the two HBoV tropisms. Their cell surface glycan-binding characteristics were analyzed, and capsid structures determined to 2.5-2.7 Å resolution at pH 5.5 and 2.6, conditions normally encountered during infection. The data showed that glycans with terminal sialic acid, galactose, GlcNAc or heparan sulfate moieties do not facilitate HBoV1 or HBoV2 cellular attachment. With respect to trafficking, conformational changes common to both viruses were observed at low pH conditions localized to the VP N-terminus under the 5-fold channel, in the surface loops VR-I and VR-V and specific side-chain residues such as cysteines and histidines. The 5-fold conformational movements provide insight into the potential mechanism of VP N-terminal dynamics during HBoV infection and side-chain modifications highlight pH-sensitive regions of the capsid.IMPORTANCE Human bocaviruses (HBoVs) are associated with disease in humans. However, the lack of an animal model and a versatile cell culture system to study their life cycle limits the ability to develop specific treatments or vaccines. This study presents the structure of HBoV2, at 2.7 Å resolution, determined for comparison to the existing HBoV1, HBoV3, and HBoV4 structures, to enable the molecular characterization of strain and genus-specific capsid features contributing to tissue tropism and antigenicity. Furthermore, HBoV1 and HBoV2 structures determined under acidic conditions provide insight into capsid changes associated with endosomal and gastrointestinal acidification. Structural rearrangements of the capsid VP N-terminus, at the base of the 5-fold channel, demonstrate a disordering of a "basket" motif as pH decreases. These observations begin to unravel the molecular mechanism of HBoV infection and provide information for control strategies.
Collapse
|
32
|
Lowell JA, Mah KM, Bixby JL, Lemmon VP. AAV8 transduction capacity is reduced by prior exposure to endosome-like pH conditions. Neural Regen Res 2021; 16:851-855. [PMID: 33229719 PMCID: PMC8178773 DOI: 10.4103/1673-5374.299272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Adeno-associated virus (AAV) is an essential instrument in the neuroscientist's toolkit, which allows delivery of DNA to provide labeling with fluorescent proteins or genetic instructions to regulate gene expression. In the field of neural regeneration, the transduction of neurons enables the observation and regulation of axon growth and regeneration, and in the future will likely be a mechanism for delivering molecular therapies to promote sprouting and regeneration after central nervous system injury. Traditional formulations of AAV preparations permit efficient viral transduction under physiologic conditions, but an improved understanding of the mechanistic limitations of AAV transduction may facilitate production of more resilient AAV strains for investigative and therapeutic purposes. We studied AAV transduction in the context of prior exposure of AAV serotype 8 (AAV8) to environmental pH within the range encountered during endosomal endocytosis (pH 7.4 to pH 4.4), during which low pH-triggered structural and autoproteolytic changes to the viral capsid are believed to be necessary for endosome escape and virus uncoating. Due to the fundamental nature of these processes, we hypothesized that premature exposure of AAV8 particles to acidic pH would decrease viral transduction of HT1080 cells in vitro, as measured by fluorescent reporter gene expression using high-content imaging analysis. We found that increasingly acidic incubation conditions were associated with concomitant reductions in transduction efficiency, and that quantitative levels of reporter gene expression in transduced cells were similarly decreased. The biggest decrease in transduction occurred between pH 7.4 and pH 6.4, suggesting the possible co-occurrence of a pH-associated event and viral inactivation within that range. Taken together, these findings indicate that exposure of AAV8 to acidic pH for as little as 1 hour is deleterious to transduction ability. Future studies are necessary to understand the pH-associated causative mechanisms involved. This study was approved by the University of Miami Institutional Animal Care and Use Committee, USA (Protocol #18-108-LF) on July 12, 2018.
Collapse
Affiliation(s)
- Jeffrey A Lowell
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
| | - Kar Men Mah
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
| | - John L Bixby
- Miami Project to Cure Paralysis; Department of Neurological Surgery; Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA
| | - Vance P Lemmon
- Miami Project to Cure Paralysis; Department of Neurological Surgery, University of Miami, Miami, FL, USA
| |
Collapse
|
33
|
Korte J, Mienert J, Hennigs JK, Körbelin J. Inactivation of Adeno-Associated Viral Vectors by Oxidant-Based Disinfectants. Hum Gene Ther 2020; 32:771-781. [PMID: 33023320 DOI: 10.1089/hum.2020.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated viral (AAV) vectors are becoming increasingly popular in basic research as well as in clinical gene therapy. Due to its exceptional resistance against physical and chemical stress, however, the increasing use of AAV in laboratories and clinics around the globe raises safety concerns. Proper decontamination of tools and surfaces based on reliable AAV inactivation is crucial to prevent uncontrolled vector dissemination. Although recommended for AAV decontamination, sodium hypochlorite is not compatible with all surfaces found in the laboratory or clinical environment due to its corrosive nature. We, therefore, compared 0.5% sodium hypochlorite to 0.25% peracetic acid (PAA), a second substance declared effective, and to three less aggressive, commonly available alternative disinfectants 70% ethanol, 1.5% hydrogen peroxide, and 0.45% potassium peroxymonosulfate. The impact of all five disinfectants on virus capsid integrity, viral genome integrity, and infectivity upon different exposure times was tested on AAV2 and AAV5, two serotypes with highly different thermostability. While sodium hypochlorite, potassium peroxymonosulfate, and PAA successfully inactivated AAV2 after 1, 5, and 30 min, respectively, ethanol and hydrogen peroxide did not show significant effects on AAV2 even after exposure for 30 min. For AAV5, only sodium hypochlorite and potassium peroxymonosulfate proved efficient capsid and genome denaturation after incubation for 1 and 30 min, respectively. Consequently, ethanol or hydrogen peroxide should not be considered for routine laboratory or clinical use, while 0.45% potassium peroxymonosulfate and 0.5% sodium hypochlorite represent suitable and broadly effective disinfectants for AAV inactivation.
Collapse
Affiliation(s)
- Joelle Korte
- ENDomics Lab, Division of Pneumology, Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Mienert
- ENDomics Lab, Division of Pneumology, Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan K Hennigs
- ENDomics Lab, Division of Pneumology, Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Körbelin
- ENDomics Lab, Division of Pneumology, Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
34
|
Affiliation(s)
- Glenn F Pierce
- World Federation of Hemophilia, Montreal, QC, Canada; Ambys Medicines, South San Francisco, CA, USA.
| |
Collapse
|