1
|
Arankalle V, Shrivastava S, Kulkarni R, Patil R, Tiraki D, Mankar S, Taru RM, Lavange R, Diwan A, Lalwani S, Mishra A. Dengue in Pune city, India (2017-2019): a comprehensive analysis. Front Public Health 2024; 12:1354510. [PMID: 39371216 PMCID: PMC11449861 DOI: 10.3389/fpubh.2024.1354510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Objectives To understand the dynamics of dengue disease with special reference to (1) age (2) primary/secondary infections (3) serostatus and (4) serotypes examined during three consecutive years. Methods During 3 dengue seasons (2017-19), NS1/IgM ELISAs were used for dengue diagnosis in one of the 15 administrative wards of Pune City, India. Predefined symptoms were recorded at the time of diagnosis/hospitalization. IgG-capture ELISA (Panbio) was used to differentiate primary/secondary infections. DENV serotypes were determined for 260 viral RNA-positive patients. Results During the 3 years, 3,014/6,786 (44.4%, 41.4-49.9%) suspected cases were diagnosed as dengue. Use of either NS1 or IgM would have missed 25.5% or 43% of the confirmed dengue cases, respectively. Notably, a higher proportion of secondary dengue cases remained mild while a substantial proportion of primary infections developed warning signs. The symptoms among Dengue/non-dengue patients and primary/secondary infections varied and influenced by age and serostatus. The number and proportion of dengue serotypes varied yearly. A remarkable decline in dengue cases was observed during the COVID-19 pandemic years. Conclusion A substantial proportion of primary and secondary dengue patients progress to warning signs/severity or mild infection respectively, underscoring the possible role of non-ADE mechanisms in causing severe dengue that requires hospitalization. Both NS1 and IgM should be used for efficient diagnosis.
Collapse
Affiliation(s)
- Vidya Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Shubham Shrivastava
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Ruta Kulkarni
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Rahul Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Divya Tiraki
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | | | | | | | - Arundhati Diwan
- Department of Medicine, Bharati Vidyapeeth (Deemed to be University) Medical College, Pune, Maharashtra, India
| | - Sanjay Lalwani
- Department of Pediatrics, Bharati Vidyapeeth (Deemed to be University) Medical College, Pune, India
| | - AkhileshChandra Mishra
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
2
|
Leng XY, Zhao LZ, Liao L, Jin KH, Feng JM, Zhang FC. Genotype of dengue virus serotype 1 in relation to severe dengue in Guangzhou, China. J Med Virol 2024; 96:e29635. [PMID: 38682660 DOI: 10.1002/jmv.29635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Guangzhou has been the city most affected by the dengue virus (DENV) in China, with a predominance of DENV serotype 1 (DENV-1). Viral factors such as dengue serotype and genotype are associated with severe dengue (SD). However, none of the studies have investigated the relationship between DENV-1 genotypes and SD. To understand the association between DENV-1 genotypes and SD, the clinical manifestations of patients infected with different genotypes were investigated. A total of 122 patients with confirmed DENV-1 genotype infection were recruited for this study. The clinical manifestations, laboratory tests, and levels of inflammatory mediator factors were statistically analyzed to investigate the characteristics of clinical manifestations and immune response on the DENV-1 genotype. In the case of DENV-1 infection, the incidence of SD with genotype V infection was significantly higher than that with genotype I infection. Meanwhile, patients infected with genotype V were more common in ostealgia and bleeding significantly. In addition, levels of inflammatory mediator factors including IFN-γ, TNF-α, IL-10, and soluble vascular cell adhesion molecule 1 were higher in patients with SD infected with genotype V. Meanwhile, the concentrations of regulated upon activation normal T-cell expressed and secreted and growth-related gene alpha were lower in patients with SD infected with genotype V. The higher incidence of SD in patients infected with DENV-1 genotype V may be attributed to elevated cytokines and adhesion molecules, along with decreased chemokines.
Collapse
Affiliation(s)
- Xing-Yu Leng
- Department of Infectious Disease, Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Guangzhou Medical Research Institute of Infectious Diseases, Institution of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ling-Zhai Zhao
- Department of Clinical Laboratory, Guangzhou Eighth People's Hospital, Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Medical University, Guangzhou, China
| | - Lu Liao
- Department of Infectious Disease, Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Guangzhou Medical Research Institute of Infectious Diseases, Institution of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kang-Hong Jin
- Department of Infectious Disease, Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Guangzhou Medical Research Institute of Infectious Diseases, Institution of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia-Min Feng
- Guangzhou Medical Research Institute of Infectious Diseases, Institution of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fu-Chun Zhang
- Department of Infectious Disease, Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Guangzhou Medical Research Institute of Infectious Diseases, Institution of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Amorim MT, Naveca FG, Hernández LHA, da Paz TYB, da Silva de Oliveira CC, da Conceição Miranda Santos A, Queiroz ALN, Wanzeller ALM, da Silva EVP, da Silva FS, da Silva SP, Nunes BTD, Cruz ACR. Detection of a Multiple Circulation Event of Dengue Virus 2 Strains in the Northern Region of Brazil. Trop Med Infect Dis 2024; 9:17. [PMID: 38251214 PMCID: PMC10818346 DOI: 10.3390/tropicalmed9010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Dengue virus serotype 2 (DENV-2) is responsible for dengue epidemics on a global scale and is associated with severe cases of the disease. This study conducted a phylogenetic investigation of DENV-2 isolates from 2017 to 2021 originating from the northern states of Brazil. A total of 32 samples from DENV-2 isolates were analyzed, including 12 from Acre, 19 from Roraima, and one from Tocantins. Only one lineage of the Asian-American genotype and one lineage of the cosmopolitan genotype were observed: Lineage 1, Asian-American genotype (connection to Puerto Rico); Lineage 5, cosmopolitan genotype (connection to Peru). Our results provide important data regarding the study of DENV genotypes and lineage distribution and open up possibilities for probable introduction and dissemination routes.
Collapse
Affiliation(s)
- Murilo Tavares Amorim
- Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil;
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil; (L.H.A.H.); (A.d.C.M.S.); (A.L.N.Q.); (A.L.M.W.); (E.V.P.d.S.); (S.P.d.S.); (B.T.D.N.)
| | - Felipe Gomes Naveca
- Laboratory of Infectious Diseases Ecology in Amazon, Leonidas and Maria Deane Institute, Fiocruz, Manaus 69057-070, Brazil;
- Arbovirus and Hemorrhagic Virus Laboratory, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Leonardo Henrique Almeida Hernández
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil; (L.H.A.H.); (A.d.C.M.S.); (A.L.N.Q.); (A.L.M.W.); (E.V.P.d.S.); (S.P.d.S.); (B.T.D.N.)
| | - Thito Yan Bezerra da Paz
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil; (L.H.A.H.); (A.d.C.M.S.); (A.L.N.Q.); (A.L.M.W.); (E.V.P.d.S.); (S.P.d.S.); (B.T.D.N.)
| | | | - Alessandra da Conceição Miranda Santos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil; (L.H.A.H.); (A.d.C.M.S.); (A.L.N.Q.); (A.L.M.W.); (E.V.P.d.S.); (S.P.d.S.); (B.T.D.N.)
| | - Alice Louize Nunes Queiroz
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil; (L.H.A.H.); (A.d.C.M.S.); (A.L.N.Q.); (A.L.M.W.); (E.V.P.d.S.); (S.P.d.S.); (B.T.D.N.)
| | - Ana Lucia Monteiro Wanzeller
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil; (L.H.A.H.); (A.d.C.M.S.); (A.L.N.Q.); (A.L.M.W.); (E.V.P.d.S.); (S.P.d.S.); (B.T.D.N.)
| | - Eliana Vieira Pinto da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil; (L.H.A.H.); (A.d.C.M.S.); (A.L.N.Q.); (A.L.M.W.); (E.V.P.d.S.); (S.P.d.S.); (B.T.D.N.)
| | - Fábio Silva da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil; (L.H.A.H.); (A.d.C.M.S.); (A.L.N.Q.); (A.L.M.W.); (E.V.P.d.S.); (S.P.d.S.); (B.T.D.N.)
| | - Sandro Patroca da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil; (L.H.A.H.); (A.d.C.M.S.); (A.L.N.Q.); (A.L.M.W.); (E.V.P.d.S.); (S.P.d.S.); (B.T.D.N.)
| | - Bruno Tardelli Diniz Nunes
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil; (L.H.A.H.); (A.d.C.M.S.); (A.L.N.Q.); (A.L.M.W.); (E.V.P.d.S.); (S.P.d.S.); (B.T.D.N.)
| | - Ana Cecília Ribeiro Cruz
- Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil;
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil; (L.H.A.H.); (A.d.C.M.S.); (A.L.N.Q.); (A.L.M.W.); (E.V.P.d.S.); (S.P.d.S.); (B.T.D.N.)
| |
Collapse
|
4
|
de Souza UJB, Macedo YDSM, dos Santos RN, Cardoso FDP, Galvão JD, Gabev EE, Franco AC, Roehe PM, Spilki FR, Campos FS. Circulation of Dengue Virus Serotype 1 Genotype V and Dengue Virus Serotype 2 Genotype III in Tocantins State, Northern Brazil, 2021-2022. Viruses 2023; 15:2136. [PMID: 38005815 PMCID: PMC10674946 DOI: 10.3390/v15112136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
In Brazil, the state of Tocantins, located in north-central Brazil, has experienced a significant number of cases of arboviral disease, particularly Dengue virus (DENV). This study aimed to deepen the knowledge on DENV circulation within that state by conducting full genome sequencing of viral genomes recovered from 61 patients between June 2021 and July 2022. There were a total of 8807 and 20,692 cases in 2021 and 2022, respectively, as reported by the state's Secretary of Health. Nucleotide sequencing confirmed the circulation of DENV serotype 1, genotype V and DENV serotype 2, genotype III in the State. Younger age groups (4 to 43 years old) were mostly affected; however, no significant differences were detected regarding the gender distribution of cases in humans. Phylogenetic analysis revealed that the circulating viruses belong to DENV-1 genotype V American and DENV-2 genotype III Southeast Asian/American. The Bayesian analysis of DENV-1 genotype V genomes sequenced here are closely related to genomes previously sequenced in the state of São Paulo. Regarding the DENV-2 genotype III genomes, these clustered in a distinct, well-supported subclade, along with previously reported isolates from the states of Goiás and São Paulo. The findings reported here suggest that multiple introductions of these genotypes occurred in the Tocantins state. This observation highlights the importance of major population centers in Brazil on virus dispersion, such as those observed in other Latin American and North American countries. In the SNP analysis, DENV-1 displayed 122 distinct missense mutations, while DENV-2 had 44, with significant mutations predominantly occurring in the envelope and NS5 proteins. The analyses performed here highlight the concomitant circulation of distinct DENV-1 and -2 genotypes in some Brazilian states, underscoring the dynamic evolution of DENV and the relevance of surveillance efforts in supporting public health policies.
Collapse
Affiliation(s)
- Ueric José Borges de Souza
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil; (Y.d.S.M.M.); (R.N.d.S.)
| | - Ygor da Silva Miranda Macedo
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil; (Y.d.S.M.M.); (R.N.d.S.)
| | - Raíssa Nunes dos Santos
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil; (Y.d.S.M.M.); (R.N.d.S.)
| | | | - Jucimária Dantas Galvão
- Central Public Health Laboratory of the State of Tocantins, Palmas 77054-970, Brazil; (F.D.P.C.); (J.D.G.)
| | - Evgeni Evgeniev Gabev
- Department of Physiology and Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Ana Cláudia Franco
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; (A.C.F.); (P.M.R.)
| | - Paulo Michel Roehe
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; (A.C.F.); (P.M.R.)
| | | | - Fabrício Souza Campos
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil; (Y.d.S.M.M.); (R.N.d.S.)
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; (A.C.F.); (P.M.R.)
| |
Collapse
|
5
|
Ali KM, Rashid PMA, Ali AM, Tofiq AM, Salih GF, Dana OI, Rostam HM. Clinical outcomes and phylogenetic analysis in reflection with three predominant clades of SARS-CoV-2 variants. Eur J Clin Invest 2023; 53:e14004. [PMID: 37036255 DOI: 10.1111/eci.14004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND The pandemic of coronavirus disease 2019 (COVID-19) has a broad spectrum of clinical manifestations. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) undergoes continuous evolution, resulting in the emergence of several variants. Each variant has a different severity and mortality rate. MATERIALS AND METHODS In this study, 1174 COVID-19 patients were studied for mortality and severity over three SARS-CoV-2 predominating variant periods in 2021 and 2022 in Sulaimani Province, Iraq. In each period, a representative, variant virus was subjected to phylogenetic and molecular and clinical analysis. RESULTS Phylogenetic analysis revealed three SARS-CoV-2 variants, belonging to: Delta B.1.617.2, Omicron BA.1.17.2, and Omicron BA.5.6. The Delta variants showed more severe symptoms and a lower PCR-Ct value than Omicron variants regardless of gender, and only 4.3% of the cases were asymptomatic. The mortality rate was lower with Omicron (.5% for BA.5.2 and 1.3% for BA.1.17.2) compared with Delta variants (2.5%). The higher mortality rate with Delta variants was in males (2.84%), while that with Omicron BA1.17.2 and BA.5.2 was in females, 1.05% and .0%, respectively. Age group (≥70) years had the highest mortality rate; however, it was (.0%) in the age group (30-49) years with Omicron variants, compared with (.96%) in Delta variants. CONCLUSIONS There has been a surge in COVID-19 infection in the city due to the predominant lineages of SARS-CoV-2, B.1.617, Omicron BA.1.17.2 and Omicron BA.5.6, respectively. A higher PCR-Ct value and severity of the Delta variant over Omicron BA.1.17.2 and/or BA.5.2 variants were significantly correlated with a higher death rate in the same order.
Collapse
Affiliation(s)
- Kameran M Ali
- Medical Laboratory Technology Department, Kalar Technical College, Sulaimani Polytechnic University, Kalar, Iraq
| | - Peshnyar M A Rashid
- Medical Laboratory Science Department, Komar University of Science and Technology, Sulaimania, Iraq
| | - Ayad M Ali
- Department of Chemistry, University of Garmian, Kalar, Iraq
| | - Ahmed M Tofiq
- Department of Biology, College of Education, University of Garmian, Head of International Academic Relations (IRO), Kalar, Iraq
| | - Gaza F Salih
- Biology Department, College of Science, University of Sulaimani, Sulaimania, Iraq
| | - Omer I Dana
- College of Veterinary Medicine, University of Sulaimani, Sulaimani, Iraq
| | | |
Collapse
|
6
|
Dos Santos MAM, Pavon JAR, Dias LS, Viniski AE, Souza CLC, de Oliveira EC, de Azevedo VC, da Silva SP, Cruz ACR, Medeiros DBDA, Nunes MRT, Slhessarenko RD. Dengue virus serotype 2 genotype III evolution during the 2019 outbreak in Mato Grosso, Midwestern Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105487. [PMID: 37544570 DOI: 10.1016/j.meegid.2023.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
DENV-2 was the main responsible for a 70% increase in dengue incidence in Brazil during 2019. That year, our metagenomic study by Illumina NextSeq on serum samples from acute febrile patients (n = 92) with suspected arbovirus infection, sampled in 22 cities of the state of Mato Grosso (MT), in the middle west of Brazil, revealed eight complete genomes and two near-complete sequences of DENV-2 genotype III, one Human parvovirus B19 genotype I (5,391 nt) and one Coxsackievirus A6 lineage D (4,514 nt). These DENV-2 sequences share the aminoacidic identities of BR4 lineage on E protein domains I, II and III, and were included in a clade with sequences of the same lineage circulating in the southeast of Brazil in the same year. Nevertheless, 11/34 non-synonymous mutations are unique to three strains inthis study, distributed in the E (n = 6), NS3 (n = 2) and NS5 (n = 3) proteins. Other 14 aa changes on C (n = 1), E (n = 3), NS1 (n = 2), NS2A (n = 1) and NS5 (n = 7) were first reported in a genotype III lineage, having been already reported only in other DENV-2 genotypes. All 10 sequences have mutations in the NS5 protein (14 different aa changes). Nine E protein aa changes found in two sequences, six of which are unique, are in the ectodomain; where the E:M272T change is on the hinge of the E protein at domain II, in a region critical for the anchoring to the host cell receptor. The NS5:G81R mutation, in the methyltransferase domain, was found in one strain of this study. Altogether, these data points to an important evolution of DENV-2 genotype III lineage BR4 during this outbreak in 2019 in MT. Genomic surveillance is essential to detect virus etiology and evolution, possibly related to immune evasion and viral fitness changes leading to future novel outbreaks.
Collapse
Affiliation(s)
- Marcelo Adriano Mendes Dos Santos
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil; Faculdade de Medicina, Universidade do Estado de Mato Grosso, Cáceres, MT, Brazil
| | - Janeth Aracely Ramirez Pavon
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Lucas Silva Dias
- Curso de Graduação em Medicina, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Ana Elisa Viniski
- Laboratório Central de Saúde Pública do Estado de Mato Grosso, Secretaria de Estado da Saúde, Cuiabá, MT, Brazil
| | - Claudio Luis Campos Souza
- Laboratório Central de Saúde Pública do Estado de Mato Grosso, Secretaria de Estado da Saúde, Cuiabá, MT, Brazil
| | - Elaine Cristina de Oliveira
- Laboratório Central de Saúde Pública do Estado de Mato Grosso, Secretaria de Estado da Saúde, Cuiabá, MT, Brazil
| | - Vergínia Correa de Azevedo
- Laboratório Central de Saúde Pública do Estado de Mato Grosso, Secretaria de Estado da Saúde, Cuiabá, MT, Brazil
| | | | | | | | | | - Renata Dezengrini Slhessarenko
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| |
Collapse
|
7
|
Nonyong P, Ekalaksananan T, Phanthanawiboon S, Overgaard HJ, Alexander N, Thaewnongiew K, Sawaswong V, Nimsamer P, Payungporn S, Phadungsombat J, Nakayama EE, Shioda T, Pientong C. Intrahost Genetic Diversity of Dengue Virus in Human Hosts and Mosquito Vectors under Natural Conditions Which Impact Replicative Fitness In Vitro. Viruses 2023; 15:982. [PMID: 37112962 PMCID: PMC10143933 DOI: 10.3390/v15040982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/08/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Dengue virus (DENV) is an arbovirus whose transmission cycle involves disparate hosts: humans and mosquitoes. The error-prone nature of viral RNA replication drives the high mutation rates, and the consequently high genetic diversity affects viral fitness over this transmission cycle. A few studies have been performed to investigate the intrahost genetic diversity between hosts, although their mosquito infections were performed artificially in the laboratory setting. Here, we performed whole-genome deep sequencing of DENV-1 (n = 11) and DENV-4 (n = 13) derived from clinical samples and field-caught mosquitoes from the houses of naturally infected patients, in order to analyze the intrahost genetic diversity of DENV between host types. Prominent differences in DENV intrahost diversity were observed in the viral population structure between DENV-1 and DENV-4, which appear to be associated with differing selection pressures. Interestingly, three single amino acid substitutions in the NS2A (K81R), NS3 (K107R), and NS5 (I563V) proteins in DENV-4 appear to be specifically acquired during infection in Ae. aegypti mosquitoes. Our in vitro study shows that the NS2A (K81R) mutant replicates similarly to the wild-type infectious clone-derived virus, while the NS3 (K107R), and NS5 (I563V) mutants have prolonged replication kinetics in the early phase in both Vero and C6/36 cells. These findings suggest that DENV is subjected to selection pressure in both mosquito and human hosts. The NS3 and NS5 genes may be specific targets of diversifying selection that play essential roles in early processing, RNA replication, and infectious particle production, and they are potentially adaptive at the population level during host switching.
Collapse
Affiliation(s)
- Patcharaporn Nonyong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.N.); (T.E.); (S.P.)
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.N.); (T.E.); (S.P.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supranee Phanthanawiboon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.N.); (T.E.); (S.P.)
| | - Hans J. Overgaard
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway;
| | - Neal Alexander
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK;
| | - Kesorn Thaewnongiew
- Department of Disease Control, Office of Disease Prevention and Control, Region 7 Khon Kaen, Ministry of Public Health, Khon Kaen 40000, Thailand;
| | - Vorthon Sawaswong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.N.); (S.P.)
| | - Pattaraporn Nimsamer
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.N.); (S.P.)
| | - Sunchai Payungporn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.N.); (S.P.)
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Juthamas Phadungsombat
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.)
| | - Emi E. Nakayama
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.)
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Tatsuo Shioda
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.)
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.N.); (T.E.); (S.P.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
8
|
In Depth Viral Diversity Analysis in Atypical Neurological and Neonatal Chikungunya Infections in Rio de Janeiro, Brazil. Viruses 2022; 14:v14092006. [PMID: 36146812 PMCID: PMC9506387 DOI: 10.3390/v14092006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus (arbovirus) transmitted by Aedes mosquitoes. The human infection usually manifests as a febrile and incapacitating arthritogenic illness, self-limiting and non-lethal. However, since 2013, CHIKV spreading through the tropics and to the Americas was accompanied by an increasing number of cases of atypical disease presentation, namely severe neuropathies and neonatal infection due to intrapartum vertical transmission. The pathophysiological mechanisms underlying these conditions have not been fully elucidated. However, arbovirus intrahost genetic diversity is thought to be linked to viral pathogenesis. To determine whether particular viral variants could be somehow associated, we analyzed the intrahost genetic diversity of CHIKV in three infected patients with neurological manifestations and three mothers infected during the intrapartum period, as well as their babies following vertical transmission. No statistically supported differences were observed for the genetic variability (nucleotide substitutions/gene length) along the genome between the groups. However, the newborn and cerebrospinal fluid samples (corresponding to virus passed through the placenta and/or the blood–brain barrier (BBB)) presented a different composition of their intrahost mutant ensembles compared to maternal or patient serum samples, even when concurrent. This finding could be consistent with the unidirectional virus transmission through these barriers, and the effect of selective bottlenecks during the transmission event. In addition, a higher proportion of defective variants (insertions/deletions and stop codons) was detected in the CSF and maternal samples and those were mainly distributed within the viral non-structural genes. Since defective viral genomes in RNA viruses are known to contribute to the outcome of acute viral infections and influence disease severity, their role in these atypical cases should be further investigated. Finally, with the in silico approach adopted, we detected no relevant non-conservative mutational pattern that could provide any hint of the pathophysiological mechanisms underlying these atypical cases. The present analysis represents a unique contribution to our understanding of the transmission events in these cases and generates hypotheses regarding underlying mechanisms, that can be explored further.
Collapse
|
9
|
Cheng D, Huang SW, Chin WX, Hung SJ, Tsai HP, Chu JJH, Chao CH, Wang JR. Impact of Intrahost NS5 Nucleotide Variations on Dengue Virus Replication. Front Microbiol 2022; 13:894200. [PMID: 35865937 PMCID: PMC9294511 DOI: 10.3389/fmicb.2022.894200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the nature of RNA viruses, their high mutation rates produce a population of closely related but genetically diverse viruses, termed quasispecies. To determine the role of quasispecies in DENV disease severity, 22 isolates (10 from mild cases, 12 from fatal cases) were obtained, amplified, and sequenced with Next Generation Sequencing using the Illumina MiSeq platform. Using variation calling, unique wildtype nucleotide positions were selected and analyzed for variant nucleotides between mild and fatal cases. The analysis of variant nucleotides between mild and fatal cases showed 6 positions with a significant difference of p < 0.05 with 1 position in the structural region, and 5 positions in the non-structural (NS) regions. All variations were found to have a higher percentage in fatal cases. To further investigate the genetic changes that affect the virus’s properties, reverse genetics (rg) viruses containing substitutions with the variations were generated and viral growth properties were examined. We found that the virus variant rgNS5-T7812G (G81G) had higher replication rates in both Baby hamster kidney cells (BHK-21) and Vero cells while rgNS5-C9420A (A617A) had a higher replication rate only in BHK-21 cells compared to wildtype virus. Both variants were considered temperature sensitive whereby the viral titers of the variants were relatively lower at 39°C, but was higher at 35 and 37°C. Additionally, the variants were thermally stable compared to wildtype at temperatures of 29, 37, and 39°C. In conclusion, viral quasispecies found in isolates from the 2015 DENV epidemic, resulted in variations with significant difference between mild and fatal cases. These variations, NS5-T7812G (G81G) and NS5-C9420A (A617A), affect viral properties which may play a role in the virulence of DENV.
Collapse
Affiliation(s)
- Dayna Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Wei-Xin Chin
- Department of Microbiology and Immunology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Su-Jhen Hung
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chiao-Hsuan Chao
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- *Correspondence: Jen-Ren Wang,
| |
Collapse
|
10
|
Hung SJ, Tsai HP, Wang YF, Ko WC, Wang JR, Huang SW. Assessment of the Risk of Severe Dengue Using Intrahost Viral Population in Dengue Virus Serotype 2 Patients via Machine Learning. Front Cell Infect Microbiol 2022; 12:831281. [PMID: 35223554 PMCID: PMC8866709 DOI: 10.3389/fcimb.2022.831281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Dengue virus, a positive-sense single-stranded RNA virus, continuously threatens human health. Although several criteria for evaluation of severe dengue have been recently established, the ability to prognose the risk of severe outcomes for dengue patients remains limited. Mutant spectra of RNA viruses, including single nucleotide variants (SNVs) and defective virus genomes (DVGs), contribute to viral virulence and growth. Here, we determine the potency of intrahost viral population in dengue patients with primary infection that progresses into severe dengue. A total of 65 dengue virus serotype 2 infected patients in primary infection including 17 severe cases were enrolled. We utilized deep sequencing to directly define the frequency of SNVs and detection times of DVGs in sera of dengue patients and analyzed their associations with severe dengue. Among the detected SNVs and DVGs, the frequencies of 9 SNVs and the detection time of 1 DVG exhibited statistically significant differences between patients with dengue fever and those with severe dengue. By utilizing the detected frequencies/times of the selected SNVs/DVG as features, the machine learning model showed high average with a value of area under the receiver operating characteristic curve (AUROC, 0.966 ± 0.064). The elevation of the frequency of SNVs at E (nucleotide position 995 and 2216), NS2A (nucleotide position 4105), NS3 (nucleotide position 4536, 4606), and NS5 protein (nucleotide position 7643 and 10067) and the detection times of the selected DVG that had a deletion junction in the E protein region (nucleotide positions of the junction: between 969 and 1022) increased the possibility of dengue patients for severe dengue. In summary, we demonstrated the detected frequencies/times of SNVs/DVG in dengue patients associated with severe disease and successfully utilized them to discriminate severe patients using machine learning algorithm. The identified SNVs and DVGs that are associated with severe dengue will expand our understanding of intrahost viral population in dengue pathogenesis.
Collapse
Affiliation(s)
- Su-Jhen Hung
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Fang Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
- *Correspondence: Sheng-Wen Huang,
| |
Collapse
|
11
|
Mendiola-Pastrana IR, López-Ortiz E, Río de la Loza-Zamora JG, González J, Gómez-García A, López-Ortiz G. SARS-CoV-2 Variants and Clinical Outcomes: A Systematic Review. Life (Basel) 2022; 12:life12020170. [PMID: 35207458 PMCID: PMC8879159 DOI: 10.3390/life12020170] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Abstract
Background: From the start of the COVID-19 pandemic, new SARS-CoV-2 variants have emerged that potentially affect transmissibility, severity, and immune evasion in infected individuals. In the present systematic review, the impact of different SARS-CoV-2 variants on clinical outcomes is analyzed. Methods: A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020. Two databases (PubMed and ScienceDirect) were searched for original articles published from 1 January 2020 to 23 November 2021. The articles that met the selection criteria were appraised according to the Newcastle–Ottawa Quality Assessment Scale. Results: Thirty-three articles were included, involving a total of 253,209 patients and 188,944 partial or complete SARS-CoV-2 sequences. The most reported SARS-CoV-2 variants showed changes in the spike protein, N protein, RdRp and NSP3. In 28 scenarios, SARS-CoV-2 variants were found to be associated with a mild to severe or even fatal clinical outcome, 15 articles reported such association to be statistically significant. Adjustments in eight of them were made for age, sex and other covariates. Conclusions: SARS-CoV-2 variants can potentially have an impact on clinical outcomes; future studies focused on this topic should consider several covariates that influence the clinical course of the disease.
Collapse
Affiliation(s)
- Indira R. Mendiola-Pastrana
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
| | - Eduardo López-Ortiz
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
| | - José G. Río de la Loza-Zamora
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Anel Gómez-García
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58351, Mexico;
| | - Geovani López-Ortiz
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
- Correspondence:
| |
Collapse
|
12
|
In Silico Analysis of Dengue Virus Serotype 2 Mutations Detected at the Intrahost Level in Patients with Different Clinical Outcomes. Microbiol Spectr 2021; 9:e0025621. [PMID: 34468189 PMCID: PMC8557815 DOI: 10.1128/spectrum.00256-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intrahost genetic diversity is thought to facilitate arbovirus adaptation to changing environments and hosts, and it may also be linked to viral pathogenesis. Intending to shed light on the viral determinants for severe dengue pathogenesis, we previously analyzed the DENV-2 intrahost genetic diversity in 68 patients clinically classified as dengue fever (n = 31), dengue with warning signs (n = 19), and severe dengue (n = 18), performing viral whole-genome deep sequencing from clinical samples with an amplicon-free approach. From it, we identified a set of 141 relevant mutations distributed throughout the viral genome that deserved further attention. Therefore, we employed molecular modeling to recreate three-dimensional models of the viral proteins and secondary RNA structures to map the mutations and assess their potential effects. Results showed that, in general lines, disruptive variants were identified primarily among dengue fever cases. In contrast, potential immune-escape variants were associated mainly with warning signs and severe cases, in line with the latter's longer intrahost evolution times. Furthermore, several mutations were located on protein-surface regions, with no associated function. They could represent sites of further investigation, as the interaction of viral and host proteins is critical for both host immunomodulation and virus hijacking of the cellular machinery. The present analysis provides new information about the implications of the intrahost genetic diversity of DENV-2, contributing to the knowledge about the viral factors possibly involved in its pathogenesis within the human host. Strengthening our results with functional studies could allow many of these variants to be considered in the design of therapeutic or prophylactic compounds and the improvement of diagnostic assays. IMPORTANCE Previous evidence showed that intrahost genetic diversity in arboviruses may be linked to viral pathogenesis and that one or a few amino acid replacements within a single protein are enough to modify a biological feature of an RNA virus. To assess dengue virus serotype 2 determinants potentially involved in pathogenesis, we previously analyzed the intrahost genetic diversity of the virus in patients with different clinical outcomes and identified a set of 141 mutations that deserved further study. Thus, through a molecular modeling approach, we showed that disruptive variants were identified primarily among cases with mild dengue fever, while potential immune-escape variants were mainly associated with cases of greater severity. We believe that some of the variants pointed out in this study were attractive enough to be potentially considered in future intelligent designs of therapeutic or prophylactic compounds or the improvement of diagnostic tools. The present analysis provides new information about DENV-2 viral factors possibly involved in its pathogenesis within the human host.
Collapse
|