1
|
Lin S, Chang P, Tsao S, Aderinwale A, Sallapalli BT, He J, Zhang Y. Oxysterol binding protein (OSBP) contributes to hepatitis E virus replication. Virol J 2024; 21:161. [PMID: 39039546 PMCID: PMC11265327 DOI: 10.1186/s12985-024-02438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Hepatitis E virus (HEV) is a positive-sense, single-stranded RNA virus and causes primarily acute self-limiting infections. The ORF1 of the HEV genome encodes a polyprotein around 190 kDa, which contains several putative domains, including helicase and RNA-dependent RNA polymerase. The HEV-encoded helicase is a member of the superfamily 1 helicase family and possesses multiple enzymatic functions, such as RNA 5'-triphosphatase, RNA unwinding, and NTPase, which are thought to contribute to viral RNA synthesis. However, the helicase interaction with cellular proteins remains less known. Oxysterol binding protein (OSBP) is a lipid regulator that shuffles between the Golgi apparatus and the endoplasmic reticulum for cholesterol and phosphatidylinositol-4-phosphate exchange and controls the efflux of cholesterol from cells. In this study, the RNAi-mediated silencing of OSBP significantly reduced HEV replication. Further studies indicate that the HEV helicase interacted with OSBP, shown by co-immunoprecipitation and co-localization in co-transfected cells. The presence of helicase blocked OSBP preferential translocation to the Golgi apparatus. These results demonstrate that OSBP contributes to HEV replication and enrich our understanding of the HEV-cell interactions.
Collapse
Affiliation(s)
- Shaoli Lin
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Peixi Chang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Shane Tsao
- National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Abigail Aderinwale
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Bhargava Teja Sallapalli
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Jia He
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Yanjin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
2
|
Bienz M, Renaud C, Liu JR, Wong P, Pelletier P. Hepatitis E Virus in the United States and Canada: Is It Time to Consider Blood Donation Screening? Transfus Med Rev 2024; 38:150835. [PMID: 39059853 DOI: 10.1016/j.tmrv.2024.150835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 07/28/2024]
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis in the world and can lead to severe complications in immunocompromised individuals. HEV is primarily transmitted through eating pork, which has led to an increased in anti-HEV IgG seropositivity in the general population of Europe in particular. However, it can also be transmitted intravenously, such as through transfusions. The growing evidence of HEV contamination of blood products and documented cases of transmission have given rise to practice changes and blood product screening of HEV in many European countries. This review covers the abundant European literature and focuses on the most recent data pertaining to the prevalence of HEV RNA positivity and IgG seropositivity in the North American general population and in blood products from Canada and the United States. Currently, Health Canada and the Food and Drug Administration do not require testing of HEV in blood products. For this reason, awareness among blood product prescribers about the possibility of HEV transmission through blood products is crucial. However, we also demonstrate that the province of Quebec has a prevalence of anti-HEV and HEV RNA positivity similar to some European countries. In light of this, we believe that HEV RNA blood donation screening be reevaluated with the availability of more cost-effective assays.
Collapse
Affiliation(s)
- Marc Bienz
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Division of Hematology, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| | - Christian Renaud
- Department of Microbiology, Infectious diseases, and Immunology, Université de Montréal, Montreal, Quebec, Canada; Medical Affairs and Innovation, Héma-Québec, Montreal, Quebec, Canada
| | - Jia Ru Liu
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Philip Wong
- Division of Gastroenterology and Hepatology, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Patricia Pelletier
- Division of Hematology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Huang X, Lu J, Liao M, Huang Y, Wu T, Xia N. Progress and Challenges to Hepatitis E Vaccine Development and Deployment. Vaccines (Basel) 2024; 12:719. [PMID: 39066357 PMCID: PMC11281425 DOI: 10.3390/vaccines12070719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatitis E is a significant cause of acute hepatitis, contributing to high morbidity and mortality rates, and capable of causing large epidemics through fecal-oral transmission. Currently, no specific treatment for hepatitis E has been approved. Given the notably high mortality rate among HEV-infected pregnant women and individuals with underlying chronic liver disease, concerted efforts have been made to develop effective vaccines. The only licensed hepatitis E vaccine worldwide, the HEV 239 (Hecolin) vaccine, has been demonstrated to be safe and efficacious in Phase III clinical trials, in which the efficacy of three doses of HEV 239 remained at 86.6% (95% confidence interval (CI): 73.0-94.1) at the end of 10 years follow-up. In this review, the progress and challenges for hepatitis E vaccines are summarized.
Collapse
Affiliation(s)
- Xingcheng Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (X.H.); (J.L.); (M.L.); (Y.H.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361000, China
| | - Jiaoxi Lu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (X.H.); (J.L.); (M.L.); (Y.H.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361000, China
| | - Mengjun Liao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (X.H.); (J.L.); (M.L.); (Y.H.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361000, China
| | - Yue Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (X.H.); (J.L.); (M.L.); (Y.H.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361000, China
| | - Ting Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (X.H.); (J.L.); (M.L.); (Y.H.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361000, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (X.H.); (J.L.); (M.L.); (Y.H.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361000, China
| |
Collapse
|
4
|
da Silva AS, de Campos GM, Villanova MG, Bezerra RDS, Santiago LMM, Haddad R, Covas DT, Giovanetti M, Alcantara LCJ, Elias MC, Sampaio SC, Kashima S, Slavov SN. Human Pegivirus-1 Detection and Genotyping in Brazilian Patients with Fulminant Hepatitis. Pathogens 2023; 12:1122. [PMID: 37764930 PMCID: PMC10536510 DOI: 10.3390/pathogens12091122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
Fulminant hepatitis is a severe clinical disease characterized by a marked decline in liver function and encephalopathy. In a previous survey, using metagenomics in a group of 27 patients with this clinical condition, we observed an expressive quantity of reads of the Human pegivirus-1 (HPgV-1). Therefore, the objective of this study was to evaluate the frequency, molecular features, and HPgV-1 circulating genotypes in patients with fulminant hepatitis. After testing the collected plasma samples, we discovered twelve samples (44.4%) that were positive for HPgV-1 RNA (using both real-time and nested PCR). The positive samples presented a mean cycle threshold (Ct) of 28.5 (±7.3). Genotyping assignments revealed that all HPgV-1 positive samples belonged to the HPgV-1 genotype 2 (both subgenotypes 2A and 2B were identified). Although HPgV-1 is considered a commensal virus, little is known regarding its prevalence and genotypes in cases of fulminant hepatitis. More research is needed to understand whether HPgV-1 can be implicated in clinical disorders and infectious diseases.
Collapse
Affiliation(s)
- Anielly Sarana da Silva
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14051-140, SP, Brazil; (A.S.d.S.); (G.M.d.C.); (R.d.S.B.); (L.M.M.S.); (D.T.C.); (S.K.)
| | - Gabriel Montenegro de Campos
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14051-140, SP, Brazil; (A.S.d.S.); (G.M.d.C.); (R.d.S.B.); (L.M.M.S.); (D.T.C.); (S.K.)
| | - Marcia Guimarães Villanova
- Department of Gastroenterology, University Hospital, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil;
| | - Rafael dos Santos Bezerra
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14051-140, SP, Brazil; (A.S.d.S.); (G.M.d.C.); (R.d.S.B.); (L.M.M.S.); (D.T.C.); (S.K.)
| | - Luciana Maria Mendes Santiago
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14051-140, SP, Brazil; (A.S.d.S.); (G.M.d.C.); (R.d.S.B.); (L.M.M.S.); (D.T.C.); (S.K.)
| | - Rodrigo Haddad
- Faculty of Ceilândia, University of Brasília, Brasília 72220-275, DF, Brazil;
| | - Dimas Tadeu Covas
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14051-140, SP, Brazil; (A.S.d.S.); (G.M.d.C.); (R.d.S.B.); (L.M.M.S.); (D.T.C.); (S.K.)
| | - Marta Giovanetti
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-009, MG, Brazil;
- Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Luiz Carlos Junior Alcantara
- Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Maria Carolina Elias
- Center for Scientific Development, Butantan Institute, São Paulo 05503-900, SP, Brazil; (M.C.E.); (S.C.S.)
| | - Sandra Coccuzzo Sampaio
- Center for Scientific Development, Butantan Institute, São Paulo 05503-900, SP, Brazil; (M.C.E.); (S.C.S.)
| | - Simone Kashima
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14051-140, SP, Brazil; (A.S.d.S.); (G.M.d.C.); (R.d.S.B.); (L.M.M.S.); (D.T.C.); (S.K.)
| | - Svetoslav Nanev Slavov
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14051-140, SP, Brazil; (A.S.d.S.); (G.M.d.C.); (R.d.S.B.); (L.M.M.S.); (D.T.C.); (S.K.)
- Center for Scientific Development, Butantan Institute, São Paulo 05503-900, SP, Brazil; (M.C.E.); (S.C.S.)
| |
Collapse
|
5
|
Zhang Y, Chi Z, Cui Z, Chang S, Wang Y, Zhao P. Inflammatory response triggered by avian hepatitis E virus in vivo and in vitro. Front Immunol 2023; 14:1161665. [PMID: 37063902 PMCID: PMC10098337 DOI: 10.3389/fimmu.2023.1161665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023] Open
Abstract
Hepatitis E virus (HEV) is relevant to public health worldwide, and it affects a variety of animals. Big liver and spleen disease (BLS) and hepatitis-splenomegaly syndrome (HSS) associated with avian HEV (aHEV) were first reported in 1988 and in 1991, respectively. Here, cell culture–adapted aHEV genotype 3 strain, YT-aHEV (YT strain), a typical genotype isolated in China, was used for basic and applied research. We evaluated liver injury during the early stages of infection caused by the YT strain in vivo. Both in vivo and in vitro experimental data demonstrated that viral infection induces innate immunity, with mRNA expression levels of two key inflammatory factors, interleukin-1β (IL-1β) and IL-18, significantly upregulated. The YT strain infection was associated with the activation of Toll-like receptors (TLRs), nuclear factor kappa B (NF-κB), caspase-1, and NOD-like receptors (NLRs) in the liver and primary hepatocellular carcinoma epithelial cells (LMH). Moreover, inhibiting c-Jun N-terminal kinase, extracellular signal–regulated kinase (ERK1 or 2), P38, NF-κB, or caspase-1 activity has different effects on NLRs, and there is a mutual regulatory relationship between these signaling pathways. The results show that SB 203580, U0126, and VX-765 inhibited IL-1β and IL-18 induced by the YT strain, whereas Pyrrolidinedithiocarbamate (PDTC) had no significant effect on the activity of IL-1β and IL-18. Pretreatment of cells with SP600125 had an inhibitory effect on IL-18 but not on IL-1β. The analysis of inhibition results suggests that there is a connection between Mitogen-activated protein kinase (MAPK), NF-κB, and the NLRs signaling pathways. This study explains the relationship between signaling pathway activation (TLRs, NF-κB, MAPK, and NLR–caspase-1) and viral-associated inflammation caused by YT strain infection, which will help to dynamic interaction between aHEV and host innate immunity.
Collapse
Affiliation(s)
- Yawen Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
| | - Zengna Chi
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
- *Correspondence: Peng Zhao,
| |
Collapse
|
6
|
Winter SL, Chlanda P. The Art of Viral Membrane Fusion and Penetration. Subcell Biochem 2023; 106:113-152. [PMID: 38159225 DOI: 10.1007/978-3-031-40086-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
As obligate pathogens, viruses have developed diverse mechanisms to deliver their genome across host cell membranes to sites of virus replication. While enveloped viruses utilize viral fusion proteins to accomplish fusion of their envelope with the cellular membrane, non-enveloped viruses rely on machinery that causes local membrane ruptures and creates an opening through which the capsid or viral genome is released. Both membrane fusion and membrane penetration take place at the plasma membrane or in intracellular compartments, often involving the engagement of the cellular machinery and antagonism of host restriction factors. Enveloped and non-enveloped viruses have evolved intricate mechanisms to enable virus uncoating and modulation of membrane fusion in a spatiotemporally controlled manner. This chapter summarizes and discusses the current state of understanding of the mechanisms of viral membrane fusion and penetration. The focus is on the role of lipids, viral scaffold uncoating, viral membrane fusion inhibitors, and host restriction factors as physicochemical modulators. In addition, recent advances in visualizing and detecting viral membrane fusion and penetration using cryo-electron microscopy methods are presented.
Collapse
Affiliation(s)
- Sophie L Winter
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
7
|
Lin S, Yang L, Zhang YJ. Hepatitis E Virus: Isolation, Propagation, and Quantification. Curr Protoc 2023; 3:e642. [PMID: 36652501 DOI: 10.1002/cpz1.642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hepatitis E virus (HEV) predominantly causes acute liver disease in humans and is transmitted via the fecal-oral route. HEV infection in pregnant women can result in grave consequences, with up to 30% fatality. The HEV strains infecting humans mainly belong to four genotypes. Genotypes 1 and 2 are restricted to human infection, while genotypes 3 and 4 are zoonotic. HEV genotype 3 (HEV-3) can cause both acute and chronic liver disease. Several cell lines (mainly hepatocytes) have been developed for HEV propagation and biological study. However, HEV production in these cell lines is suboptimal and inefficient. Here, we present methods for the isolation, propagation, and quantification of HEV. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation and propagation of hepatitis E virus in cultured cells from clinical HEV specimens Support Protocol 1: Quantification of HEV RNA by RT-qPCR Basic Protocol 2: Recovery of HEV from infectious cDNA clones and purification of the virus Support Protocol 2: Quantification of HEV live particles by infectivity assay.
Collapse
Affiliation(s)
- Shaoli Lin
- Molecular Virology Laboratory, Department of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland
| | - Liping Yang
- Molecular Virology Laboratory, Department of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, Department of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland
| |
Collapse
|
8
|
Wu JY, Meng XX, Wei YR, Bolati H, Lau EHY, Yang XY. Prevalence of Hepatitis E Virus (HEV) in Feral and Farmed Wild Boars in Xinjiang, Northwest China. Viruses 2022; 15:78. [PMID: 36680118 PMCID: PMC9867238 DOI: 10.3390/v15010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Hepatitis E virus (HEV) causes infections in humans and a wide range of animal hosts. Wild boar is an important natural reservoir of HEV genotypes 3−6 (HEV-3−HEV-6), but comparative analysis of HEV infections in both feral and farmed wild boars remains limited. In this study, samples from 599 wild boars were collected during 2017−2020, including 121 feral wild boars (collected 121 fecal, 121 serum, and 89 liver samples) and 478 farmed wild boars (collected 478 fecal and 478 serum samples). The presence of anti-HEV IgG antibodies were detected by the HEV-IgG enzyme-linked immunosorbent assay (ELISA) kit. HEV RNA was detected by reverse transcription polymerase chain reaction (RT-PCR), targeting the partial ORF1 genes from fecal and liver samples, and the obtained genes were further genotyped by phylogenetic analysis. The results showed that 76.2% (95% CI 72.1−79.9) of farmed wild boars tested anti-HEV IgG seropositive, higher than that in feral wild boars (42.1%, 95% CI 33.2−51.5, p < 0.001). HEV seropositivity increased with age. Wild boar HEV infection presented a significant geographical difference (p < 0.001), but not between sex (p = 0.656) and age (p = 0.347). HEV RNA in fecal samples was detected in 13 (2.2%, 95% CI 1.2−3.7) out of 599 wild boars: 0.8% (95% CI 0.0−4.5, 1/121) of feral wild boars and 2.5% (95% CI 1.3−4.3, 12/478) of farmed wild boars. Phylogenetic analysis showed that all these viruses belonged to genotype HEV-4, and further grouped into sub-genotypes HEV-4a, HEV-4d, and HEV-4h, of which HEV-4a was first discovered in the wild boar populations in China. Our results suggested that farms could be a setting for amplification of HEV. The risk of HEV zoonotic transmission via rearing and consumption of farmed wild boars should be further assessed.
Collapse
Affiliation(s)
- Jian-Yong Wu
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi 830013, China
- School of Public Health, Xinjiang Medical University, Urumqi 830016, China
| | - Xiao-Xiao Meng
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi 830013, China
| | - Yu-Rong Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi 830013, China
| | - Hongduzi Bolati
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi 830013, China
| | - Eric H. Y. Lau
- School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Xue-Yun Yang
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi 830013, China
| |
Collapse
|
9
|
Ehi Airiohuodion P, Wartel A, Yako AB, Mac PA. Seroprevalence and burden of hepatitis E viral infection among pregnant women in central Nigeria attending antenatal clinic at a Federal Medical Centre in Central Nigeria. Front Med (Lausanne) 2022; 9:888218. [PMID: 36117965 PMCID: PMC9478474 DOI: 10.3389/fmed.2022.888218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionHEV infection may be life threatening in pregnant women and has been linked with 20–30% mortality, especially in the third trimester of pregnancy. HEV infection leads to elevated levels of preterm labour and other immunological parameters. It is vertically transmitted and could lead to poor feto-maternal outcomes. especially in fulminating viral hepatitis where both the mother and foetus could be lost. There is currently no known treatment or vaccine for HEV. There is therefore a need to study HEV seroprevalence and burden among vulnerable groups, such as pregnant women and their newborns in Nigeria, where maternal mortality is highly significant.MethodsA total of 200 samples were collected from pregnant women attending antenatal clinic at Federal Medical Centre (FMC) Keffi, in central Nigeria, of which (156/200) samples were from HIV-negative pregnant women and (44/200) were from HIV-positive pregnant women, using a simple random sampling method.ResultsIn total, 200 pregnant women [78.0% (156/200) HIV-negative pregnant women and 22.0% (44/200) HIV-positive pregnant women] were recruited for this study. The ages of the pregnant women ranged from 15-49 years, with a mean age of 26.4 years (± 6.23). The overall HEV IgG seropositivity in the study population was 31.5% (63/200); 95% CI (30-33).ConclusionThis study highlighted an unexpectedly high seroprevalence of HEV and poor feto-maternal outcomes in pregnant women residing in a rural and urban setting of central Nigeria. The study showed that the inherently high HEV seropositivity and poor feto-maternal outcomes may not be attributed to HEV viral hepatitis only but may be a combination of extrinsic and intrinsic factors.
Collapse
Affiliation(s)
- Philomena Ehi Airiohuodion
- Faculty of Medicine, Centre for Medicine, and Society, University of Freiburg, Freiburg, Germany
- Special Programme for Research & Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - Anh Wartel
- International Vaccine Research Institute, Seoul, South Korea
| | - Andrew B. Yako
- Department of Zoology, Nasarawa State University, Keffi, Nigeria
| | - Peter Asaga Mac
- Faculty of Medicine, Centre for Medicine, and Society, University of Freiburg, Freiburg, Germany
- Institute of Virology, Universitätsklinikum Freiburg, Freiburg, Germany
- *Correspondence: Peter Asaga Mac, ;
| |
Collapse
|
10
|
Human pathogenic RNA viruses establish noncompeting lineages by occupying independent niches. Proc Natl Acad Sci U S A 2022; 119:e2121335119. [PMID: 35639694 PMCID: PMC9191635 DOI: 10.1073/pnas.2121335119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous pathogenic viruses are endemic in humans and cause a broad variety of diseases, but what is their potential for causing new pandemics? We show that most human pathogenic RNA viruses form multiple, cocirculating lineages with low turnover rates. These lineages appear to be largely noncompeting and occupy distinct epidemiological niches that are not regionally or seasonally defined, and their persistence appears to stem from limited outbreaks in small communities so that only a small fraction of the global susceptible population is infected at any time. However, due to globalization, interaction and competition between lineages might increase, potentially leading to increased diversification and pathogenicity. Thus, endemic viruses appear to merit global attention with respect to the prevention of future pandemics. Many pathogenic viruses are endemic among human populations and can cause a broad variety of diseases, some potentially leading to devastating pandemics. How virus populations maintain diversity and what selective pressures drive population turnover is not thoroughly understood. We conducted a large-scale phylodynamic analysis of 27 human pathogenic RNA viruses spanning diverse life history traits, in search of unifying trends that shape virus evolution. For most virus species, we identify multiple, cocirculating lineages with low turnover rates. These lineages appear to be largely noncompeting and likely occupy semiindependent epidemiological niches that are not regionally or seasonally defined. Typically, intralineage mutational signatures are similar to interlineage signatures. The principal exception are members of the family Picornaviridae, for which mutations in capsid protein genes are primarily lineage defining. Interlineage turnover is slower than expected under a neutral model, whereas intralineage turnover is faster than the neutral expectation, further supporting the existence of independent niches. The persistence of virus lineages appears to stem from limited outbreaks within small communities, so that only a small fraction of the global susceptible population is infected at any time. As disparate communities become increasingly connected through globalization, interaction and competition between lineages might increase as well, which could result in changing selective pressures and increased diversification and/or pathogenicity. Thus, in addition to zoonotic events, ongoing surveillance of familiar, endemic viruses appears to merit global attention with respect to the prevention or mitigation of future pandemics.
Collapse
|
11
|
Fernández Villalobos NV, Kessel B, Rodiah I, Ott JJ, Lange B, Krause G. Seroprevalence of hepatitis E virus infection in the Americas: Estimates from a systematic review and meta-analysis. PLoS One 2022; 17:e0269253. [PMID: 35648773 PMCID: PMC9159553 DOI: 10.1371/journal.pone.0269253] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Hepatitis E virus (HEV) infection is responsible for inflammatory liver disease and can cause severe health problems. Because the seroprevalence of HEV varies within different population groups and between regions of the continent, we conducted a systematic review on the topic in order to provide evidence for targeted prevention strategies.
Methods
We performed a systematic review in PubMed, SCIELO, LILACS, EBSCO, and Cochrane Library and included reports up to 25 May 2021 (PROSPERO registration number: CRD42020173934). We assessed the risk of bias, publication bias, and heterogeneity between studies and conducted a random-effect meta-analysis for proportions using a (binomial-normal) generalized linear mixed model (GLMM) fitted by Maximum Likelihood (ML). We also reported other characteristics like genotype and risk factors.
Results
Of 1212 identified records, 142 fulfilled the inclusion criteria and were included in the qualitative analysis and 132 in the quantitative analysis. Our random-effects GLMM pooled overall estimate for past infection (IgG) was 7.7% (95% CI 6.4%–9.2%) with high heterogeneity (I2 = 97%). We found higher seroprevalence in certain population groups, for example in people with pig related exposure for IgG (ranges from 6.2%–28% and pooled estimate of 13.8%, 95% CI: 7.6%–23.6%), or with diagnosed or suspected acute viral hepatitis for IgM (ranges from 0.3%–23.9% and pooled estimate of 5.5%, 95% CI: 2.0%–14.1%). Increasing age, contact with pigs and meat products, and low socioeconomic conditions are the main risk factors for HEV infection. Genotype 1 and 3 were documented across the region.
Conclusion
HEV seroprevalence estimates demonstrated high variability within the Americas. There are population groups with higher seroprevalence and reported risk factors for HEV infection that need to be prioritized for further research. Due to human transmission and zoonotic infections in the region, preventive strategies should include water sanitation, occupational health, and food safety.
Collapse
Affiliation(s)
| | - Barbora Kessel
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Isti Rodiah
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Jördis Jennifer Ott
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Hannover Medical School, Hannover, Germany
| | - Berit Lange
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- German Centre for Infection Research (DZIF), Braunschweig, Germany
| | - Gérard Krause
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Braunschweig, Germany
- Twincore, Centre for Experimental and Clinical Infection Research, Braunschweig-Hannover, Germany
| |
Collapse
|
12
|
Golkocheva-Markova E, Kevorkyan A, Raycheva R, Ismailova C, Yoncheva V, Tenev T, Emilova R, Grigorova L, Baltadzhiev I, Komitova R. Assessment of hepatitis E seropositivity among HIV-infected patients in Bulgaria. Braz J Infect Dis 2022; 26:102329. [PMID: 35176255 PMCID: PMC9387478 DOI: 10.1016/j.bjid.2022.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022] Open
Abstract
It is debatable whether HIV-infected patients are at greater risk for hepatitis E virus (HEV) infection compared with healthy subjects. The reported anti-HEV seroprevalence among different groups in Bulgaria varied from 9.04% to 25.9%, but the information regarding the HIV population is still missing. The aim of the present study was to evaluate hepatitis E seroprevalence among HIV-infected patients in Bulgaria and to analyze demographic and immunological factors associated with HEV infection. Serum samples of 312 HIV-infected patients were analyzed retrospectively. Age, sex, residence and laboratory markers for HEV, HBV, HCV and HIV infection, and lymphocytes subpopulations were collected for all patients. None of the tested samples were positive for HEV RNA. HEV seroprevalence among HIV-infected patients was 10.9%. Males were more affected with the highest prevalence of positivity in the age group > 30 to ≤ 40 years. The documented HIV transmission routes in HIV/HEV co-infected group were heterosexual, homosexual, intravenous drug use (IDU), and vertical with predominace of the heterosexual route (z = 0.2; p = 0.804). There was a statistically significant trend of HIV mixed infection with routes of HIV transmission other than homosexual - heterosexual in HIV/HEV group and injection drug use in HIV/HBV/HCV co-infected group. The route of HIV transmission, in contexts of patients’ behavior, was associated with HEV prevalence among HIV-infected patients.
Collapse
|
13
|
Babiker NA, Abakar AD, Mohamed NT, Abuzeid N, Modawe G, Iesa MA, Assil S, Osman H, Hamed M, Ahmed MH. Relative risk factors for seropositive hepatitis E virus among blood donors and haemodialysis patients: The pivotal role of primary health care education. J Family Med Prim Care 2021; 10:2655-2660. [PMID: 34568151 PMCID: PMC8415677 DOI: 10.4103/jfmpc.jfmpc_2441_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/28/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Hepatitis E virus is a zoonotic virus with a worldwide epidemic outbreak. The aim of the study was to identify relative risk factors and co-infections concerning the seropositive HEV IgG among blood donors and haemodialysis (HD) patients in the central blood bank and renal dialysis centre in Wad Medani city, Gezira State, Sudan. Materials and Methods: This was a cross-sectional study that included 600 participants, among them 180 showed strong seropositive HEV IgG. The structured questionnaire was used to collect data of the participants’ demographics, disease risk factors and HEV IgG co-infections with HBV, HCV, HIV and syphilis. Results: Among the 180 strong seropositive HEV IgG respondents, 84 were blood donors and 96 were haemodialysis patients. The gender and age (18–30 years) had a significant association with the virus exposure (P = 0.000, P = 0.000). Importantly, a significant association of HEV prevalence due to the localities effect exhibited with the highest rate among South Gezira (OR = 38, CI = 14.1–107; P = 0.000). This also observed in Wad Medani, Umm Algura, East Gezira and Managil localities (P = 0.000). The effect of the animal contact on HEV distribution exerted the significant association among the respondents for blood donors and haemodialysis patients in univariate (OR = 4.09, 95% CI 1.5–10.9; P = 0.005) and multivariate (OR = 3.2, CI = 1.1–9.4; P = 0.027) analysis. Conclusion: The relative risk factors of the HEV seroprevalence were gender, age, locality and animal contact. Besides the need of a regular survey for the virus seroprevalence, primary health care physicians can play pivotal role in health education, especially in rural areas of Sudan. In addition, primary health care physicians in Sudan are expected to establish strategies and plans to eradicate and minimise the health impact of HEV.
Collapse
Affiliation(s)
- Nassir A Babiker
- Wad Medani Teaching Hospital for Obstetrics and Gynaecology, Gezira State, Sudan
| | - Adam D Abakar
- Department of Medical Parasitology, Faculty of Medical Laboratory Science, Gezira University, Wad Madani, Sudan
| | - Nawal T Mohamed
- Department of Parasitology, NPHL Research Unit, Khartoum, Sudan
| | - Nadir Abuzeid
- Department of Microbiology, Faculty of Medical Laboratory Sciences, Khartoum, Sudan
| | - GadAllah Modawe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Omdurman Islamic University, Khartoum, Sudan
| | - Mohamed A Iesa
- Department of Physiology, Al Qunfudah Medical College, Umm Al Qura University, Al Qunfudah, Kingdom of Saudi Arabia
| | - Sami Assil
- Department of Community Medicine, Al Baha University, Al Bahah, Kingdom of Saudi Arabia
| | - Hisham Osman
- Department of Gastroenterology, King's Mill Hospital, Sutton-In-Ashfield, Nottinghamshire, United Kingdom
| | - Mohamed Hamed
- Department of Gastroenterology, Inverclyde Royal Hospital, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Mohamed H Ahmed
- Department of Medicine and HIV Metabolic Clinic, Milton Keynes University Hospital NHS Foundation Trust, Milton Keynes, Buckinghamshire, United Kingdom
| |
Collapse
|
14
|
Khuroo MS. Hepatitis E and Pregnancy: An Unholy Alliance Unmasked from Kashmir, India. Viruses 2021; 13:1329. [PMID: 34372535 PMCID: PMC8310059 DOI: 10.3390/v13071329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
The adverse relationship between viral hepatitis and pregnancy in developing countries had been interpreted as a reflection of retrospectively biased hospital-based data collection by the West. However, the discovery of hepatitis E virus (HEV) as the etiological agent of an epidemic of non-A, non-B hepatitis in Kashmir, and the documenting of the increased incidence and severity of hepatitis E in pregnancy via a house-to-house survey, unmasked this unholy alliance. In the Hepeviridae family, HEV-genotype (gt)1 from genus Orthohepevirus A has a unique open reading frame (ORF)4-encoded protein which enhances viral polymerase activity and viral replication. The epidemics caused by HEV-gt1, but not any other Orthohepevirus A genotype, show an adverse relationship with pregnancy in humans. The pathogenesis of the association is complex and at present not well understood. Possibly multiple factors play a role in causing severe liver disease in the pregnant women including infection and damage to the maternal-fetal interface by HEV-gt1; vertical transmission of HEV to fetus causing severe fetal/neonatal hepatitis; and combined viral and hormone related immune dysfunction of diverse nature in the pregnant women, promoting viral replication. Management is multidisciplinary and needs a close watch for the development and management of acute liver failure. (ALF). Preliminary data suggest beneficial maternal outcomes by early termination of pregnancy in patients with lower grades of encephalopathy.
Collapse
Affiliation(s)
- Mohammad Sultan Khuroo
- Digestive Diseases Centre, Dr. Khuroo's Medical Clinic, Srinagar, Jammu and Kashmir 190010, India
| |
Collapse
|