1
|
Gamsjäger L, Chigerwe M. Clinical presentation, medical management, and outcomes in 35 hospitalized sheep diagnosed with bluetongue virus disease. J Vet Intern Med 2024; 38:514-519. [PMID: 38038181 PMCID: PMC10800201 DOI: 10.1111/jvim.16944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND There is only limited information on the clinical presentation, medical management, and outcomes of hospitalized sheep diagnosed with bluetongue virus (BTV) disease. OBJECTIVES To describe the signalment, history, clinical signs, clinicopathological findings, medical management, and clinical outcomes of sheep diagnosed with BTV disease. ANIMALS Thirty-five hospitalized sheep with BTV disease. METHODS Retrospective case series. Medical records from 1989 to 2021 were evaluated. History, signalment, clinical signs, laboratory test results, treatments, and outcomes were recorded. RESULTS BTV disease was diagnosed from July to December, with a peak proportion (43%; 15/35) of diagnoses recorded in October. Pyrexia and anorexia, respiratory disease, vasculitis, coronitis and lameness, and ulcerative mucosal lesions were present in 71%, 71%, 66%, 49%, and 22% of sheep, respectively. BTV serotypes 10, 11, 13, and 17 were identified, with serotype 17 (75%) being the most frequent. Management of cases included administration of antimicrobials (89%), anti-inflammatories (77%), IV fluids (60%), vitamins (20%), proton-pump inhibitors (14%), diuretics (9%), and antioxidants (9%). Six ewes were pregnant on presentation, but none aborted. Six (17%) sheep died or were euthanized because of clinical deterioration, whereas 83% were discharged. CONCLUSIONS AND CLINICAL IMPORTANCE The proportion of sheep that survived BTV disease after treatment was relatively high. Serotyping of BTV is recommended because of the mismatch between frequently identified serotypes and the serotype present in the vaccine.
Collapse
Affiliation(s)
- Lisa Gamsjäger
- Department of Population Health and PathobiologyCollege of Veterinary Medicine, North Carolina State UniversityRaleighNorth CarolinaUSA
| | - Munashe Chigerwe
- Department of Veterinary Medicine and EpidemiologySchool of Veterinary Medicine, University of California DavisDavisCaliforniaUSA
| |
Collapse
|
2
|
Pourcelot M, da Silva Moraes RA, Lacour S, Fablet A, Caignard G, Vitour D. Activation of Inflammasome during Bluetongue Virus Infection. Pathogens 2023; 12:801. [PMID: 37375491 DOI: 10.3390/pathogens12060801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Bluetongue virus (BTV), a double-stranded RNA virus belonging to the Sedoreoviridae family, provokes an economically important disease in ruminants. In this study, we show that the production of activated caspase-1 and interleukin 1 beta (IL-1β) is induced in BTV-infected cells. This response seems to require virus replication since a UV-inactivated virus is unable to activate this pathway. In NLRP3-/- cells, BTV could not trigger further IL-1β synthesis, indicating that it occurs through NLRP3 inflammasome activation. Interestingly, we observed differential activation levels in bovine endothelial cells depending on the tissue origin. In particular, inflammasome activation was stronger in umbilical cord cells, suggesting that these cells are more prone to induce the inflammasome upon BTV infection. Finally, the strength of the inflammasome activation also depends on the BTV strain, which points to the importance of viral origin in inflammasome modulation. This work reports the crucial role of BTV in the activation of the NLRP3 inflammasome and further shows that this activation relies on BTV replication, strains, and cell types, thus providing new insights into BTV pathogenesis.
Collapse
Affiliation(s)
- Marie Pourcelot
- UMR Virologie, Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, 94703 Maisons-Alfort, France
| | - Rayane Amaral da Silva Moraes
- UMR Virologie, Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, 94703 Maisons-Alfort, France
| | - Sandrine Lacour
- UMR Virologie, Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, 94703 Maisons-Alfort, France
| | - Aurore Fablet
- UMR Virologie, Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, 94703 Maisons-Alfort, France
| | - Grégory Caignard
- UMR Virologie, Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, 94703 Maisons-Alfort, France
| | - Damien Vitour
- UMR Virologie, Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, 94703 Maisons-Alfort, France
| |
Collapse
|
3
|
Zhang S, Zhang Q, Zhang H, Liang R, Chen Q, Niu B. Assessing the export trade risk of bluetongue virus serotypes 4 and 8 in France. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:1124-1136. [PMID: 35994609 DOI: 10.1111/risa.14011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bluetongue (BT) causes an economic loss of $3 billion every year in the world. After two serious occurrences of BT (bluetongue virus [BTV] occurrence in 2006 and 2015), France has been controlling for decades, but it has not been eradicated. As the largest live cattle export market in the world, France is also one of the major exporters of breeding animals and genetic materials in the world. The biosafety of its exported cattle and products has always been a concern. The scenario tree quantitative model was used to analyze the risk of BTV release from French exported live cattle and bovine semen. The results showed that with the increase in vaccination coverage rates, the risk decreased. If the vaccine coverage is 0%, the areas with the highest average risk probability of BTV-4 and BTV-8 release from exported live cattle were Haute-Savoie and Puy-de-Dôme, and the risk was 2.96 × 10-4 and 4.25 × 10-4 , respectively. When the vaccine coverage was 90%, the risk probability of BTV-4 and BTV-8 release from exported live cattle was 2.96 × 10-5 and 4.24 × 10-5 , respectively. The average probability of BTV-8 release from bovine semen was 1.09 × 10-10 . Sensitivity analysis showed that the probability of false negative polymerase chain reaction (PCR) test and the probability of BT infection in the bull breeding station had an impact on the model. The identification of high-risk areas and the discovery of key control measures provide a reference for decision makers to assess the risk of French exports of live cattle and bovine semen.
Collapse
Affiliation(s)
- Shuwen Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qiang Zhang
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| | - Hui Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Ruirui Liang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
4
|
Polo C, García-Seco T, Díez-Guerrier A, Briones V, Domínguez L, Pérez-Sancho M. What about the bull? A systematic review about the role of males in bovine infectious infertility within cattle herds. Vet Anim Sci 2023; 19:100284. [PMID: 36647444 PMCID: PMC9840180 DOI: 10.1016/j.vas.2023.100284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Numerous pathogens affect cow fertility. Nevertheless, little information has been published about microorganisms associated with cattle infertility focusing on bulls. The present review offers a current analysis and highlights potential key aspects on the relevance of bulls in the emergence of infertility problems of infectious origin within herds that are still not completely determined. The present systematic review was conducted using the PubMed, Web of Science, and Scopus databases on December 9, 2022. In total, 2,224 bibliographic records were reviewed and, according to strict inclusion criteria, 38 articles were selected from 1966 to 2022, from which we ranked more than 27 different microorganisms (fungi were not identified). The most cited pathogens were BoHV (described by 26.3% of the papers), Campylobacter fetus (23.7%), Tritrichomonas foetus (18.4%), and BVDV, Ureaplasma spp., and Mycoplasma spp. (10.5% each). Despite the general trend towards an increasing number of publications about bull-infertility problems, a number of pathogens potentially transmitted through both natural breeding and seminal doses given to females and associated with infertility within herds were not ranked in the study (e.g., Chlamydia spp.). This work highlights i) the need to clearly establish the role of certain microorganisms not traditionally associated with reproductive problems in bull infertility (e.g., Staphylococcus spp. or BoHV-4) and ii) the need to perform additional studies on breeding bulls to clarify their role in infertility problems within herds. This would allow monitoring for pathogens that have gone unnoticed and those that are fastidious to diagnose and/or potentially transmitted to females.
Collapse
Affiliation(s)
- Coral Polo
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain,MAEVA SERVET S.L., Calle de la Fragua 3, 28749 Alameda del Valle, Madrid, Spain
| | - Teresa García-Seco
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Alberto Díez-Guerrier
- MAEVA SERVET S.L., Calle de la Fragua 3, 28749 Alameda del Valle, Madrid, Spain,Department of Animal Health, Veterinary Faculty, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Víctor Briones
- Department of Animal Health, Veterinary Faculty, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain,Department of Animal Health, Veterinary Faculty, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Marta Pérez-Sancho
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain,Department of Animal Health, Veterinary Faculty, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain,Corresponding author at: VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain.
| |
Collapse
|
5
|
Curwen A, Jones S, Stayley C, Eden L, McKay H, Davies P, Lovatt F, Dunham S, Tarlinton R. Failure to detect Schmallenberg virus RNA in ram semen in the UK (2016-2018). Vet Rec Open 2022; 9:e39. [PMID: 35770041 PMCID: PMC9208715 DOI: 10.1002/vro2.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022] Open
Abstract
Background Schmallenberg virus (SBV) is a midge-borne arbovirus that first emerged in the European ruminant population in 2011 and has since settled to an endemic pattern of disease outbreaks on an approximately 4-year cycle when herd immunity from the previous circulation drops to a point allowing renewed widescale virus circulation. The impacts of trade restrictions on genetic products (semen, embryos) from affected areas were severe, particularly after the discovery that the virus is intermittently shed in the semen of a small number of bulls. The trade in small ruminant (ram and goat) semen is less than that of bulls; nonetheless, there has been no study into the shedding rate of SBV in ram semen. Methods Semen samples (n = 65) were collected as part of UK ram trials and artificial insemination studies around the period of the 2016-2018 SBV recirculation. Semen was preserved in RNAlater for shipping, and RNA extraction with RNeasy and S gene RT-quantitative PCR performed for SBV nucleic acid detection. Results No SBV RNA was detected in any samples. Conclusions While larger numbers of animals would be needed to completely exclude the possibility of SBV shedding in ram semen, this trial nonetheless highlights that this is likely a rare event if it occurs at all and is unlikely to play a role in disease transmission.
Collapse
Affiliation(s)
- Alice Curwen
- School of Veterinary Medicine and ScienceUniversity of NottinghamLeicestershireUK
| | - Scott Jones
- School of Veterinary Medicine and ScienceUniversity of NottinghamLeicestershireUK
- Department of Life SciencesImperial College LondonLondonUK
| | - Ceri Stayley
- School of Veterinary Medicine and ScienceUniversity of NottinghamLeicestershireUK
| | - Laura Eden
- School of Veterinary Medicine and ScienceUniversity of NottinghamLeicestershireUK
- Bishopton Veterinary Group, RiponNorth YorkshireUK
| | - Heather McKay
- School of Veterinary Medicine and ScienceUniversity of NottinghamLeicestershireUK
- Three Valleys VeterinaryIrvinestownEnniskillenUK
| | - Peers Davies
- School of Veterinary Medicine and ScienceUniversity of NottinghamLeicestershireUK
- Department of Livestock & One HealthUniversity of LiverpoolLiverpoolUK
| | - Fiona Lovatt
- School of Veterinary Medicine and ScienceUniversity of NottinghamLeicestershireUK
| | - Stephen Dunham
- School of Veterinary Medicine and ScienceUniversity of NottinghamLeicestershireUK
| | - Rachael Tarlinton
- School of Veterinary Medicine and ScienceUniversity of NottinghamLeicestershireUK
| |
Collapse
|
6
|
Vaccination as a Strategy to Prevent Bluetongue Virus Vertical Transmission. Pathogens 2021; 10:pathogens10111528. [PMID: 34832683 PMCID: PMC8622840 DOI: 10.3390/pathogens10111528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Bluetongue virus (BTV) produces an economically important disease in ruminants of compulsory notification to the OIE. BTV is typically transmitted by the bite of Culicoides spp., however, some BTV strains can be transmitted vertically, and this is associated with fetus malformations and abortions. The viral factors associated with the virus potency to cross the placental barrier are not well defined. The potency of vertical transmission is retained and sometimes even increased in live attenuated BTV vaccine strains. Because BTV possesses a segmented genome, the possibility of reassortment of vaccination strains with wild-type virus could even favor the transmission of this phenotype. In the present review, we will describe the non-vector-based BTV infection routes and discuss the experimental vaccination strategies that offer advantages over this drawback of some live attenuated BTV vaccines.
Collapse
|
7
|
Rivera NA, Varga C, Ruder MG, Dorak SJ, Roca AL, Novakofski JE, Mateus-Pinilla NE. Bluetongue and Epizootic Hemorrhagic Disease in the United States of America at the Wildlife-Livestock Interface. Pathogens 2021; 10:915. [PMID: 34451380 PMCID: PMC8402076 DOI: 10.3390/pathogens10080915] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Bluetongue (BT) and epizootic hemorrhagic disease (EHD) cases have increased worldwide, causing significant economic loss to ruminant livestock production and detrimental effects to susceptible wildlife populations. In recent decades, hemorrhagic disease cases have been reported over expanding geographic areas in the United States. Effective BT and EHD prevention and control strategies for livestock and monitoring of these diseases in wildlife populations depend on an accurate understanding of the distribution of BT and EHD viruses in domestic and wild ruminants and their vectors, the Culicoides biting midges that transmit them. However, national maps showing the distribution of BT and EHD viruses and the presence of Culicoides vectors are incomplete or not available at all. Thus, efforts to accurately describe the potential risk of these viruses on ruminant populations are obstructed by the lack of systematic and routine surveillance of their hosts and vectors. In this review, we: (1) outline animal health impacts of BT and EHD in the USA; (2) describe current knowledge of the distribution and abundance of BT and EHD and their vectors in the USA; and (3) highlight the importance of disease (BT and EHD) and vector surveillance for ruminant populations.
Collapse
Affiliation(s)
- Nelda A. Rivera
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL 61820, USA; (S.J.D.); (J.E.N.)
| | - Csaba Varga
- Department of Pathobiology, University of Illinois Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61802, USA;
| | - Mark G. Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Sheena J. Dorak
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL 61820, USA; (S.J.D.); (J.E.N.)
| | - Alfred L. Roca
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL 61801, USA;
| | - Jan E. Novakofski
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL 61820, USA; (S.J.D.); (J.E.N.)
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1503 S. Maryland Drive, Urbana, IL 61801, USA
| | - Nohra E. Mateus-Pinilla
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL 61820, USA; (S.J.D.); (J.E.N.)
- Department of Pathobiology, University of Illinois Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61802, USA;
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1503 S. Maryland Drive, Urbana, IL 61801, USA
| |
Collapse
|