1
|
Pei J, Tian Y, Dang Y, Ye W, Liu X, Zhao N, Han J, Yang Y, Zhou Z, Zhu X, Zhang H, Ali A, Li Y, Zhang F, Lei Y, Qian A. Flexible nano-liposomes-encapsulated recombinant UL8-siRNA (r/si-UL8) based on bioengineering strategy inhibits herpes simplex virus-1 infection. Antiviral Res 2024; 228:105936. [PMID: 38908520 DOI: 10.1016/j.antiviral.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Herpes simplex virus-1 (HSV-1) infection can cause various diseases and the current therapeutics have limited efficacy. Small interfering RNA (siRNA) therapeutics are a promising approach against infectious diseases by targeting the viral mRNAs directly. Recently, we employed a novel tRNA scaffold to produce recombinant siRNA agents with few natural posttranscriptional modifications. In this study, we aimed to develop a specific prodrug against HSV-1 infection based on siRNA therapeutics by bioengineering technology. We screened and found that UL8 of the HSV-1 genome was an ideal antiviral target based on RNAi. Next, we used a novel bio-engineering approach to manufacture recombinant UL8-siRNA (r/si-UL8) in Escherichia coli with high purity and activity. The r/si-UL8 was selectively processed to mature si-UL8 and significantly reduced the number of infectious virions in human cells. r/si-UL8 delivered by flexible nano-liposomes significantly decreased the viral load in the skin and improved the survival rate in the preventive mouse zosteriform model. Furthermore, r/si-UL8 also effectively inhibited HSV-1 infection in a 3D human epidermal skin model. Taken together, our results highlight that the novel siRNA bioengineering technology is a unique addition to the conventional approach for siRNA therapeutics and r/si-UL8 may be a promising prodrug for curing HSV-1 infection.
Collapse
Affiliation(s)
- Jiawei Pei
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, Northwestern Polytechnical University, Xi'an, 710072, China; Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Ye Tian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yamei Dang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoqian Liu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ningbo Zhao
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiangfan Han
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yongheng Yang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ziqing Zhou
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xudong Zhu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hao Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Arshad Ali
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, China
| | - Yu Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
2
|
Levanova AA, Poranen MM. Utilization of Bacteriophage phi6 for the Production of High-Quality Double-Stranded RNA Molecules. Viruses 2024; 16:166. [PMID: 38275976 PMCID: PMC10818839 DOI: 10.3390/v16010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Double-stranded RNA (dsRNA) molecules are mediators of RNA interference (RNAi) in eukaryotic cells. RNAi is a conserved mechanism of post-transcriptional silencing of genes cognate to the sequences of the applied dsRNA. RNAi-based therapeutics for the treatment of rare hereditary diseases have recently emerged, and the first sprayable dsRNA biopesticide has been proposed for registration. The range of applications of dsRNA molecules will likely expand in the future. Therefore, cost-effective methods for the efficient large-scale production of high-quality dsRNA are in demand. Conventional approaches to dsRNA production rely on the chemical or enzymatic synthesis of single-stranded (ss)RNA molecules with a subsequent hybridization of complementary strands. However, the yield of properly annealed biologically active dsRNA molecules is low. As an alternative approach, we have developed methods based on components derived from bacteriophage phi6, a dsRNA virus encoding RNA-dependent RNA polymerase (RdRp). Phi6 RdRp can be harnessed for the enzymatic production of high-quality dsRNA molecules. The isolated RdRp efficiently synthesizes dsRNA in vitro on a heterologous ssRNA template of any length and sequence. To scale up dsRNA production, we have developed an in vivo system where phi6 polymerase complexes produce target dsRNA molecules inside Pseudomonas cells.
Collapse
Affiliation(s)
- Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland;
| | | |
Collapse
|
3
|
Lasanen T, Frejborg F, Lund LM, Nyman MC, Orpana J, Habib H, Alaollitervo S, Levanova AA, Poranen MM, Hukkanen V, Kalke K. Single therapeutic dose of an antiviral UL29 siRNA swarm diminishes symptoms and viral load of mice infected intranasally with HSV-1. SMART MEDICINE 2023; 2:e20230009. [PMID: 39188276 PMCID: PMC11235724 DOI: 10.1002/smmd.20230009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/10/2023] [Indexed: 08/28/2024]
Abstract
Herpes simplex virus type 1 (HSV-1) is a human pathogen that causes recurrent infections. Acyclovir-resistant strains exist and can cause severe complications, which are potentially untreatable with current therapies. We have developed siRNA swarms that target a 653 base pair long region of the essential HSV gene UL29. As per our previous results, the anti-UL29 siRNA swarm effectively inhibits the replication of circulating HSV strains and acyclovir-resistant HSV strains in vitro, while displaying a good safety profile. We investigated a single intranasal therapeutic dose of a siRNA swarm in mice, which were first inoculated intranasally with HSV-1 and given treatment 4 h later. We utilized a luciferase-expressing HSV-1 strain, which enabled daily follow-up of infection with in vivo imaging. Our results show that a single dose of a UL29-targeted siRNA swarm can inhibit the replication of HSV-1 in orofacial tissue, which was reflected in ex vivo HSV titers and HSV DNA copy numbers as well as by a decrease in a luciferase-derived signal. Furthermore, the treatment had a tendency to protect mice from severe clinical symptoms and delay the onset of the symptoms. These results support the development of antiviral siRNA swarms as a novel treatment for HSV-1 infections.
Collapse
Affiliation(s)
- Tuomas Lasanen
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Fanny Frejborg
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
- Faculty of Science and EngineeringPharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Liisa M. Lund
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Marie C. Nyman
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Julius Orpana
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Huda Habib
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Salla Alaollitervo
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Alesia A. Levanova
- Molecular and Integrative Biosciences Research ProgrammeBiological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research ProgrammeBiological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Veijo Hukkanen
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Kiira Kalke
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| |
Collapse
|
4
|
Lince KC, DeMario VK, Yang GT, Tran RT, Nguyen DT, Sanderson JN, Pittman R, Sanchez RL. A Systematic Review of Second-Line Treatments in Antiviral Resistant Strains of HSV-1, HSV-2, and VZV. Cureus 2023; 15:e35958. [PMID: 37041924 PMCID: PMC10082683 DOI: 10.7759/cureus.35958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 03/11/2023] Open
Abstract
Drug-resistant variants of herpes simplex viruses (HSV) have been reported that are not effectively treated with first-line antiviral agents. The objective of this study was to evaluate available literature on the possible efficacy of second-line treatments in HSV and the use of second-line treatments in HSV strains that are resistant to first-line treatments. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a final search was conducted in six databases on November 5, 2021 for all relevant literature using terms related to antiviral resistance, herpes, and HSV. Eligible manuscripts were required to report the presence of an existing or proposed second-line treatment for HSV-1, HSV-2, or varicella zoster virus (VZV); have full-text English-language access; and potentially reduce the rate of antiviral resistance. Following screening, 137 articles were included in qualitative synthesis. Of the included studies, articles that examined the relationship between viral resistance to first-line treatments and potential second-line treatments in HSV were included. The Cochrane risk-of-bias tool for randomized trials was used to assess risk of bias. Due to the heterogeneity of study designs, a meta-analysis of the studies was not performed. The dates in which accepted studies were published spanned from 2015-2021. In terms of sample characteristics, the majority (72.26%) of studies used Vero cells. When looking at the viruses on which the interventions were tested, the majority (84.67%) used HSV-1, with (34.31%) of these studies reporting testing on resistant HSV strains. Regarding the effectiveness of the proposed interventions, 91.97% were effective as potential managements for resistant strains of HSV. Of the papers reviewed, nectin in 2.19% of the reviews had efficacy as a second-line treatments in HSV, amenamevir in 2.19%, methanol extract in 2.19%, monoclonal antibodies in 1.46%, arbidol in 1.46%, siRNA swarms in 1.46%, Cucumis melo sulfated pectin in 1.46%, and components from Olea europeae in 1.46%. In addition to this griffithsin in 1.46% was effective, Morus alba L. in 1.46%, using nucleosides in 1.46%, botryosphaeran in 1.46%, monoterpenes in 1.46%, almond skin extracts in 1.46%, bortezomib in 1.46%, flavonoid compounds in 1.46%, andessential oils were effective in 1.46%, but not effective in 0.73%. The available literature reviewed consistently supports the existence and potentiality of second-line treatments for HSV strains that are resistant to first-line treatments. Immunocompromised patients have been noted to be the population most often affected by drug-resistant variants of HSV. Subsequently, we found that HSV infections in this patient population are challenging to manage clinically effectively. The goal of this systematic review is to provide additional information to patients on the potentiality of second-line treatment in HSV strains resistant to first-line treatments, especially those who are immunocompromised. All patients, whether they are immunocompromised or not, deserve to have their infections clinically managed in a manner supported by comprehensive research. This review provides necessary information about treatment options for patients with resistant HSV infections and their providers.
Collapse
Affiliation(s)
- Kimberly C Lince
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Virgil K DeMario
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - George T Yang
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Rita T Tran
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Daniel T Nguyen
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Jacob N Sanderson
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Rachel Pittman
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Rebecca L Sanchez
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| |
Collapse
|
5
|
Frejborg F, Kalke K, Hukkanen V. Current landscape in antiviral drug development against herpes simplex virus infections. SMART MEDICINE 2022; 1:e20220004. [PMID: 39188739 PMCID: PMC11235903 DOI: 10.1002/smmd.20220004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/19/2022] [Indexed: 08/28/2024]
Abstract
Herpes simplex viruses (HSV) are common human pathogens with a combined global seroprevalence of 90% in the adult population. HSV-1 causes orofacial herpes but can cause severe diseases, such as the potentially fatal herpes encephalitis and herpes keratitis, a prevalent cause of infectious blindness. The hallmark of HSV is lifelong latent infections and viral reactivations, leading to recurrent lesions or asymptomatic shedding. HSV-1 and HSV-2 can cause recurrent, painful, and socially limiting genital lesions, which predispose to human immunodeficiency virus infections, and can lead to neonatal herpes infections, a life-threatening condition for the newborn. Despite massive efforts, there is no vaccine against HSV, as both viruses share the capability to evade the antiviral defenses of human and to establish lifelong latency. Recurrent and primary HSV infections are treated with nucleoside analogs, but the treatments do not completely eliminate viral shedding and transmission. Drug-resistant HSV strains can emerge in relation to long-term prophylactic treatment. Such strains are likely to be resistant to other chemotherapies, justifying the development of novel antiviral treatments. The importance of developing new therapies against HSV has been recognized by the World Health Organization. In this review, we discuss the current approaches for developing novel antiviral therapies against HSV, such as small molecule inhibitors, biopharmaceuticals, natural products, gene editing, and oligonucleotide-based therapies. These approaches may have potential in the future to answer the unmet medical need. Furthermore, novel approaches are presented for potential eradication of latent HSV.
Collapse
Affiliation(s)
- Fanny Frejborg
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
- Institute of BiomedicineFaculty of MedicineUniversity of TurkuTurkuFinland
| | - Kiira Kalke
- Institute of BiomedicineFaculty of MedicineUniversity of TurkuTurkuFinland
| | - Veijo Hukkanen
- Institute of BiomedicineFaculty of MedicineUniversity of TurkuTurkuFinland
| |
Collapse
|
6
|
Supportive Oligonucleotide Therapy (SOT) as a Potential Treatment for Viral Infections and Lyme Disease: Preliminary Results. Infect Dis Rep 2022; 14:824-836. [PMID: 36412742 PMCID: PMC9680246 DOI: 10.3390/idr14060084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Antisense therapy is widely used as an alternative therapeutic option for various diseases. RNA interference might be effective in infections, through the degradation of messenger RNA and, therefore, translation process. Hence, proteins essential for microorganisms and viruses' proliferation and metabolism are inhibited, leading to their elimination. The present study aimed to evaluate the use of oligonucleotide in patients infected by Epstein-Barr (EBV) or Herpes Simplex Viruses 1/2 or with Lyme Disease caused by Borrelia burgdorferi. Blood samples were collected from 115 patients and the different species were characterized using molecular biology techniques. Then, SOT molecules (Supportive Oligonucleotide Therapy), which are specific small interfering RNA (siRNA), were designed, produced, and evaluated, for each specific strain. Oligonucleotides were administered intravenously to patients and then a quantitative Polymerase Chain Reaction was used to evaluate the effectiveness of SOT. This study revealed that for Lyme Disease, one or two SOT administrations can lead to a statistically significant decrease in DNA copies, while for viruses, two or three administrations are required to achieve a statistically significant reduction in the genetic material. These preliminary results indicate that antisense SOT therapy can be considered a potential treatment for viral as well as Lyme diseases.
Collapse
|
7
|
Kalke K, Lund LM, Nyman MC, Levanova AA, Urtti A, Poranen MM, Hukkanen V, Paavilainen H. Swarms of chemically modified antiviral siRNA targeting herpes simplex virus infection in human corneal epithelial cells. PLoS Pathog 2022; 18:e1010688. [PMID: 35793357 PMCID: PMC9292126 DOI: 10.1371/journal.ppat.1010688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/18/2022] [Accepted: 06/19/2022] [Indexed: 01/19/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a common virus of mankind and HSV-1 infections are a significant cause of blindness. The current antiviral treatment of herpes infection relies on acyclovir and related compounds. However, acyclovir resistance emerges especially in the long term prophylactic treatment that is required for prevention of recurrent herpes keratitis. Earlier we have established antiviral siRNA swarms, targeting sequences of essential genes of HSV, as effective means of silencing the replication of HSV in vitro or in vivo. In this study, we show the antiviral efficacy of 2´-fluoro modified antiviral siRNA swarms against HSV-1 in human corneal epithelial cells (HCE). We studied HCE for innate immunity responses to HSV-1, to immunostimulatory cytotoxic double stranded RNA, and to the antiviral siRNA swarms, with or without a viral challenge. The panel of studied innate responses included interferon beta, lambda 1, interferon stimulated gene 54, human myxovirus resistance protein A, human myxovirus resistance protein B, toll-like receptor 3 and interferon kappa. Our results demonstrated that HCE cells are a suitable model to study antiviral RNAi efficacy and safety in vitro. In HCE cells, the antiviral siRNA swarms targeting the HSV UL29 gene and harboring 2´-fluoro modifications, were well tolerated, induced only modest innate immunity responses, and were highly antiviral with more than 99% inhibition of viral release. The antiviral effect of the 2’-fluoro modified swarm was more apparent than that of the unmodified antiviral siRNA swarm. Our results encourage further research in vitro and in vivo on antiviral siRNA swarm therapy of corneal HSV infection, especially with modified siRNA swarms. Herpes simplex virus type 1 (HSV-1) is a common virus carried approximately by half of the global population. Though it is mostly known by causing cold sores, it also causes herpes keratitis, which is the leading cause of infectious blindness in the world. The treatment for herpes keratitis and other severe disease forms of herpes infection is insufficient, as resistant variants arise upon long-term prophylactic treatments. We have earlier developed an anti-HSV siRNA swarm, which has proven safe and effective in many cell types, in animal models, and against variants resistant to current first-in-line treatment. Most recently, we added modifications to the anti-HSV siRNA swarm, which increased its efficacy and stability. In this study, we show the efficacy and safety of the modified anti-HSV siRNA swarm in a cell line representing the treatment target tissue in herpes keratitis. Our results show that our modified anti-HSV siRNA swarm is a possibility for future therapy for herpes keratitis. The results encourage further research in an animal model of herpes keratitis in order to uncover the potential of our modified anti-HSV siRNA swarm.
Collapse
Affiliation(s)
- Kiira Kalke
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Liisa M. Lund
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marie C. Nyman
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Arto Urtti
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- * E-mail: (MMP); (HP)
| | - Veijo Hukkanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Henrik Paavilainen
- Institute of Biomedicine, University of Turku, Turku, Finland
- * E-mail: (MMP); (HP)
| |
Collapse
|
8
|
The In Vitro Replication, Spread, and Oncolytic Potential of Finnish Circulating Strains of Herpes Simplex Virus Type 1. Viruses 2022; 14:v14061290. [PMID: 35746761 PMCID: PMC9230972 DOI: 10.3390/v14061290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is the only FDA- and EMA- approved oncolytic virus, and accordingly, many potential oncolytic HSVs (oHSV) are in clinical development. The utilized oHSV parental strains are, however, mostly based on laboratory reference strains, which may possess a compromised cytolytic capacity in contrast to circulating strains of HSV-1. Here, we assess the phenotype of thirty-six circulating HSV-1 strains from Finland to uncover their potential as oHSV backbones. First, we determined their capacity for cell-to-cell versus extracellular spread, to find strains with replication profiles favorable for each application. Second, to unfold the differences, we studied the genetic diversity of two relevant viral glycoproteins (gB/UL27, gI/US7). Third, we examined the oncolytic potential of the strains in cells representing glioma, lymphoma, and colorectal adenocarcinoma. Our results suggest that the phenotype of a circulating isolate, including the oncolytic potential, is highly related to the host cell type. Nevertheless, we identified isolates with increased oncolytic potential in comparison with the reference viruses across many or all of the studied cancer cell types. Our research emphasizes the need for careful selection of the backbone virus in early vector design, and it highlights the potential of clinical isolates as backbones in oHSV development.
Collapse
|
9
|
Jbara-Agbaria D, Blondzik S, Burger-Kentischer A, Agbaria M, Nordling-David MM, Giterman A, Aizik G, Rupp S, Golomb G. Liposomal siRNA Formulations for the Treatment of Herpes Simplex Virus-1: In Vitro Characterization of Physicochemical Properties and Activity, and In Vivo Biodistribution and Toxicity Studies. Pharmaceutics 2022; 14:633. [PMID: 35336008 PMCID: PMC8948811 DOI: 10.3390/pharmaceutics14030633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Herpes simplex virus-1 (HSV-1) is highly contagious, and there is a need for a therapeutic means to eradicate it. We have identified an siRNA (siHSV) that knocks down gene expression of the infected cell protein 0 (ICP0), which is important in the regulation of HSV infection. The selected siHSV was encapsulated in liposomes to overcome its poor stability, increase cell permeability, and prolonging siRNA circulation time. Several siRNAs against ICP0 have been designed and identified. We examined the role of various parameters, including formulation technique, lipids composition, and ratio. An optimal liposomal siHSV formulation (LipDOPE-siHSV) was characterized with desirable physiochemical properties, in terms of nano-size, low polydispersity index (PDI), neutral surface charge, high siHSV loading, spherical shape, high stability in physiologic conditions in vitro, and long-term shelf-life stability (>1 year, 4 °C). The liposomes exhibited profound internalization by human keratinocytes, no cytotoxicity in cell cultures, no detrimental effect on mice liver enzymes, and a gradual endo-lysosomal escape. Mice biodistribution studies in intact mice revealed accumulation, mainly in visceral organs but also in the trigeminal ganglion. The therapeutic potential of siHSV liposomes was demonstrated by significant antiviral activity both in the plaque reduction assay and in the 3D epidermis model, and the mechanism of action was validated by the reduction of ICP0 expression levels.
Collapse
Affiliation(s)
- Doaa Jbara-Agbaria
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (D.J.-A.); (M.A.); (M.M.N.-D.); (A.G.); (G.A.)
| | - Saskia Blondzik
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany; (S.B.); (A.B.-K.); (S.R.)
| | - Anke Burger-Kentischer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany; (S.B.); (A.B.-K.); (S.R.)
| | - Majd Agbaria
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (D.J.-A.); (M.A.); (M.M.N.-D.); (A.G.); (G.A.)
| | - Mirjam M. Nordling-David
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (D.J.-A.); (M.A.); (M.M.N.-D.); (A.G.); (G.A.)
| | - Anna Giterman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (D.J.-A.); (M.A.); (M.M.N.-D.); (A.G.); (G.A.)
| | - Gil Aizik
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (D.J.-A.); (M.A.); (M.M.N.-D.); (A.G.); (G.A.)
| | - Steffen Rupp
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany; (S.B.); (A.B.-K.); (S.R.)
| | - Gershon Golomb
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (D.J.-A.); (M.A.); (M.M.N.-D.); (A.G.); (G.A.)
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
10
|
Antiviral CD19 +CD27 + Memory B Cells Are Associated with Protection from Recurrent Asymptomatic Ocular Herpesvirus Infection. J Virol 2022; 96:e0205721. [PMID: 34985998 DOI: 10.1128/jvi.02057-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactivation of herpes simplex virus 1 (HSV-1) from latently infected neurons of the trigeminal ganglia (TG) leads to blinding recurrent herpetic disease in symptomatic (SYMP) individuals. Although the role of T cells in herpes immunity seen in asymptomatic (ASYMP) individuals is heavily explored, the role of B cells is less investigated. In the present study, we evaluated whether B cells are associated with protective immunity against recurrent ocular herpes. The frequencies of circulating HSV-specific memory B cells and of memory follicular helper T cells (CD4+ Tfh cells), which help B cells produce antibodies, were compared between HSV-1-infected SYMP and ASYMP individuals. The levels of IgG/IgA and neutralizing antibodies were compared in SYMP and ASYMP individuals. We found that (i) the ASYMP individuals had increased frequencies of HSV-specific CD19+CD27+ memory B cells, and (ii) high frequencies of HSV-specific switched IgG+CD19+CD27+ memory B cells detected in ASYMP individuals were directly proportional to high frequencies of CD45R0+CXCR5+CD4+ memory Tfh cells. However, no differences were detected in the level of HSV-specific IgG/IgA antibodies in SYMP and ASYMP individuals. Using the UV-B-induced HSV-1 reactivation mouse model, we found increased frequencies of HSV-specific antibody-secreting plasma HSV-1 gD+CD138+ B cells within the TG and circulation of ASYMP mice compared to those of SYMP mice. In contrast, no significant differences in the frequencies of B cells were found in the cornea, spleen, and bone-marrow. Our findings suggest that circulating antibody-producing HSV-specific memory B cells recruited locally to the TG may contribute to protection from symptomatic recurrent ocular herpes. IMPORTANCE Reactivation of herpes simplex virus 1 (HSV-1) from latently infected neurons of the trigeminal ganglia (TG) leads to blinding recurrent herpetic disease in symptomatic (SYMP) individuals. Although the role of T cells in herpes immunity against blinding recurrent herpetic disease is heavily explored, the role of B cells is less investigated. In the present study, we found that in both asymptomatic (ASYMP) individuals and ASYMP mice, there were increased frequencies of HSV-specific memory B cells that were directly proportional to high frequencies of memory Tfh cells. Moreover, following UV-B-induced reactivation, we found increased frequencies of HSV-specific antibody-secreting plasma B cells within the TG and circulation of ASYMP mice compared to those of SYMP mice. Our findings suggest that circulating antibody-producing HSV-specific memory B cells recruited locally to the TG may contribute to protection from recurrent ocular herpes.
Collapse
|
11
|
Ianevski A, Ahmad S, Anunnitipat K, Oksenych V, Zusinaite E, Tenson T, Bjørås M, Kainov DE. Seven classes of antiviral agents. Cell Mol Life Sci 2022; 79:605. [PMID: 36436108 PMCID: PMC9701656 DOI: 10.1007/s00018-022-04635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022]
Abstract
The viral epidemics and pandemics have stimulated the development of known and the discovery of novel antiviral agents. About a hundred mono- and combination antiviral drugs have been already approved, whereas thousands are in development. Here, we briefly reviewed 7 classes of antiviral agents: neutralizing antibodies, neutralizing recombinant soluble human receptors, antiviral CRISPR/Cas systems, interferons, antiviral peptides, antiviral nucleic acid polymers, and antiviral small molecules. Interferons and some small molecules alone or in combinations possess broad-spectrum antiviral activity, which could be beneficial for treatment of emerging and re-emerging viral infections.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Shahzaib Ahmad
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Kraipit Anunnitipat
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Denis E. Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway ,Institute of Technology, University of Tartu, 50411 Tartu, Estonia ,Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|