1
|
Mackelprang R, Barbato RA, Ramey AM, Schütte UME, Waldrop MP. Cooling perspectives on the risk of pathogenic viruses from thawing permafrost. mSystems 2025:e0004224. [PMID: 39772968 DOI: 10.1128/msystems.00042-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Climate change is inducing wide-scale permafrost thaw in the Arctic and subarctic, triggering concerns that long-dormant pathogens could reemerge from the thawing ground and initiate epidemics or pandemics. Viruses, as opposed to bacterial pathogens, garner particular interest because outbreaks cannot be controlled with antibiotics, though the effects can be mitigated by vaccines and newer antiviral drugs. To evaluate the potential hazards posed by viral pathogens emerging from thawing permafrost, we review information from a diverse range of disciplines. This includes efforts to recover infectious virus from human remains, studies on disease occurrence in polar animal populations, investigations into viral persistence and infectivity in permafrost, and assessments of human exposure to the enormous viral diversity present in the environment. Based on currently available knowledge, we conclude that the risk posed by viruses from thawing permafrost is no greater than viruses in other environments such as temperate soils and aquatic systems.
Collapse
Affiliation(s)
| | - Robyn A Barbato
- U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, USA
| | - Andrew M Ramey
- U.S. Geological Survey Alaska Science Center, Anchorage, Alaska, USA
| | - Ursel M E Schütte
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Mark P Waldrop
- U.S. Geological Survey, Geology, Minerals, Energy, and Geophysics Science Center, Moffett Field, Moffett Field, California, USA
| |
Collapse
|
2
|
Laguna-Castro M, Rodríguez-Moreno A, Lázaro E. Evolutionary Adaptation of an RNA Bacteriophage to Repeated Freezing and Thawing Cycles. Int J Mol Sci 2024; 25:4863. [PMID: 38732084 PMCID: PMC11084849 DOI: 10.3390/ijms25094863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Bacteriophage fitness is determined by factors influencing both their replication within bacteria and their ability to maintain infectivity between infections. The latter becomes particularly crucial under adverse environmental conditions or when host density is low. In such scenarios, the damage experienced by viral particles could lead to the loss of infectivity, which might be mitigated if the virus undergoes evolutionary optimization through replication. In this study, we conducted an evolution experiment involving bacteriophage Qβ, wherein it underwent 30 serial transfers, each involving a cycle of freezing and thawing followed by replication of the surviving viruses. Our findings show that Qβ was capable of enhancing its resistance to this selective pressure through various adaptive pathways that did not impair the virus replicative capacity. Notably, these adaptations predominantly involved mutations located within genes encoding capsid proteins. The adapted populations exhibited higher resistance levels than individual viruses isolated from them, and the latter surpassed those observed in single mutants generated via site-directed mutagenesis. This suggests potential interactions among mutants and mutations. In conclusion, our study highlights the significant role of extracellular selective pressures in driving the evolution of phages, influencing both the genetic composition of their populations and their phenotypic properties.
Collapse
Affiliation(s)
| | | | - Ester Lázaro
- Centro de Astrobiología (CAB), CSIC-INTA, Carretera de Ajalvir Km 4, 28850 Torrejón de Ardoz, Madrid, Spain; (M.L.-C.); (A.R.-M.)
| |
Collapse
|
3
|
Li T, Liu R, Wang Q, Rao J, Liu Y, Dai Z, Gooneratne R, Wang J, Xie Q, Zhang X. A review of the influence of environmental pollutants (microplastics, pesticides, antibiotics, air pollutants, viruses, bacteria) on animal viruses. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133831. [PMID: 38402684 DOI: 10.1016/j.jhazmat.2024.133831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Microorganisms, especially viruses, cause disease in both humans and animals. Environmental chemical pollutants including microplastics, pesticides, antibiotics sand air pollutants arisen from human activities affect both animal and human health. This review assesses the impact of chemical and biological contaminants (virus and bacteria) on viruses including its life cycle, survival, mutations, loads and titers, shedding, transmission, infection, re-assortment, interference, abundance, viral transfer between cells, and the susceptibility of the host to viruses. It summarizes the sources of environmental contaminants, interactions between contaminants and viruses, and methods used to mitigate such interactions. Overall, this review provides a perspective of environmentally co-occurring contaminants on animal viruses that would be useful for future research on virus-animal-human-ecosystem harmony studies to safeguard human and animal health.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Ruiheng Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Qian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Jiaqian Rao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Yuanjia Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenkai Dai
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China.
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China.
| |
Collapse
|
4
|
Marks TJ, Rowland IR. The Diversity of Bacteriophages in Hot Springs. Methods Mol Biol 2024; 2738:73-88. [PMID: 37966592 DOI: 10.1007/978-1-0716-3549-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages are ubiquitous in all environments that support microbial life. This includes hot springs, which can range in temperatures between 40 and 98 °C and pH levels between 1 and 9. Bacteriophages that survive in the higher temperatures of hot springs are known as thermophages. Thermophages have developed distinct adaptations allowing for thermostability in these extreme environments, including increased G + C DNA percentages, reliance upon the pentose phosphate metabolic pathway to avoid oxidative stress, and a codon preference for those with a GNA sequence leading to increased hydrophobic interactions and disulfide bonds. In this review, we discuss the diversity of characterized thermophages in hot spring environments that span five viral families: Myoviridae, Siphoviridae, Tectiviridae, Sphaerolipoviridae, and Inoviridae. Potential industrial and medicinal applications of thermophages will also be addressed.
Collapse
Affiliation(s)
- Timothy J Marks
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, NC, USA.
| | - Isabella R Rowland
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, NC, USA
| |
Collapse
|
5
|
Dot EW, Thomason LC, Chappie JS. Everything OLD is new again: How structural, functional, and bioinformatic advances have redefined a neglected nuclease family. Mol Microbiol 2023; 120:122-140. [PMID: 37254295 DOI: 10.1111/mmi.15074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 06/01/2023]
Abstract
Overcoming lysogenization defect (OLD) proteins are a conserved family of ATP-powered nucleases that function in anti-phage defense. Recent bioinformatic, genetic, and crystallographic studies have yielded new insights into the structure, function, and evolution of these enzymes. Here we review these developments and propose a new classification scheme to categorize OLD homologs that relies on gene neighborhoods, biochemical properties, domain organization, and catalytic machinery. This taxonomy reveals important similarities and differences between family members and provides a blueprint to contextualize future in vivo and in vitro findings. We also detail how OLD nucleases are related to PARIS and Septu anti-phage defense systems and discuss important mechanistic questions that remain unanswered.
Collapse
Affiliation(s)
- Elena Wanvig Dot
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Lynn C Thomason
- Molecular Control and Genetics Section, RNA Biology Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, USA
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Trubl G, Stedman KM, Bywaters KF, Matula EE, Sommers P, Roux S, Merino N, Yin J, Kaelber JT, Avila-Herrera A, Johnson PA, Johnson JC, Borges S, Weber PK, Pett-Ridge J, Boston PJ. Astrovirology: how viruses enhance our understanding of life in the Universe. INTERNATIONAL JOURNAL OF ASTROBIOLOGY 2023; 22:247-271. [PMID: 38046673 PMCID: PMC10691837 DOI: 10.1017/s1473550423000058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Viruses are the most numerically abundant biological entities on Earth. As ubiquitous replicators of molecular information and agents of community change, viruses have potent effects on the life on Earth, and may play a critical role in human spaceflight, for life-detection missions to other planetary bodies and planetary protection. However, major knowledge gaps constrain our understanding of the Earth's virosphere: (1) the role viruses play in biogeochemical cycles, (2) the origin(s) of viruses and (3) the involvement of viruses in the evolution, distribution and persistence of life. As viruses are the only replicators that span all known types of nucleic acids, an expanded experimental and theoretical toolbox built for Earth's viruses will be pivotal for detecting and understanding life on Earth and beyond. Only by filling in these knowledge and technical gaps we will obtain an inclusive assessment of how to distinguish and detect life on other planetary surfaces. Meanwhile, space exploration requires life-support systems for the needs of humans, plants and their microbial inhabitants. Viral effects on microbes and plants are essential for Earth's biosphere and human health, but virus-host interactions in spaceflight are poorly understood. Viral relationships with their hosts respond to environmental changes in complex ways which are difficult to predict by extrapolating from Earth-based proxies. These relationships should be studied in space to fully understand how spaceflight will modulate viral impacts on human health and life-support systems, including microbiomes. In this review, we address key questions that must be examined to incorporate viruses into Earth system models, life-support systems and life detection. Tackling these questions will benefit our efforts to develop planetary protection protocols and further our understanding of viruses in astrobiology.
Collapse
Affiliation(s)
- Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kenneth M. Stedman
- Center for Life in Extreme Environments, Department of Biology, Portland State University, Portland, OR, USA
| | | | | | | | - Simon Roux
- DOE Joint Genome Institute, Berkeley, CA, USA
| | - Nancy Merino
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - John Yin
- Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason T. Kaelber
- Institute for Quantitative Biomedicine, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Aram Avila-Herrera
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Peter Anto Johnson
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | | | - Peter K. Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, USA
| | | |
Collapse
|
7
|
Zia S, Alkheraije KA. Recent trends in the use of bacteriophages as replacement of antimicrobials against food-animal pathogens. Front Vet Sci 2023; 10:1162465. [PMID: 37303721 PMCID: PMC10247982 DOI: 10.3389/fvets.2023.1162465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/06/2023] [Indexed: 06/13/2023] Open
Abstract
A major public health impact is associated with foodborne illnesses around the globe. Additionally, bacteria are becoming more resistant to antibiotics, which pose a global threat. Currently, many scientific efforts have been made to develop and implement new technologies to combat bacteria considering the increasing emergence of multidrug-resistant bacteria. In recent years, there has been considerable interest in using phages as biocontrol agents for foodborne pathogens in animals used for food production and in food products themselves. Foodborne outbreaks persist, globally, in many foods, some of which lack adequate methods to control any pathogenic contamination (like fresh produce). This interest may be attributed both to consumers' desire for more natural food and to the fact that foodborne outbreaks continue to occur in many foods. Poultry is the most common animal to be treated with phage therapy to control foodborne pathogens. A large number of foodborne illnesses worldwide are caused by Salmonella spp. and Campylobacter, which are found in poultry and egg products. Conventional bacteriophage-based therapy can prevent and control humans and animals from various infectious diseases. In this context, describing bacteriophage therapy based on bacterial cells may offer a breakthrough for treating bacterial infections. Large-scale production of pheasants may be economically challenging to meet the needs of the poultry market. It is also possible to produce bacteriophage therapy on a large scale at a reduced cost. Recently, they have provided an ideal platform for designing and producing immune-inducing phages. Emerging foodborne pathogens will likely be targeted by new phage products in the future. In this review article, we will mainly focus on the Bacteriophages (phages) that have been proposed as an alternative strategy to antibiotics for food animal pathogens and their use for public health and food safety.
Collapse
Affiliation(s)
- Sana Zia
- Department of Zoology, Government Sadiq College Women University Bahawalpur, Bahawalpur, Pakistan
| | - Khalid A. Alkheraije
- Department of Veterinary Medicine College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
8
|
Pellegrinetti TA, Cotta SR, Sarmento H, Costa JS, Delbaje E, Montes CR, Camargo PB, Barbiero L, Rezende-Filho AT, Fiore MF. Bacterial Communities Along Environmental Gradients in Tropical Soda Lakes. MICROBIAL ECOLOGY 2023; 85:892-903. [PMID: 35916937 DOI: 10.1007/s00248-022-02086-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/25/2022] [Indexed: 05/04/2023]
Abstract
Soda lake environments are known to be variable and can have distinct differences according to geographical location. In this study, we investigated the effects of different environmental conditions of six adjacent soda lakes in the Pantanal biome (Mato Grosso do Sul state, Brazil) on bacterial communities and their functioning using a metagenomic approach combined with flow cytometry and chemical analyses. Ordination analysis using flow cytometry and water chemistry data from two sampling periods (wet and dry) clustered soda lakes into three different profiles: eutrophic turbid (ET), oligotrophic turbid (OT), and clear vegetated oligotrophic (CVO). Analysis of bacterial community composition and functioning corroborated this ordination; the exception was one ET lake, which was similar to one OT lake during the wet season, indicating drastic shifts between seasons. Microbial abundance and diversity increased during the dry period, along with a considerable number of limnological variables, all indicative of a strong effect of the precipitation-evaporation balance in these systems. Cyanobacteria were associated with high electric conductivity, pH, and nutrient availability, whereas Actinobacteria, Alphaproteobacteria, and Betaproteobacteria were correlated with landscape morphology variability (surface water, surface perimeter, and lake volume) and with lower salinity and pH levels. Stress response metabolism was enhanced in OT and ET lakes and underrepresented in CVO lakes. The microbiome dataset of this study can serve as a baseline for restoring impacted soda lakes. Altogether, the results of this study demonstrate the sensitivity of tropical soda lakes to climate change, as slight changes in hydrological regimes might produce drastic shifts in community diversity.
Collapse
Affiliation(s)
- Thierry A Pellegrinetti
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Simone R Cotta
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Hugo Sarmento
- Department of Hydrobiology, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, 13565-905, Brazil
| | - Juliana S Costa
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Endrews Delbaje
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Celia R Montes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Plinio B Camargo
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Laurent Barbiero
- The Observatory Midi-Pyrénées, Geoscience Environment Toulouse, Research Institute for Development, The National Center for Research Scientific, Paul Sabatier University, 31400, Toulouse, France
| | - Ary T Rezende-Filho
- Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, 79070-900, Brazil
| | - Marli F Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil.
| |
Collapse
|
9
|
Viral Community Structure and Potential Functions in the Dried-Out Aral Sea Basin Change along a Desiccation Gradient. mSystems 2023; 8:e0099422. [PMID: 36625585 PMCID: PMC9948696 DOI: 10.1128/msystems.00994-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The dried-out Aral Sea basin represents an extreme environment due to a man-made ecological disaster. Studies conducted in this unique environment revealed high levels of pollution and a specifically adapted microbiota; however, viral populations remained entirely unexplored. By employing an in-depth analysis based on the sequencing of metagenomic DNA recovered from rhizosphere samples of Suaeda acuminata (C. A. Mey.) Moq. along a desiccation gradient of 5, 10, and 40 years, we detected a diverse viral community comprising 674 viral populations (viral operational taxonomic units [vOTUs]) dominated by Caudovirales. Targeted analyses highlighted that viral populations in this habitat are subjected to certain dynamics that are driven mainly by the gradient of desiccation, the corresponding salinity, and the rhizosphere bacterial populations. In silico predictions linked the viruses to dominant prokaryotic taxa in the Aral Sea basin, such as Gammaproteobacteria, Actinomycetia, and Bacilli. The lysogenic lifestyle was predicted to be predominant in areas that dried out 5 years ago, representing the early revegetation phase. Metabolic prediction of viral auxiliary metabolic genes (AMGs) suggests that viruses may play a role in the biogeochemical cycles, stress resilience, and competitiveness of their hosts due to the presence of genes that are involved in biofilm formation. Overall, our study provides important insights into viral ecology in an extreme environment and expands our knowledge related to virus occurrence in terrestrial systems. IMPORTANCE Environmental viruses have added a wealth of knowledge to ecological studies with the emergence of metagenomic technology and approaches. They are also becoming recognized as important genetic repositories that underpin the functioning of terrestrial ecosystems but have remain moslty unexplored. Using shotgun metagenome sequencing and bioinformatic tools, we found that the viral community structure was affected during natural revegetation in the dried-up Aral Sea area, a model habitat for investigating natural ecological restoration but still understudied. In this study, we highlight the importance of viruses, elements that are overlooked, for their potential contribution to terrestrial ecosystems, i.e., nutrient cycles, stress resilience, and host competitiveness, during natural revegetation.
Collapse
|
10
|
Abstract
Viruses are the most abundant biological entities on Earth, and yet, they have not received enough consideration in astrobiology. Viruses are also extraordinarily diverse, which is evident in the types of relationships they establish with their host, their strategies to store and replicate their genetic information and the enormous diversity of genes they contain. A viral population, especially if it corresponds to a virus with an RNA genome, can contain an array of sequence variants that greatly exceeds what is present in most cell populations. The fact that viruses always need cellular resources to multiply means that they establish very close interactions with cells. Although in the short term these relationships may appear to be negative for life, it is evident that they can be beneficial in the long term. Viruses are one of the most powerful selective pressures that exist, accelerating the evolution of defense mechanisms in the cellular world. They can also exchange genetic material with the host during the infection process, providing organisms with capacities that favor the colonization of new ecological niches or confer an advantage over competitors, just to cite a few examples. In addition, viruses have a relevant participation in the biogeochemical cycles of our planet, contributing to the recycling of the matter necessary for the maintenance of life. Therefore, although viruses have traditionally been excluded from the tree of life, the structure of this tree is largely the result of the interactions that have been established throughout the intertwined history of the cellular and the viral worlds. We do not know how other possible biospheres outside our planet could be, but it is clear that viruses play an essential role in the terrestrial one. Therefore, they must be taken into account both to improve our understanding of life that we know, and to understand other possible lives that might exist in the cosmos.
Collapse
Affiliation(s)
- Ignacio de la Higuera
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, OR, United States
| | - Ester Lázaro
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, Spain
| |
Collapse
|
11
|
Aulitto M, Martinez-Alvarez L, Fusco S, She Q, Bartolucci S, Peng X, Contursi P. Genomics, Transcriptomics, and Proteomics of SSV1 and Related Fusellovirus: A Minireview. Viruses 2022; 14:2082. [PMID: 36298638 PMCID: PMC9608457 DOI: 10.3390/v14102082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Saccharolobus spindle-shaped virus 1 (SSV1) was one of the first viruses identified in the archaeal kingdom. Originally isolated from a Japanese species of Saccharolobus back in 1984, it has been extensively used as a model system for genomic, transcriptomic, and proteomic studies, as well as to unveil the molecular mechanisms governing the host-virus interaction. The purpose of this mini review is to supply a compendium of four decades of research on the SSV1 virus.
Collapse
Affiliation(s)
- Martina Aulitto
- Dipartimento di Biologia, University of Naples Federico II, 80126 Naples, Italy
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA 94720, USA
| | - Laura Martinez-Alvarez
- Archaea Centre, Department of Biology, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Salvatore Fusco
- Biochemistry and Industrial Biotechnology Laboratory, Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 250100, China
| | | | - Xu Peng
- Archaea Centre, Department of Biology, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Patrizia Contursi
- Dipartimento di Biologia, University of Naples Federico II, 80126 Naples, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
12
|
Osei EK, Mahony J, Kenny JG. From Farm to Fork: Streptococcus suis as a Model for the Development of Novel Phage-Based Biocontrol Agents. Viruses 2022; 14:1996. [PMID: 36146802 PMCID: PMC9501460 DOI: 10.3390/v14091996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Bacterial infections of livestock threaten the sustainability of agriculture and public health through production losses and contamination of food products. While prophylactic and therapeutic application of antibiotics has been successful in managing such infections, the evolution and spread of antibiotic-resistant strains along the food chain and in the environment necessitates the development of alternative or adjunct preventive and/or therapeutic strategies. Additionally, the growing consumer preference for "greener" antibiotic-free food products has reinforced the need for novel and safer approaches to controlling bacterial infections. The use of bacteriophages (phages), which can target and kill bacteria, are increasingly considered as a suitable measure to reduce bacterial infections and contamination in the food industry. This review primarily elaborates on the recent veterinary applications of phages and discusses their merits and limitations. Furthermore, using Streptococcus suis as a model, we describe the prevalence of prophages and the anti-viral defence arsenal in the genome of the pathogen as a means to define the genetic building blocks that are available for the (synthetic) development of phage-based treatments. The data and approach described herein may provide a framework for the development of therapeutics against an array of bacterial pathogens.
Collapse
Affiliation(s)
- Emmanuel Kuffour Osei
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Food Bioscience, Teagasc Food Research Centre Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - John G. Kenny
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Food Bioscience, Teagasc Food Research Centre Moorepark, Fermoy, P61 C996 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| |
Collapse
|
13
|
Shewanella sp. T2.3D-1.1 a Novel Microorganism Sustaining the Iron Cycle in the Deep Subsurface of the Iberian Pyrite Belt. Microorganisms 2022; 10:microorganisms10081585. [PMID: 36014003 PMCID: PMC9415397 DOI: 10.3390/microorganisms10081585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The Iberian Pyrite Belt (IPB) is one of the largest deposits of sulphidic minerals on Earth. Río Tinto raises from its core, presenting low a pH and high metal concentration. Several drilling cores were extracted from the IPB’s subsurface, and strain T2.3D-1.1 was isolated from a core at 121.8 m depth. We aimed to characterize this subterranean microorganism, revealing its phylogenomic affiliation (Average Nucleotide Identity, digital DNA-DNA Hybridization) and inferring its physiology through genome annotation, backed with physiological experiments to explore its relationship with the Fe biogeochemical cycle. Results determined that the isolate belongs to the Shewanella putrefaciens (with ANI 99.25 with S. putrefaciens CN-32). Its genome harbours the necessary genes, including omcA mtrCAB, to perform the Extracellular Electron Transfer (EET) and reduce acceptors such as Fe3+, napAB to reduce NO3− to NO2−, hydAB to produce H2 and genes sirA, phsABC and ttrABC to reduce SO32−, S2O32− and S4O62−, respectively. A full CRISPR-Cas 1F type system was found as well. S. putrefaciens T2.3D-1.1 can reduce Fe3+ and promote the oxidation of Fe2+ in the presence of NO3− under anaerobic conditions. Production of H2 has been observed under anaerobic conditions with lactate or pyruvate as the electron donor and fumarate as the electron acceptor. Besides Fe3+ and NO3−, the isolate also grows with Dimethyl Sulfoxide and Trimethyl N-oxide, S4O62− and S2O32− as electron acceptors. It tolerates different concentrations of heavy metals such as 7.5 mM of Pb, 5 mM of Cr and Cu and 1 mM of Cd, Co, Ni and Zn. This array of traits suggests that S. putrefaciens T2.3D-1.1 could have an important role within the Iberian Pyrite Belt subsurface participating in the iron cycle, through the dissolution of iron minerals and therefore contributing to generate the extreme conditions detected in the Río Tinto basin.
Collapse
|
14
|
Abstract
Protein nanomaterials are well-defined, hollow protein nanoparticles comprised of virus capsids, virus-like particles, ferritin, heat shock proteins, chaperonins and many more. Protein-based nanomaterials are formed by the self-assembly of protein subunits and have numerous desired properties as drug-delivery vehicles, including being optimally sized for endocytosis, nontoxic, biocompatible, biodegradable and functionalized at three separate interfaces (external, internal and intersubunit). As a result, protein nanomaterials have been intensively investigated as functional entities in bionanotechnology, including drug delivery, nanoreactors and templates for organic and inorganic nanomaterials. Several variables influence efficient administration, particularly active targeting, cellular uptake, the kinetics of the release and systemic elimination. This review examines the wide range of medicines, loading/release processes, targeted therapies and treatment effectiveness.
Collapse
|
15
|
Dorawa S, Werbowy O, Plotka M, Kaczorowska AK, Makowska J, Kozlowski LP, Fridjonsson OH, Hreggvidsson GO, Aevarsson A, Kaczorowski T. Molecular Characterization of a DNA Polymerase from Thermus thermophilus MAT72 Phage vB_Tt72: A Novel Type-A Family Enzyme with Strong Proofreading Activity. Int J Mol Sci 2022; 23:ijms23147945. [PMID: 35887293 PMCID: PMC9324360 DOI: 10.3390/ijms23147945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
We present a structural and functional analysis of the DNA polymerase of thermophilic Thermus thermophilus MAT72 phage vB_Tt72. The enzyme shows low sequence identity (<30%) to the members of the type-A family of DNA polymerases, except for two yet uncharacterized DNA polymerases of T. thermophilus phages: φYS40 (91%) and φTMA (90%). The Tt72 polA gene does not complement the Escherichia colipolA− mutant in replicating polA-dependent plasmid replicons. It encodes a 703-aa protein with a predicted molecular weight of 80,490 and an isoelectric point of 5.49. The enzyme contains a nucleotidyltransferase domain and a 3′-5′ exonuclease domain that is engaged in proofreading. Recombinant enzyme with His-tag at the N-terminus was overproduced in E. coli, subsequently purified by immobilized metal affinity chromatography, and biochemically characterized. The enzyme exists in solution in monomeric form and shows optimum activity at pH 8.5, 25 mM KCl, and 0.5 mM Mg2+. Site-directed analysis proved that highly-conserved residues D15, E17, D78, D180, and D184 in 3′-5′ exonuclease and D384 and D615 in the nucleotidyltransferase domain are critical for the enzyme’s activity. Despite the source of origin, the Tt72 DNA polymerase has not proven to be highly thermoresistant, with a temperature optimum at 55 °C. Above 60 °C, the rapid loss of function follows with no activity > 75 °C. However, during heat treatment (10 min at 75 °C), trehalose, trimethylamine N-oxide, and betaine protected the enzyme against thermal inactivation. A midpoint of thermal denaturation at Tm = 74.6 °C (ΔHcal = 2.05 × 104 cal mol−1) and circular dichroism spectra > 60 °C indicate the enzyme’s moderate thermal stability.
Collapse
Affiliation(s)
- Sebastian Dorawa
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
| | - Olesia Werbowy
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Joanna Makowska
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Lukasz P. Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland;
| | | | - Gudmundur O. Hreggvidsson
- Matis, 113 Reykjavik, Iceland; (O.H.F.); (G.O.H.); (A.A.)
- Department of Biology, School of Engineering and Natural Sciences, University of Iceland, 102 Reykjavik, Iceland
| | | | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
- Correspondence:
| |
Collapse
|
16
|
Genome Study of a Novel Virulent Phage vB_SspS_KASIA and Mu-like Prophages of Shewanella sp. M16 Provides Insights into the Genetic Diversity of the Shewanella Virome. Int J Mol Sci 2021; 22:ijms222011070. [PMID: 34681734 PMCID: PMC8541194 DOI: 10.3390/ijms222011070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 10/10/2021] [Indexed: 12/19/2022] Open
Abstract
Shewanella is a ubiquitous bacterial genus of aquatic ecosystems, and its bacteriophages are also isolated from aquatic environments (oceans, lakes, ice, and wastewater). In this study, the isolation and characterization of a novel virulent Shewanella phage vB_SspS_KASIA and the identification of three prophages of its host, Shewanella sp. M16, including a mitomycin-inducible Mu-like siphovirus, vB_SspS_MuM16-1, became the starting point for comparative analyses of phages infecting Shewanella spp. and the determination of their position among the known bacterial viruses. A similarity networking analysis revealed the high diversity of Shewanella phages in general, with vB_SspS_KASIA clustering exclusively with Colwellia phage 9A, with which it forms a single viral cluster composed of two separate viral subclusters. Furthermore, vB_SspS_MuM16-1 presented itself as being significantly different from the phages deposited in public databases, expanding the diversity of the known Mu-like phages and giving potential molecular markers for the identification of Mu-like prophages in bacterial genomes. Moreover, the functional analysis performed for vB_SspS_KASIA suggested that, despite the KASIA host, the M16 strain grows better in a rich medium and at 30 °C the phage replication cycle seems to be optimal in restrictive culture conditions mimicking their natural environment, the Zloty Stok gold and arsenic mine.
Collapse
|
17
|
Łubkowska B, Jeżewska-Frąckowiak J, Sobolewski I, Skowron PM. Bacteriophages of Thermophilic ' Bacillus Group' Bacteria-A Review. Microorganisms 2021; 9:1522. [PMID: 34361957 PMCID: PMC8303945 DOI: 10.3390/microorganisms9071522] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Bacteriophages of thermophiles are of increasing interest owing to their important roles in many biogeochemical, ecological processes and in biotechnology applications, including emerging bionanotechnology. However, due to lack of in-depth investigation, they are underrepresented in the known prokaryotic virosphere. Therefore, there is a considerable potential for the discovery of novel bacteriophage-host systems in various environments: marine and terrestrial hot springs, compost piles, soil, industrial hot waters, among others. This review aims at providing a reference compendium of thermophages characterized thus far, which infect the species of thermophilic 'Bacillus group' bacteria, mostly from Geobacillus sp. We have listed 56 thermophages, out of which the majority belong to the Siphoviridae family, others belong to the Myoviridae and Podoviridae families and, apparently, a few belong to the Sphaerolipoviridae, Tectiviridae or Corticoviridae families. All of their genomes are composed of dsDNA, either linear, circular or circularly permuted. Fourteen genomes have been sequenced; their sizes vary greatly from 35,055 bp to an exceptionally large genome of 160,590 bp. We have also included our unpublished data on TP-84, which infects Geobacillus stearothermophilus (G. stearothermophilus). Since the TP-84 genome sequence shows essentially no similarity to any previously characterized bacteriophage, we have defined TP-84 as a new species in the newly proposed genus Tp84virus within the Siphoviridae family. The information summary presented here may be helpful in comparative deciphering of the molecular basis of the thermophages' biology, biotechnology and in analyzing the environmental aspects of the thermophages' effect on the thermophile community.
Collapse
Affiliation(s)
- Beata Łubkowska
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (J.J.-F.); (I.S.); (P.M.S.)
- The High School of Health in Gdansk, Pelplinska 7, 80-335 Gdansk, Poland
| | - Joanna Jeżewska-Frąckowiak
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (J.J.-F.); (I.S.); (P.M.S.)
| | - Ireneusz Sobolewski
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (J.J.-F.); (I.S.); (P.M.S.)
| | - Piotr M. Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (J.J.-F.); (I.S.); (P.M.S.)
| |
Collapse
|
18
|
Prospects for viruses infecting eukaryotic microalgae in biotechnology. Biotechnol Adv 2021; 54:107790. [PMID: 34182051 DOI: 10.1016/j.biotechadv.2021.107790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022]
Abstract
Besides being considered pathogens, viruses are important drivers of evolution and they can shape large ecological and biogeochemical processes, by influencing host fitness, population dynamics, and community structures. Moreover, they are simple systems that can be used and manipulated to be beneficial and useful for biotechnological applications. In this context, microalgae biotechnology is a growing field of research, which investigated the usage of photosynthetic microorganisms for the sustainable production of food, fuel, chemical, and pharmaceutical sectors. Viruses infecting microalgae have become important subject of ecological studies related to marine and aquatic environments only four decades ago when virus-like-particles associated with bloom-forming algae were discovered. These first findings have opened new questions on evolution and identity. To date, 63 viruses that infect eukaryotic microalgae have been isolated and cultured. In this short review we briefly summarize what is known about viruses infecting eukaryotic microalgae, and how acknowledging their importance can shape future research focussed not only on marine ecology and evolutionary biology but also on biotechnological applications related to microalgae cell factories.
Collapse
|
19
|
Aevarsson A, Kaczorowska AK, Adalsteinsson BT, Ahlqvist J, Al-Karadaghi S, Altenbuchner J, Arsin H, Átlasson ÚÁ, Brandt D, Cichowicz-Cieślak M, Cornish KAS, Courtin J, Dabrowski S, Dahle H, Djeffane S, Dorawa S, Dusaucy J, Enault F, Fedøy AE, Freitag-Pohl S, Fridjonsson OH, Galiez C, Glomsaker E, Guérin M, Gundesø SE, Gudmundsdóttir EE, Gudmundsson H, Håkansson M, Henke C, Helleux A, Henriksen JR, Hjörleifdóttir S, Hreggvidsson GO, Jasilionis A, Jochheim A, Jónsdóttir I, Jónsdóttir LB, Jurczak-Kurek A, Kaczorowski T, Kalinowski J, Kozlowski LP, Krupovic M, Kwiatkowska-Semrau K, Lanes O, Lange J, Lebrat J, Linares-Pastén J, Liu Y, Lorentsen SA, Lutterman T, Mas T, Merré W, Mirdita M, Morzywołek A, Ndela EO, Karlsson EN, Olgudóttir E, Pedersen C, Perler F, Pétursdóttir SK, Plotka M, Pohl E, Prangishvili D, Ray JL, Reynisson B, Róbertsdóttir T, Sandaa RA, Sczyrba A, Skírnisdóttir S, Söding J, Solstad T, Steen IH, Stefánsson SK, Steinegger M, Overå KS, Striberny B, Svensson A, Szadkowska M, Tarrant EJ, Terzian P, Tourigny M, Bergh TVD, Vanhalst J, Vincent J, Vroling B, Walse B, Wang L, Watzlawick H, Welin M, Werbowy O, Wons E, Zhang R. Going to extremes - a metagenomic journey into the dark matter of life. FEMS Microbiol Lett 2021; 368:6296640. [PMID: 34114607 DOI: 10.1093/femsle/fnab067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of life.
Collapse
Affiliation(s)
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | | | - Josefin Ahlqvist
- Biotechnology, Department of Chemistry, Lund University, PO Box 124, Naturvetarvägen 14/Sölvegatan 39 A, SE-221 00 Lund, Sweden
| | | | - Joseph Altenbuchner
- Institute for Industrial Genetics, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Hasan Arsin
- Department of Biological Sciences, University of Bergen, PO Box 7803, Thormøhlens gate 55, N-5020 Bergen, Norway
| | | | - David Brandt
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany
| | - Magdalena Cichowicz-Cieślak
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Katy A S Cornish
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | | | | | - Håkon Dahle
- Department of Biological Sciences, University of Bergen, PO Box 7803, Thormøhlens gate 55, N-5020 Bergen, Norway.,Department of Informatics, University of Bergen, PO Box 7803, Thormøhlens gate 53 A/B, N-5020 Bergen, Norway
| | | | - Sebastian Dorawa
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | | | - Francois Enault
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, 49 Boulevard François-Mitterrand - CS 60032, UMR 6023, Clermont-Ferrand, France
| | - Anita-Elin Fedøy
- Department of Biological Sciences, University of Bergen, PO Box 7803, Thormøhlens gate 55, N-5020 Bergen, Norway
| | - Stefanie Freitag-Pohl
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | | | - Clovis Galiez
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Eirin Glomsaker
- ArcticZymes Technologies PO Box 6463, Sykehusveien 23, 9294 Tromsø, Norway
| | | | - Sigurd E Gundesø
- ArcticZymes Technologies PO Box 6463, Sykehusveien 23, 9294 Tromsø, Norway
| | | | | | - Maria Håkansson
- SARomics Biostructures, Scheelevägen 2, SE-223 81 Lund, Sweden
| | - Christian Henke
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany.,Computational Metagenomics, Bielefeld University, Universitätsstraße 27, 30501 Bielefeld, Germany
| | | | | | | | - Gudmundur O Hreggvidsson
- Matis ohf, Vinlandsleid 12, Reykjavik 113, Iceland.,Faculty of Life and Environmental Sciences, University of Iceland, Askja-Sturlugata 7, Reykjavik, Iceland
| | - Andrius Jasilionis
- Biotechnology, Department of Chemistry, Lund University, PO Box 124, Naturvetarvägen 14/Sölvegatan 39 A, SE-221 00 Lund, Sweden
| | - Annika Jochheim
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | - Agata Jurczak-Kurek
- Department of Molecular Evolution, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany
| | - Lukasz P Kozlowski
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.,Institute of Informatics, Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Banacha 2, Warsaw 02-097, Poland
| | - Mart Krupovic
- Institute Pasteur, Department of Microbiology, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Karolina Kwiatkowska-Semrau
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Olav Lanes
- ArcticZymes Technologies PO Box 6463, Sykehusveien 23, 9294 Tromsø, Norway
| | - Joanna Lange
- Bio-Prodict, Nieuwe Marktstraat 54E 6511AA Nijmegen, Netherlands
| | | | - Javier Linares-Pastén
- Biotechnology, Department of Chemistry, Lund University, PO Box 124, Naturvetarvägen 14/Sölvegatan 39 A, SE-221 00 Lund, Sweden
| | - Ying Liu
- Institute Pasteur, Department of Microbiology, 25-28 Rue du Dr Roux, 75015 Paris, France
| | | | - Tobias Lutterman
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany
| | - Thibaud Mas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, 49 Boulevard François-Mitterrand - CS 60032, UMR 6023, Clermont-Ferrand, France
| | | | - Milot Mirdita
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Agnieszka Morzywołek
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Eric Olo Ndela
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, 49 Boulevard François-Mitterrand - CS 60032, UMR 6023, Clermont-Ferrand, France
| | - Eva Nordberg Karlsson
- Biotechnology, Department of Chemistry, Lund University, PO Box 124, Naturvetarvägen 14/Sölvegatan 39 A, SE-221 00 Lund, Sweden
| | | | - Cathrine Pedersen
- ArcticZymes Technologies PO Box 6463, Sykehusveien 23, 9294 Tromsø, Norway
| | - Francine Perler
- Perls of Wisdom Biotech Consulting, 74 Fuller Street, Brookline, MA 02446, USA
| | | | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Ehmke Pohl
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.,Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - David Prangishvili
- Institute Pasteur, Department of Microbiology, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Jessica L Ray
- Department of Biological Sciences, University of Bergen, PO Box 7803, Thormøhlens gate 55, N-5020 Bergen, Norway.,NORCE Environment, NORCE Norwegian Research Centre AS, Nygårdsgaten 112, 5008 Bergen, Norway
| | | | | | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, PO Box 7803, Thormøhlens gate 55, N-5020 Bergen, Norway
| | - Alexander Sczyrba
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany.,Computational Metagenomics, Bielefeld University, Universitätsstraße 27, 30501 Bielefeld, Germany
| | | | - Johannes Söding
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Terese Solstad
- ArcticZymes Technologies PO Box 6463, Sykehusveien 23, 9294 Tromsø, Norway
| | - Ida H Steen
- Department of Biological Sciences, University of Bergen, PO Box 7803, Thormøhlens gate 55, N-5020 Bergen, Norway
| | | | - Martin Steinegger
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | - Bernd Striberny
- ArcticZymes Technologies PO Box 6463, Sykehusveien 23, 9294 Tromsø, Norway
| | - Anders Svensson
- SARomics Biostructures, Scheelevägen 2, SE-223 81 Lund, Sweden
| | - Monika Szadkowska
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Emma J Tarrant
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Paul Terzian
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, 49 Boulevard François-Mitterrand - CS 60032, UMR 6023, Clermont-Ferrand, France
| | | | | | | | - Jonathan Vincent
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, 49 Boulevard François-Mitterrand - CS 60032, UMR 6023, Clermont-Ferrand, France
| | - Bas Vroling
- Bio-Prodict, Nieuwe Marktstraat 54E 6511AA Nijmegen, Netherlands
| | - Björn Walse
- SARomics Biostructures, Scheelevägen 2, SE-223 81 Lund, Sweden
| | - Lei Wang
- Institute for Industrial Genetics, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Hildegard Watzlawick
- Institute for Industrial Genetics, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Martin Welin
- SARomics Biostructures, Scheelevägen 2, SE-223 81 Lund, Sweden
| | - Olesia Werbowy
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Ewa Wons
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Ruoshi Zhang
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|