1
|
Sultana R, Stahelin RV. Strengths and limitations of SARS-CoV-2 virus-like particle systems. Virology 2025; 601:110285. [PMID: 39536645 PMCID: PMC11624109 DOI: 10.1016/j.virol.2024.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/19/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Virus-like particles (VLPs) resemble the parent virus but lack the viral genome, providing a safe and efficient platform for the analysis of virus assembly and budding as well as the development of vaccines and drugs. During the COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the formation of SARS-CoV-2 VLPs was investigated as an alternative to authentic virions because the latter requires biosafety level 3 (BSL-3) facilities. This allowed researchers to model its assembly and budding processes, examine the role of mutations in variants of concern, and determine how the structural proteins interact with each other. Also, the absence of viral genome in VLPs circumvents worries of gains in infectivity via mutagenesis. This review summarizes the strengths and limitations of several SARS-CoV-2 VLP systems and details some of the strides that have been made in using these systems to study virus assembly and budding, viral entry, and antibody and vaccine development.
Collapse
Affiliation(s)
- Rokaia Sultana
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, 47907, West Lafayette, IN, USA
| | - Robert V Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, 47907, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Ruengket P, Roytrakul S, Tongthainan D, Boonnak K, Taruyanon K, Sangkharak B, Fungfuang W. Analysis of the serum proteome profile of wild stump-tailed macaques ( Macaca arctoides) seropositive for Zika virus antibodies in Thailand. Front Vet Sci 2024; 11:1463160. [PMID: 39600882 PMCID: PMC11588686 DOI: 10.3389/fvets.2024.1463160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Zika virus (ZIKV) is a member of the Flaviviridae virus family and poses a significant global health concern. ZIKV is transmitted by Aedes mosquitoes, and it has been implicated in various neurological conditions associated with fetal brain development. ZIKV has two transmission cycles: a sylvatic cycle in which nonhuman primates are infected via arboreal mosquito bites, and an interhuman (urban) cycle in which the virus is transmitted among primates by Aedes mosquitoes. ZIKV was first discovered in wild macaques, and the danger posed by the virus is increased due to the close proximity between humans and wild animals in modern society. However, data regarding the extent and role of infection in nonhuman primates are limited. Thus, there is an urgent need for improved surveillance, diagnostic methods, and public health interventions to effectively combat ZIKV transmission and its associated health impacts in Southeast Asia. In this study, we used a proteomics and bioinformatics approach to profile serum proteins in wild stump-tailed macaques seropositive for neutralizing antibodies against ZIKV. A total of 9,532 total proteins were identified, and 338 differentially expressed proteins were identified between naïve and seropositive animals. A total of 52 important proteins were used to construct a serum proteomic profile. These 52 important proteins were associated with immune and inflammatory responses (36.54%), neurological damage (23.08%), viral activities (21.15%), the apoptosis signaling pathway (9.61%), and other pathways (9.61%). Our proteomic profile identified proteins that inhibit the apoptosis pathway, intracellular resource competition with the virus, and neurological damage due to ZIKV and the host immune and defense responses.
Collapse
Affiliation(s)
- Pakorn Ruengket
- Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Daraka Tongthainan
- Faculty of Veterinary Medicine, The Rajamangala University of Technology Tawan-ok, Chonburi, Thailand
| | - Kobporn Boonnak
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokwan Taruyanon
- Wildlife Conservation Division Protected Areas Regional Office 3, Department of National Parks, Wildlife and Plant Conservation, Ratchaburi, Thailand
| | - Bencharong Sangkharak
- Wildlife Conservation Division, Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Wirasak Fungfuang
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
3
|
Cho H, Huh KM, Shim MS, Cho YY, Lee JY, Lee HS, Kwon YJ, Kang HC. Selective delivery of imaging probes and therapeutics to the endoplasmic reticulum or Golgi apparatus: Current strategies and beyond. Adv Drug Deliv Rev 2024; 212:115386. [PMID: 38971180 DOI: 10.1016/j.addr.2024.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
To maximize therapeutic effects and minimize unwanted effects, the interest in drug targeting to the endoplasmic reticulum (ER) or Golgi apparatus (GA) has been recently growing because two organelles are distributing hubs of cellular building/signaling components (e.g., proteins, lipids, Ca2+) to other organelles and the plasma membrane. Their structural or functional damages induce organelle stress (i.e., ER or GA stress), and their aggravation is strongly related to diseases (e.g., cancers, liver diseases, brain diseases). Many efforts have been developed to image (patho)physiological functions (e.g., oxidative stress, protein/lipid-related processing) and characteristics (e.g., pH, temperature, biothiols, reactive oxygen species) in the target organelles and to deliver drugs for organelle disruption using organelle-targeting moieties. Therefore, this review will overview the structure, (patho)physiological functions/characteristics, and related diseases of the organelles of interest. Future direction on ER or GA targeting will be discussed by understanding current strategies and investigations on targeting, imaging/sensing, and therapeutic systems.
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Kang Moo Huh
- Departments of Polymer Science and Engineering & Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| |
Collapse
|
4
|
Chen XN, Cai ST, Liang YF, Weng ZJ, Song TQ, Li X, Sun YS, Peng YZ, Huang Z, Gao Q, Tang SQ, Zhang GH, Gong L. Subcellular localization of viral proteins after porcine epidemic diarrhea virus infection and their roles in the viral life cycle. Int J Biol Macromol 2024; 274:133401. [PMID: 38925184 DOI: 10.1016/j.ijbiomac.2024.133401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is one of the most devastating diseases affecting the pig industry globally. Due to the emergence of novel strains, no effective vaccines are available for prevention and control. Investigating the pathogenic mechanisms of PEDV may provide insights for creating clinical interventions. This study constructed and expressed eukaryotic expression vectors containing PEDV proteins (except NSP11) with a 3' HA tag in Vero cells. The subcellular localization of PEDV proteins was examined using endogenous protein antibodies to investigate their involvement in the viral life cycle, including endocytosis, intracellular trafficking, genome replication, energy metabolism, budding, and release. We systematically analyzed the potential roles of all PEDV viral proteins in the virus life cycle. We found that the endosome sorting complex required for transport (ESCRT) machinery may be involved in the replication and budding processes of PEDV. Our study provides insight into the molecular mechanisms underlying PEDV infection. IMPORTANCE: The global swine industry has suffered immense losses due to the spread of PEDV. Currently, there are no effective vaccines available for clinical protection. Exploring the pathogenic mechanisms of PEDV may provide valuable insights for clinical interventions. This study investigated the involvement of viral proteins in various stages of the PEDV lifecycle in the state of viral infection and identified several previously unreported interactions between viral and host proteins. These findings contribute to a better understanding of the pathogenic mechanisms underlying PEDV infection and may serve as a basis for further research and development of therapeutic strategies.
Collapse
Affiliation(s)
- Xiong-Nan Chen
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People's Republic of China
| | - Shao-Tong Cai
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yi-Fan Liang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People's Republic of China
| | - Zhi-Jun Weng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People's Republic of China
| | - Tian-Qi Song
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People's Republic of China
| | - Xi Li
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People's Republic of China
| | - Ying-Shuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People's Republic of China
| | - Yun-Zhao Peng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People's Republic of China
| | - Zhao Huang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People's Republic of China
| | - Qi Gao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People's Republic of China
| | - Sheng-Qiu Tang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, People's Republic of China
| | - Gui-Hong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People's Republic of China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, People's Republic of China.
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People's Republic of China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, People's Republic of China.
| |
Collapse
|
5
|
Karmakar S, Das Sarma J. Human coronavirus OC43 infection remodels connexin 43-mediated gap junction intercellular communication in vitro. J Virol 2024; 98:e0047824. [PMID: 38819132 PMCID: PMC11264776 DOI: 10.1128/jvi.00478-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
β-coronaviruses cause acute infection in the upper respiratory tract, resulting in various symptoms and clinical manifestations. OC43 is a human β-coronavirus that induces mild clinical symptoms and can be safely studied in the BSL2 laboratory. Due to its low risk, OC43 can be a valuable and accessible model for understanding β-coronavirus pathogenesis. One potential target for limiting virus infectivity could be gap junction-mediated communication. This study aims to unveil the status of cell-to-cell communications through gap junctions in human β-coronavirus infection. Infection with OC43 leads to reduced expression of Cx43 in A549, a lung epithelial carcinoma cell line. Infection with this virus also shows a significant ER and oxidative stress increase. Internal localization of Cx43 is observed post-OC43 infection in the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) region, which impairs the gap junction communication between two adjacent cells, confirmed by Lucifer yellow dye transfer assay. It also affects hemichannel formation, as depicted by the EtBr uptake assay. Impairment of Cx43 trafficking and the ability to form hemichannels and functional GJIC are hampered by virus-induced Golgi apparatus disruption. Altogether, these results suggest that several physiological changes accompany OC43 infection in A549 cells and can be considered an appropriate model system for understanding the differences in gap junction communication post-viral infections. This model system can provide valuable insights for developing therapies against human β-coronavirus infections.IMPORTANCEThe enduring impact of the recent SARS-CoV-2 pandemic underscores the importance of studying human β-coronaviruses, advancing our preparedness for future coronavirus infections. As SARS-CoV-2 is highly infectious, another human β-coronavirus OC43 can be considered an experimental model. One of the crucial pathways that can be considered is gap junction communication, as it is vital for cellular homeostasis. Our study seeks to understand the changes in Cx43-mediated cell-to-cell communication during human β-coronavirus OC43 infection. In vitro studies showed downregulation of the gap junction protein Cx43 and upregulation of the endoplasmic reticulum and oxidative stress markers post-OC43 infection. Furthermore, HCoV-OC43 infection causes reduced Cx43 trafficking, causing impairment of functional hemichannel and GJIC formation by virus-mediated Golgi apparatus disruption. Overall, this study infers that OC43 infection reshapes intercellular communication, suggesting that this pathway may be a promising target for designing highly effective therapeutics against human coronaviruses by regulating Cx43 expression.
Collapse
Affiliation(s)
- Souvik Karmakar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| |
Collapse
|
6
|
Yu Q, Zhou X, Kapini R, Arsecularatne A, Song W, Li C, Liu Y, Ren J, Münch G, Liu J, Chang D. Cytokine Storm in COVID-19: Insight into Pathological Mechanisms and Therapeutic Benefits of Chinese Herbal Medicines. MEDICINES (BASEL, SWITZERLAND) 2024; 11:14. [PMID: 39051370 PMCID: PMC11270433 DOI: 10.3390/medicines11070014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/20/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Cytokine storm (CS) is the main driver of SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) in severe coronavirus disease-19 (COVID-19). The pathological mechanisms of CS are quite complex and involve multiple critical molecular targets that turn self-limited and mild COVID-19 into a severe and life-threatening concern. At present, vaccines are strongly recommended as safe and effective treatments for preventing serious illness or death from COVID-19. However, effective treatment options are still lacking for people who are at the most risk or hospitalized with severe disease. Chinese herbal medicines have been shown to improve the clinical outcomes of mild to severe COVID-19 as an adjunct therapy, particular preventing the development of mild to severe ARDS. This review illustrates in detail the pathogenesis of CS-involved ARDS and its associated key molecular targets, cytokines and signalling pathways. The therapeutic targets were identified particularly in relation to the turning points of the development of COVID-19, from mild symptoms to severe ARDS. Preclinical and clinical studies were reviewed for the effects of Chinese herbal medicines together with conventional therapies in reducing ARDS symptoms and addressing critical therapeutic targets associated with CS. Multiple herbal formulations, herbal extracts and single bioactive phytochemicals with or without conventional therapies demonstrated strong anti-CS effects through multiple mechanisms. However, evidence from larger, well-designed clinical trials is lacking and their detailed mechanisms of action are yet to be well elucidated. More research is warranted to further evaluate the therapeutic value of Chinese herbal medicine for CS in COVID-19-induced ARDS.
Collapse
Affiliation(s)
- Qingyuan Yu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
- Xiyuan Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Rotina Kapini
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Anthony Arsecularatne
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Wenting Song
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Chunguang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Junguo Ren
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Gerald Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| |
Collapse
|
7
|
Abstract
Coronavirus Disease-19 (COVID-19) pandemic is caused by SARS-CoV-2 that has infected more than 600 million people and killed more than 6 million people worldwide. This infection affects mainly certain groups of people that have high susceptibility to present severe COVID-19 due to comorbidities. Moreover, the long-COVID-19 comprises a series of symptoms that may remain in some patients for months after infection that further compromises their health. Thus, since this pandemic is profoundly affecting health, economy, and social life of societies, a deeper understanding of viral replication cycle could help to envisage novel therapeutic alternatives that limit or stop COVID-19. Several findings have unexpectedly discovered that mitochondria play a critical role in SARS-CoV-2 cell infection. Indeed, it has been suggested that this organelle could be the origin of its replication niches, the double membrane vesicles (DMV). In this regard, mitochondria derived vesicles (MDV), involved in mitochondria quality control, discovered almost 15 years ago, comprise a subpopulation characterized by a double membrane. MDV shedding is induced by mitochondrial stress, and it has a fast assembly dynamic, reason that perhaps has precluded their identification in electron microscopy or tomography studies. These and other features of MDV together with recent SARS-CoV-2 protein interactome and other findings link SARS-CoV-2 to mitochondria and support that these vesicles are the precursors of SARS-CoV-2 induced DMV. In this work, the morphological, biochemical, molecular, and cellular evidence that supports this hypothesis is reviewed and integrated into the current model of SARS-CoV-2 cell infection. In this scheme, some relevant questions are raised as pending topics for research that would help in the near future to test this hypothesis. The intention of this work is to provide a novel framework that could open new possibilities to tackle SARS-CoV-2 pandemic through mitochondria and DMV targeted therapies.
Collapse
Affiliation(s)
- Pavel Montes de Oca-B
- Neurociencia Cognitiva, Instituto de Fisiologia-UNAM, CDMX, CDMX, 04510, Mexico
- Unidad de Neurobiologia Dinamica, Instituto Nacional de Neurologia y Neurocirugia, CDMX, CDMX, 14269, Mexico
| |
Collapse
|
8
|
Carvajal JJ, García-Castillo V, Cuellar SV, Campillay-Véliz CP, Salazar-Ardiles C, Avellaneda AM, Muñoz CA, Retamal-Díaz A, Bueno SM, González PA, Kalergis AM, Lay MK. New insights into the pathogenesis of SARS-CoV-2 during and after the COVID-19 pandemic. Front Immunol 2024; 15:1363572. [PMID: 38911850 PMCID: PMC11190347 DOI: 10.3389/fimmu.2024.1363572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/24/2024] [Indexed: 06/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the respiratory distress condition known as COVID-19. This disease broadly affects several physiological systems, including the gastrointestinal, renal, and central nervous (CNS) systems, significantly influencing the patient's overall quality of life. Additionally, numerous risk factors have been suggested, including gender, body weight, age, metabolic status, renal health, preexisting cardiomyopathies, and inflammatory conditions. Despite advances in understanding the genome and pathophysiological ramifications of COVID-19, its precise origins remain elusive. SARS-CoV-2 interacts with a receptor-binding domain within angiotensin-converting enzyme 2 (ACE2). This receptor is expressed in various organs of different species, including humans, with different abundance. Although COVID-19 has multiorgan manifestations, the main pathologies occur in the lung, including pulmonary fibrosis, respiratory failure, pulmonary embolism, and secondary bacterial pneumonia. In the post-COVID-19 period, different sequelae may occur, which may have various causes, including the direct action of the virus, alteration of the immune response, and metabolic alterations during infection, among others. Recognizing the serious adverse health effects associated with COVID-19, it becomes imperative to comprehensively elucidate and discuss the existing evidence surrounding this viral infection, including those related to the pathophysiological effects of the disease and the subsequent consequences. This review aims to contribute to a comprehensive understanding of the impact of COVID-19 and its long-term effects on human health.
Collapse
Affiliation(s)
- Jonatan J. Carvajal
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Valeria García-Castillo
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Shelsy V. Cuellar
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | | | - Camila Salazar-Ardiles
- Center for Research in Physiology and Altitude Medicine (FIMEDALT), Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Andrea M. Avellaneda
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Department of Basic Sciences, Faculty of Sciences, Universidad Santo Tomás, Antofagasta, Chile
| | - Christian A. Muñoz
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Angello Retamal-Díaz
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K. Lay
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| |
Collapse
|
9
|
Hartmann S, Radochonski L, Ye C, Martinez-Sobrido L, Chen J. SARS-CoV-2 ORF3a drives dynamic dense body formation for optimal viral infectivity. RESEARCH SQUARE 2024:rs.3.rs-4292014. [PMID: 38798602 PMCID: PMC11118709 DOI: 10.21203/rs.3.rs-4292014/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
SARS-CoV-2 uses the double-membrane vesicles as replication organelles. However, how virion assembly occurs has not been fully understood. Here we identified a SARS-CoV-2-driven membrane structure named the 3a dense body (3DB). 3DBs have unusual electron-dense and dynamic inner structures, and their formation is driven by the accessory protein ORF3a via hijacking a specific subset of the trans-Golgi network (TGN) and early endosomal membranes. 3DB formation is conserved in related bat and pangolin coronaviruses yet lost during the evolution to SARS-CoV. 3DBs recruit the viral structural proteins spike (S) and membrane (M) and undergo dynamic fusion/fission to facilitate efficient virion assembly. A recombinant SARS-CoV-2 virus with an ORF3a mutant specifically defective in 3DB formation showed dramatically reduced infectivity for both extracellular and cell-associated virions. Our study uncovers the crucial role of 3DB in optimal SARS-CoV-2 infectivity and highlights its potential as a target for COVID-19 prophylactics and therapeutics.
Collapse
Affiliation(s)
- Stella Hartmann
- Department of Microbiology, University of Chicago, Chicago, IL, USA 60637
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA 60439
| | - Lisa Radochonski
- Department of Microbiology, University of Chicago, Chicago, IL, USA 60637
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA 60439
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA 78227
| | | | - Jueqi Chen
- Department of Microbiology, University of Chicago, Chicago, IL, USA 60637
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA 60439
| |
Collapse
|
10
|
Read CB, Ali AN, Stephenson DJ, Macknight HP, Maus KD, Cockburn CL, Kim M, Xie X, Carlyon JA, Chalfant CE. Ceramide-1-phosphate is a regulator of Golgi structure and is co-opted by the obligate intracellular bacterial pathogen Anaplasma phagocytophilum. mBio 2024; 15:e0029924. [PMID: 38415594 PMCID: PMC11005342 DOI: 10.1128/mbio.00299-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Many intracellular pathogens structurally disrupt the Golgi apparatus as an evolutionarily conserved promicrobial strategy. Yet, the host factors and signaling processes involved are often poorly understood, particularly for Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. We found that A. phagocytophilum elevated cellular levels of the bioactive sphingolipid, ceramide-1-phosphate (C1P), to promote Golgi fragmentation that enables bacterial proliferation, conversion from its non-infectious to infectious form, and productive infection. A. phagocytophilum poorly infected mice deficient in ceramide kinase, the Golgi-localized enzyme responsible for C1P biosynthesis. C1P regulated Golgi morphology via activation of a PKCα/Cdc42/JNK signaling axis that culminates in phosphorylation of Golgi structural proteins, GRASP55 and GRASP65. siRNA-mediated depletion of Cdc42 blocked A. phagocytophilum from altering Golgi morphology, which impaired anterograde trafficking of trans-Golgi vesicles into and maturation of the pathogen-occupied vacuole. Cells overexpressing phosphorylation-resistant versions of GRASP55 and GRASP65 presented with suppressed C1P- and A. phagocytophilum-induced Golgi fragmentation and poorly supported infection by the bacterium. By studying A. phagocytophilum, we identify C1P as a regulator of Golgi structure and a host factor that is relevant to disease progression associated with Golgi fragmentation.IMPORTANCECeramide-1-phosphate (C1P), a bioactive sphingolipid that regulates diverse processes vital to mammalian physiology, is linked to disease states such as cancer, inflammation, and wound healing. By studying the obligate intracellular bacterium Anaplasma phagocytophilum, we discovered that C1P is a major regulator of Golgi morphology. A. phagocytophilum elevated C1P levels to induce signaling events that promote Golgi fragmentation and increase vesicular traffic into the pathogen-occupied vacuole that the bacterium parasitizes. As several intracellular microbial pathogens destabilize the Golgi to drive their infection cycles and changes in Golgi morphology is also linked to cancer and neurodegenerative disorder progression, this study identifies C1P as a potential broad-spectrum therapeutic target for infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Curtis B. Read
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Anika N. Ali
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Daniel J. Stephenson
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - H. Patrick Macknight
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Kenneth D. Maus
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Chelsea L. Cockburn
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Xiujie Xie
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Charles E. Chalfant
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
- Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, Virginia, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, Virginia, USA
| |
Collapse
|
11
|
Zhao SS, Qian Q, Chen XX, Lu Q, Xing G, Qiao S, Li R, Zhang G. Porcine reproductive and respiratory syndrome virus triggers Golgi apparatus fragmentation-mediated autophagy to facilitate viral self-replication. J Virol 2024; 98:e0184223. [PMID: 38179942 PMCID: PMC10878038 DOI: 10.1128/jvi.01842-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Macroautophagy/autophagy is a cellular degradation and recycling process that maintains the homeostasis of organisms. A growing number of studies have reported that autophagy participates in infection by a variety of viruses. Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe financial losses to the global swine industry. Although much research has shown that PRRSV triggers autophagy for its own benefits, the exact molecular mechanisms involved in PRRSV-triggered autophagy remain to be fully elucidated. In the current study, we demonstrated that PRRSV infection significantly induced Golgi apparatus (GA) fragmentation, which promoted autophagy to facilitate viral self-replication. Mechanistically, PRRSV nonstructural protein 2 was identified to interact with and degrade the Golgi reassembly and stacking protein 65 dependent on its papain-like cysteine protease 2 activity, resulting in GA fragmentation. Upon GA fragmentation, GA-resident Ras-like protein in brain 2 was disassociated from Golgi matrix protein 130 and subsequently bound to unc-51 like autophagy activating kinase 1 (ULK1), which enhanced phosphorylation of ULK1 and promoted autophagy. Taken together, all these results expand the knowledge of PRRSV-triggered autophagy as well as PRRSV pathogenesis to support novel potential avenues for prevention and control of the virus. More importantly, these results provide the detailed mechanism of GA fragmentation-mediated autophagy, deepening the understanding of autophagic processes.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) infection results in a serious swine disease affecting pig farming worldwide. Despite that numerous studies have shown that PRRSV triggers autophagy for its self-replication, how PRRSV induces autophagy is incompletely understood. Here, we identify that PRRSV Nsp2 degrades GRASP65 to induce GA fragmentation, which dissociates RAB2 from GM130 and activates RAB2-ULK1-mediated autophagy to enhance viral replication. This work expands our understanding of PRRSV-induced autophagy and PRRSV replication, which is beneficial for anti-viral drug development.
Collapse
Affiliation(s)
- Shuang-shuang Zhao
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Qisheng Qian
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xin-xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Qingxia Lu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Guangxu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Longhu Modern Immunology Laboratory, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Zobaroğlu-Özer P, Bora-Akoğlu G. Split but merge: Golgi fragmentation in physiological and pathological conditions. Mol Biol Rep 2024; 51:214. [PMID: 38280063 DOI: 10.1007/s11033-023-09153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/12/2023] [Indexed: 01/29/2024]
Abstract
The Golgi complex is a highly dynamic and tightly regulated cellular organelle with essential roles in the processing as well as the sorting of proteins and lipids. Its structure undergoes rapid disassembly and reassembly during normal physiological processes, including cell division, migration, polarization, differentiation, and cell death. Golgi dispersal or fragmentation also occurs in pathological conditions, such as neurodegenerative diseases, infectious diseases, congenital disorders of glycosylation diseases, and cancer. In this review, current knowledge about both structural organization and morphological alterations in the Golgi in physiological and pathological conditions is summarized together with the methodologies that help to reveal its structure.
Collapse
Affiliation(s)
- Pelin Zobaroğlu-Özer
- Faculty of Medicine, Department of Medical Biology, Hacettepe University, Ankara, Turkey
- Faculty of Medicine, Department of Medical Biology, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Gamze Bora-Akoğlu
- Faculty of Medicine, Department of Medical Biology, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
13
|
Vieira DFB, Bandeira DM, da Silva MAN, de Almeida ALT, Araújo M, Machado AB, Tort LFL, Nacife VP, Siqueira MM, Motta FC, Pauvolid-Corrêa A, Barth OM. Comparative analysis of SARS-CoV-2 variants Alpha (B.1.1.7), Gamma (P.1), Zeta (P.2) and Delta (B.1.617.2) in Vero-E6 cells: ultrastructural characterization of cytopathology and replication kinetics. Braz J Infect Dis 2024; 28:103706. [PMID: 38081327 PMCID: PMC10776915 DOI: 10.1016/j.bjid.2023.103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
This study compares the effects of virus-cell interactions among SARS-CoV-2 variants of concern (VOCs) isolated in Brazil in 2021, hypothesizing a correlation between cellular alterations and mortality and between viral load and transmissibility. For this purpose, reference isolates of Alpha, Gamma, Zeta, and Delta variants were inoculated into monolayers of Vero-E6 cells. Viral RNA was quantified in cell supernatants by RT‒PCR, and infected cells were analyzed by Transmission Electron Microscopy (TEM) for qualitative and quantitative evaluation of cellular changes 24, 48, and 72 hours postinfection (hpi). Ultrastructural analyses showed that all variants of SARS-CoV-2 altered the structure and function of mitochondria, nucleus, and rough endoplasmic reticulum of cells. Monolayers infected with the Delta variant showed the highest number of modified cells and the greatest statistically significant differences compared to those of other variants. Viral particles were observed in the cytosol and the cell membrane in 100 % of the cells at 48 hpi. Alpha showed the highest mean particle diameter (79 nm), and Gamma and Delta were the smallest (75 nm). Alpha and Gamma had the highest particle frequency per field at 48 hpi, while the same was observed for Zeta and Delta at 72 hpi and 24 hpi, respectively. The cycle threshold of viral RNA varied among the target protein, VOC, and time of infection. The findings presented here demonstrate that all four VOCs evaluated caused ultrastructural changes in Vero-E6 cells, which were more prominent when infection occured with the Delta variant.
Collapse
Affiliation(s)
- Debora Ferreira Barreto Vieira
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brazil.
| | - Derick Mendes Bandeira
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brazil
| | - Marcos Alexandre Nunes da Silva
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brazil
| | - Ana Luisa Teixeira de Almeida
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brazil
| | - Mia Araújo
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro, RJ, Brazil
| | - Ana Beatriz Machado
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro, RJ, Brazil
| | - Luis Fernando Lopez Tort
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro, RJ, Brazil; Universidad de la República, Centro Universitario Regional - Litoral Norte, Laboratório de Virologia Molecular, Departamento de Ciências Biológicas, Salto, Uruguai
| | - Valéria Pereira Nacife
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro, RJ, Brazil
| | - Marilda M Siqueira
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro, RJ, Brazil
| | - Fernando Couto Motta
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro, RJ, Brazil
| | - Alex Pauvolid-Corrêa
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro, RJ, Brazil; Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Virologia Veterinária de Viçosa, Viçosa, MG, Brazil
| | - Ortrud Monika Barth
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
14
|
Dawoodi S, Rizvi SAA, Zaidi AK. Innate immune responses to SARS-CoV-2. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 202:127-154. [PMID: 38237984 DOI: 10.1016/bs.pmbts.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This chapter provides an overview of the innate immune response to SARS-CoV-2, focusing on the recognition, activation, and evasion strategies employed by the virus. The innate immune system plays a crucial role in the early defense against viral infections, and understanding its response to SARS-CoV-2 is essential for developing effective therapeutic approaches. The chapter begins by explaining the basics of the innate immune system, including its components and salient features. It discusses the various pattern recognition receptors involved in recognizing SARS-CoV-2, such as toll-like receptors, RIG-I-like receptors, NOD-like receptors, and other cytosolic sensors. The binding and entry of the virus into host cells and subsequent activation of innate immune cells, including neutrophils, monocytes, macrophages, dendritic cells, NK cells, and ILCs, are explored. Furthermore, the secretion of key cytokines and chemokines, including type I interferons, IL-6, IL-17, and TNF-alpha, is discussed as part of the innate immune response. The concept of PANoptosis, involving programmed cell death mechanisms, is introduced as a significant aspect of the response to SARS-CoV-2. The chapter also addresses the innate immune evasion strategies employed by SARS-CoV-2, which allow the virus to evade or subvert the host immune response, contributing to viral persistence. Understanding these strategies is crucial for developing targeted therapies against the virus.
Collapse
Affiliation(s)
- Sunny Dawoodi
- Anaesthesiologist, University Hospitals Birmingham and NHS Foundation Trust, United Kingdom
| | - Syed A A Rizvi
- College of Biomedical Sciences, Larkin University, Miami, Florida, United States.
| | | |
Collapse
|
15
|
Grootemaat AE, Wiersma N, van der Niet S, Schimmel IM, Florquin S, Reits EA, Miller SE, van der Wel NN. Nucleocapsid protein accumulates in renal tubular epithelium of a post-COVID-19 patient. Microbiol Spectr 2023; 11:e0302923. [PMID: 37975661 PMCID: PMC10715010 DOI: 10.1128/spectrum.03029-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Even though the coronavirus disease 2019 (COVID-19) pandemic is slowly developing into a conventional infectious disease, the long-term effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infection are still not well understood. One of the problems is that many COVID-19 cases develop acute kidney injuries. Still, it is heavily debated whether SARS-CoV-2 virus enters and actively replicates in kidney tissue and if SARS-CoV-2 virus particles can be detected in kidney during or post-infection. Here, we demonstrated that nucleocapsid N protein was detected in kidney tubular epithelium of patients that already recovered form COVID-19. The presence of the abundantly produced N protein without signs of viral replication could have implications for the recurrence of kidney disease and have a continuing effect on the immune system.
Collapse
Affiliation(s)
- Anita E. Grootemaat
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre AMC, Amsterdam, the Netherlands
| | - Niek Wiersma
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre AMC, Amsterdam, the Netherlands
| | - Sanne van der Niet
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre AMC, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Irene M. Schimmel
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre AMC, Amsterdam, the Netherlands
| | - Sandrine Florquin
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Pathology, Amsterdam University Medical Centers (location University of Amsterdam), Amsterdam, the Netherlands
| | - Eric A. Reits
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre AMC, Amsterdam, the Netherlands
| | - Sara E. Miller
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Nicole N. van der Wel
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre AMC, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Yao YL, Luo Y, Wang Q, Geng R, Chen Y, Liu MQ, Li B, Chen J, Wu CG, Jia JK, Luo JY, He YT, Jiang TT, Zhu Y, Hu B, Zhou P, Shi ZL. Identification of TMEM53 as a novel SADS-CoV restriction factor that targets viral RNA-dependent RNA polymerase. Emerg Microbes Infect 2023; 12:2249120. [PMID: 37584551 PMCID: PMC10467534 DOI: 10.1080/22221751.2023.2249120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
ABSTRACTZoonotic transmission of coronaviruses (CoVs) poses a serious public health threat. Swine acute diarrhea syndrome coronavirus (SADS-CoV), originating from a bat HKU2-related CoV, causes devastating swine diseases and poses a high risk of spillover to humans. Currently, licensed therapeutics that can prevent potential human outbreaks are unavailable. Identifying the cellular proteins that restrict viral infection is imperative for developing effective interventions and therapeutics. We utilized a large-scale human cDNA screening and identified transmembrane protein 53 (TMEM53) as a novel cell-intrinsic SADS-CoV restriction factor. The inhibitory effect of TMEM53 on SADS-CoV infection was found to be independent of canonical type I interferon responses. Instead, TMEM53 interacts with non-structural protein 12 (NSP12) and disrupts viral RNA-dependent RNA polymerase (RdRp) complex assembly by interrupting NSP8-NSP12 interaction, thus suppressing viral RdRp activity and RNA synthesis. Deleting the transmembrane domain of TMEM53 resulted in the abrogation of TMEM53-NSP12 interaction and TMEM53 antiviral activity. Importantly, TMEM53 exhibited broad antiviral activity against multiple HKU2-related CoVs. Our findings reveal a novel role of TMEM53 in SADS-CoV restriction and pave the way to host-directed therapeutics against HKU2-related CoV infection.
Collapse
Affiliation(s)
- Yu-Lin Yao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Yun Luo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qi Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Rong Geng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ying Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Mei-Qin Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Jing Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Chun-Guang Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jing-Kun Jia
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jing-Yi Luo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yan-Tong He
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ting-Ting Jiang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Peng Zhou
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, People’s Republic of China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| |
Collapse
|
17
|
Yang M, Mariano J, Su R, Smith CE, Das S, Gill C, Andresson T, Loncarek J, Tsai YC, Weissman AM. SARS-CoV-2 papain-like protease plays multiple roles in regulating cellular proteins in the endoplasmic reticulum. J Biol Chem 2023; 299:105346. [PMID: 37838170 PMCID: PMC10692909 DOI: 10.1016/j.jbc.2023.105346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023] Open
Abstract
Nsp3s are the largest nonstructural proteins of coronaviruses. These transmembrane proteins include papain-like proteases (PLpro) that play essential roles in cleaving viral polyproteins into their mature units. The PLpro of SARS-CoV viruses also have deubiquitinating and deISGylating activities. As Nsp3 is an endoplasmic reticulum (ER)-localized protein, we asked if the deubiquitinating activity of SARS-CoV-2 PLpro affects proteins that are substrates for ER-associated degradation (ERAD). Using full-length Nsp3 as well as a truncated transmembrane form we interrogated, by coexpression, three potential ERAD substrates, all of which play roles in regulating lipid biosynthesis. Transmembrane PLpro increases the level of INSIG-1 and decreases its ubiquitination. However, different effects were seen with SREBP-1 and SREBP-2. Transmembrane PLpro cleaves SREBP-1 at three sites, including two noncanonical sites in the N-terminal half of the protein, resulting in a decrease in precursors of the active transcription factor. Conversely, cleavage of SREBP-2 occurs at a single canonical site that disrupts a C-terminal degron, resulting in increased SREBP-2 levels. When this site is mutated and the degron can no longer be interrupted, SREBP-2 is still stabilized by transmembrane PLpro, which correlates with a decrease in SREBP-2 ubiquitination. All of these observations are dependent on PLpro catalytic activity. Our findings demonstrate that, when anchored to the ER membrane, SARS-CoV-2 Nsp3 PLpro can function as a deubiquitinating enzyme to stabilize ERAD substrates. Additionally, SARS-CoV-2 Nsp3 PLpro can cleave ER-resident proteins, including at sites that could escape analyses based on the established consensus sequence.
Collapse
Affiliation(s)
- Mei Yang
- Cancer Innovation Laboratory, Center for Cancer Research, National Institutes of Health, Frederick, Maryland, USA
| | - Jennifer Mariano
- Cancer Innovation Laboratory, Center for Cancer Research, National Institutes of Health, Frederick, Maryland, USA
| | - Rebecca Su
- Cancer Innovation Laboratory, Center for Cancer Research, National Institutes of Health, Frederick, Maryland, USA
| | - Christopher E Smith
- Cancer Innovation Laboratory, Center for Cancer Research, National Institutes of Health, Frederick, Maryland, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Catherine Gill
- Cancer Innovation Laboratory, Center for Cancer Research, National Institutes of Health, Frederick, Maryland, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jadranka Loncarek
- Cancer Innovation Laboratory, Center for Cancer Research, National Institutes of Health, Frederick, Maryland, USA
| | - Yien Che Tsai
- Cancer Innovation Laboratory, Center for Cancer Research, National Institutes of Health, Frederick, Maryland, USA
| | - Allan M Weissman
- Cancer Innovation Laboratory, Center for Cancer Research, National Institutes of Health, Frederick, Maryland, USA.
| |
Collapse
|
18
|
Justo Arevalo S, Castillo-Chávez A, Uribe Calampa CS, Zapata Sifuentes D, Huallpa CJ, Landa Bianchi G, Garavito-Salini Casas R, Quiñones Aguilar M, Pineda Chavarría R. What do we know about the function of SARS-CoV-2 proteins? Front Immunol 2023; 14:1249607. [PMID: 37790934 PMCID: PMC10544941 DOI: 10.3389/fimmu.2023.1249607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
The COVID-19 pandemic has highlighted the importance in the understanding of the biology of SARS-CoV-2. After more than two years since the first report of COVID-19, it remains crucial to continue studying how SARS-CoV-2 proteins interact with the host metabolism to cause COVID-19. In this review, we summarize the findings regarding the functions of the 16 non-structural, 6 accessory and 4 structural SARS-CoV-2 proteins. We place less emphasis on the spike protein, which has been the subject of several recent reviews. Furthermore, comprehensive reviews about COVID-19 therapeutic have been also published. Therefore, we do not delve into details on these topics; instead we direct the readers to those other reviews. To avoid confusions with what we know about proteins from other coronaviruses, we exclusively report findings that have been experimentally confirmed in SARS-CoV-2. We have identified host mechanisms that appear to be the primary targets of SARS-CoV-2 proteins, including gene expression and immune response pathways such as ribosome translation, JAK/STAT, RIG-1/MDA5 and NF-kβ pathways. Additionally, we emphasize the multiple functions exhibited by SARS-CoV-2 proteins, along with the limited information available for some of these proteins. Our aim with this review is to assist researchers and contribute to the ongoing comprehension of SARS-CoV-2's pathogenesis.
Collapse
Affiliation(s)
- Santiago Justo Arevalo
- Facultad de Ciencias Biológicas, Universidad Ricardo Palma, Lima, Peru
- Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Daniela Zapata Sifuentes
- Facultad de Ciencias Biológicas, Universidad Ricardo Palma, Lima, Peru
- Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - César J. Huallpa
- Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | | | | | | | | |
Collapse
|
19
|
Bgatova NP, Savchenko SV, Lamanov AN, Ergazina MZ, Adilova MT, Letyagin AY. Ultrastructural Reorganization of Endotheliocytes of Pulmonary Blood Capillaries in COVID-19. Bull Exp Biol Med 2023; 175:667-672. [PMID: 37861904 DOI: 10.1007/s10517-023-05923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Indexed: 10/21/2023]
Abstract
The ultrastructural organization endotheliocytes of pulmonary blood capillaries in COVID-19 was studied on autopsy material using electron microscopy. Swelling of the cytoplasm and mitochondria with destruction of the cristae, dilation of the Golgi complex cisternae, a decrease in the volume density of the luminal and basal caveolae and free transport vesicles, an increase of the rough endoplasmic reticulum, as well as the presence of elements of coronavirus replication (reticulovesicular structures, zippered endoplasmic reticulum, electron-dense particles in the Golgi cisternae, and vacuoles with viral particles) were revealed. Further studies of the intracellular mechanisms used by the virus to replicate could help to develop antiviral drugs for the treatment of the new coronavirus infection.
Collapse
Affiliation(s)
- N P Bgatova
- Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - S V Savchenko
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - A N Lamanov
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - M Zh Ergazina
- S. D. Asfendiyarov Kazakhstan National Medical University, Almaty, Republic of Kazakhstan
| | - M T Adilova
- S. D. Asfendiyarov Kazakhstan National Medical University, Almaty, Republic of Kazakhstan
| | - A Yu Letyagin
- Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
20
|
Klabunde B, Wesener A, Bertrams W, Ringshandl S, Halder LD, Vollmeister E, Schmeck B, Benedikter BJ. Streptococcus pneumoniae disrupts the structure of the golgi apparatus and subsequent epithelial cytokine response in an H 2O 2-dependent manner. Cell Commun Signal 2023; 21:208. [PMID: 37592354 PMCID: PMC10436572 DOI: 10.1186/s12964-023-01233-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Lung infections caused by Streptococcus pneumonia are a global leading cause of death. The reactive oxygen species H2O2 is one of the virulence factors of Streptococcus pneumoniae. The Golgi apparatus is essential for the inflammatory response of a eukaryotic cell. Golgi fragmentation was previously shown to be induced by bacterial pathogens and in response to H2O2 treatment. This led us to investigate whether the Golgi apparatus is actively involved and targeted in host-pathogen interactions during pneumococcal infections. METHODS Following in vitro infection of BEAS-2B bronchial epithelial cells with Streptococcus pneumoniae for 16 h, the structure of the Golgi apparatus was assessed by fluorescence staining of the Golgi-associated protein, Golgin-97. To investigate the effect of H2O2 production on Golgi structure, BEAS-2B cells were treated with H2O2 or the H2O2 degrading enzyme Catalase, prior to Golgi staining. Artificial disruption of the Golgi apparatus was induced by treatment of cells with the GBF1 inhibitor, Golgicide A. A proinflammatory cellular response was induced by treatment of cells with the bacterial cell wall component and TLR4 ligand lipoteichoic acid. RESULTS In vitro infection of bronchial epithelial cells with wild type Streptococcus pneumoniae led to a disruption of normal Golgi structure. Golgi fragmentation was not observed after deletion of the pneumococcal H2O2-producing gene, spxB, or neutralization of H2O2 by catalase treatment, but could be induced by H2O2 treatment. Streptococcus pneumoniae infection significantly reduced host cell protein glycosylation and artificial disruption of Golgi structure significantly reduced bacterial adherence, but increased bacterial counts in the supernatant. To understand if this effect depended on cell-contact or soluble factors, pneumococci were treated with cell-supernatant of cells treated with Golgicide A and/or lipoteichoic acid. This approach revealed that lipoteichoic acid conditioned medium inhibits bacterial replication in presence of host cells. In contrast, artificial Golgi fragmentation by Golgicide A treatment prior to lipoteichoic acid treatment rescued bacterial replication. This effect was associated with an increase of IL-6 and IL-8 in the supernatant of lipoteichoic acid treated cells. The increased cytokine release was abolished if cells were treated with Golgicide A prior to lipoteichoic acid treatment. CONCLUSION Streptococcus pneumoniae disrupts the Golgi apparatus in an H2O2-dependent manner, thereby inhibiting paracrine anti-infective mechanisms. Video Abstract.
Collapse
Affiliation(s)
- Björn Klabunde
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - André Wesener
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Stephan Ringshandl
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Luke D Halder
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Evelyn Vollmeister
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University Marburg, Marburg, Germany.
- Member of the German Center for Lung Research (DZL), German Center for Infectious Disease Research (DZIF), Marburg, Germany.
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany.
| | - Birke J Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
- School for Mental Health and Neuroscience, University Eye Clinic Maastricht, Maastricht University Medical Center (MUMC+), Maastricht University, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| |
Collapse
|
21
|
Williams JM, Chen YJ, Cho WJ, Tai AW, Tsai B. Reticulons promote formation of ER-derived double-membrane vesicles that facilitate SARS-CoV-2 replication. J Cell Biol 2023; 222:e202203060. [PMID: 37093123 PMCID: PMC10130743 DOI: 10.1083/jcb.202203060] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/24/2022] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiologic agent for the global COVID-19 pandemic, triggers the formation of endoplasmic reticulum (ER)-derived replication organelles, including double-membrane vesicles (DMVs), in the host cell to support viral replication. Here, we clarify how SARS-CoV-2 hijacks host factors to construct the DMVs. We show that the ER morphogenic proteins reticulon-3 (RTN3) and RTN4 help drive DMV formation, enabling viral replication, which leads to productive infection. Different SARS-CoV-2 variants, including the delta variant, use the RTN-dependent pathway to promote infection. Mechanistically, our results reveal that the membrane-embedded reticulon homology domain (RHD) of the RTNs is sufficient to functionally support viral replication and physically engage NSP3 and NSP4, two viral non-structural membrane proteins known to induce DMV formation. Our findings thus identify the ER morphogenic RTN3 and RTN4 membrane proteins as host factors that help promote the biogenesis of SARS-CoV-2-induced DMVs, which can act as viral replication platforms.
Collapse
Affiliation(s)
- Jeffrey M. Williams
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yu-Jie Chen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Woo Jung Cho
- Biomedical Research Core Facilities, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew W. Tai
- Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Modulation of NBAS-Related Functions in the Early Response to SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:ijms24032634. [PMID: 36768954 PMCID: PMC9916797 DOI: 10.3390/ijms24032634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Upon infection, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is predicted to interact with diverse cellular functions, such as the nonsense-mediated decay (NMD) pathway, as suggested by the identification of the core NMD factor upframeshift-1 (UPF1) in the SARS-CoV-2 interactome, and the retrograde transport from the Golgi to the endoplasmic reticulum (ER) through the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), where coronavirus assembly occurs. Here, we investigated the expression and localization of the neuroblastoma-amplified sequence (NBAS) protein, a UPF1 partner for the NMD at the ER, participating also in retrograde transport, and of its functional partners, at early time points after SARS-CoV-2 infection of the human lung epithelial cell line Calu3. We found a significant decrease of DExH-Box Helicase 34 (DHX34), suppressor with morphogenetic effect on genitalia 5 (SMG5), and SMG7 expression at 6 h post-infection, followed by a significant increase of these genes and also UPF1 and UPF2 at 9 h post-infection. Conversely, NBAS and other genes coding for NMD factors were not modulated. Known NMD substrates related to cell stress (Growth Arrest Specific 5, GAS5; transducin beta-like 2, TBL2; and DNA damage-inducible transcript 3, DDIT3) were increased in infected cells, possibly as a result of alterations in the NMD pathway and of a direct effect of the infection. We also found that the expression of unconventional SNARE in the ER 1, USE1 (p31) and Zeste White 10 homolog, ZW10, partners of NBAS in the retrograde transport function, significantly increased over time in infected cells. Co-localization of NBAS and UPF1 proteins did not change within 24 h of infection nor did it differ in infected versus non-infected cells at 1 and 24 h after infection; similarly, the co-localization of NBAS and p31 proteins was not altered by infection in this short time frame. Finally, both NBAS and UPF1 were found to co-localize with SARS-CoV-2 S and N proteins. Overall, these data are preliminary evidence of an interaction between NBAS and NBAS-related functions and SARS-CoV-2 in infected cells, deserving further investigation.
Collapse
|
23
|
SARS-CoV-2 Spike Protein Mutation at Cysteine-488 Impairs Its Golgi Localization and Intracellular S1/S2 Processing. Int J Mol Sci 2022; 23:ijms232415834. [PMID: 36555473 PMCID: PMC9779352 DOI: 10.3390/ijms232415834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein binds to the cellular receptor-angiotensin-converting enzyme-2 (ACE2) as the first step in viral cell entry. SARS-CoV-2 spike protein expression in the ACE2-expressing cell surface induces cell-cell membrane fusion, thus forming syncytia. To exert its fusogenic activity, the spike protein is typically processed at a specific site (the S1/S2 site) by cellular proteases such as furin. The C488 residue, located at the spike-ACE2 interacting surface, is critical for the fusogenic and infectious roles of the SARS-CoV-2 spike protein. We have demonstrated that the C488 residue of the spike protein is involved in subcellular targeting and S1/S2 processing. C488 mutant spike localization to the Golgi apparatus and cell surface were impaired. Consequently, the S1/S2 processing of the spike protein, probed by anti-Ser-686-cleaved spike antibody, markedly decreased in C488 mutant spike proteins. Moreover, brefeldin-A-mediated endoplasmic-reticulum-to-Golgi traffic suppression also suppressed spike protein S1/S2 processing. As brefeldin A treatment and C488 mutation inhibited S1/S2 processing and syncytia formation, the C488 residue of spike protein is required for functional spike protein processing.
Collapse
|
24
|
Paramonova NM, Chepur SV, Pervak MО, Myasnikov VA, Tyunin MA, Ilinskiy NS, Kanevskij BA, Smirnova AV. [An electron microscopic study of neocortex of Syrian hamsters ( Mesocricetus auratus) infected with SARS-CoV-2 (Coronaviridae: Coronavirinae: Betacoronavirus: Sarbecovirus)]. Vopr Virusol 2022; 67:403-413. [PMID: 36515286 DOI: 10.36233/0507-4088-130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 12/07/2022]
Abstract
INTRODUCTION Convalescent COVID-19 patients have various signs of central nervous system damage, including those directly associated with SARS-CoV-2. Hence, studies of SARS-COV-2 related morphological changes in neocortex are particularly relevant for understanding the mechanisms of their formation and development of approaches to preclinical evaluation of the effectiveness of antiviral drugs. The purpose of the research is a longitudinal study of the ultrastructural alterations in Syrian hamsters neocortex after experimental SARS-CoV-2 infection. MATERIALS AND METHODS Male Syrian hamsters weighing 80100 g, aged 4 to 6 weeks, were infected with 26 l SARS-CoV-2 intranasally with 4104 TCD50/ml of viral particles. The animals were euthanized on days 3, 7 or 28 post-infection, the brain was extracted with the cortex excision. The material analysis was performed using transmission electron microscopy. RESULTS AND DISCUSSION On day 3 post-infection, the number of moderately hyperchromic neurons in neocortex increased, while by the day 7 the number of apoptotic cells significantly increased. Simultaneously, an increased signs of neuronophagy and representation of atypical glia were observed. Increased number of altered oligodendrocytes was observed on day 28 post-infection. Viral invasion was accompanied by changes in neocortical cells since day 3 post-infection, such as transformation of their nucleus, the rough endoplasmic reticulum and the Golgi vesicles as well as microvascular spasm with perivascular edema. CONCLUSION As a result of electron microscopic study, the ultrastructural alterations in neocortex were described in an experimental model of SARS-CoV-2 infection. The findings can be used to identify the mechanisms of infection pathogenesis and to search for the new directions in development of medicines.
Collapse
Affiliation(s)
- N M Paramonova
- State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation.,Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
| | - S V Chepur
- State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
| | - M О Pervak
- State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
| | - V A Myasnikov
- State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
| | - M A Tyunin
- State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
| | - N S Ilinskiy
- State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
| | - B A Kanevskij
- State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
| | - A V Smirnova
- State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
| |
Collapse
|
25
|
Retro-2 alters Golgi structure. Sci Rep 2022; 12:14975. [PMID: 36056100 PMCID: PMC9438350 DOI: 10.1038/s41598-022-19415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
Retro-2 directly interacts with an ER exit site protein, Sec16A, inhibiting ER exit of a Golgi tSNARE, Syntaxin5, which results in rapid re-distribution of Syntaxin5 to the ER. Recently, it was shown that SARS-CoV-2 infection disrupts the Golgi apparatus within 6–12 h, while its replication was effectively inhibited by Retro-2 in cultured human lung cells. Yet, exactly how Retro-2 may influence ultrastructure of the Golgi apparatus have not been thoroughly investigated. In this study, we characterized the effect of Retro-2 treatment on ultrastructure of the Golgi apparatus using electron microscopy and EM tomography. Our initial results on protein secretion showed that Retro-2 treatment does not significantly influence secretion of either small or large cargos. Ultra-structural study of the Golgi, however, revealed rapid accumulation of COPI-like vesicular profiles in the perinuclear area and a partial disassembly of the Golgi stack under electron microscope within 3–5 h, suggesting altered Golgi organization in these cells. Retro-2 treatment in cells depleted of GRASP65/55, the two well-known Golgi structural proteins, induced complete and rapid disassembly of the Golgi into individual cisterna. Taken together, these results suggest that Retro-2 profoundly alters Golgi structure to a much greater extent than previously anticipated.
Collapse
|
26
|
Peddie CJ, Genoud C, Kreshuk A, Meechan K, Micheva KD, Narayan K, Pape C, Parton RG, Schieber NL, Schwab Y, Titze B, Verkade P, Aubrey A, Collinson LM. Volume electron microscopy. NATURE REVIEWS. METHODS PRIMERS 2022; 2:51. [PMID: 37409324 PMCID: PMC7614724 DOI: 10.1038/s43586-022-00131-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 07/07/2023]
Abstract
Life exists in three dimensions, but until the turn of the century most electron microscopy methods provided only 2D image data. Recently, electron microscopy techniques capable of delving deep into the structure of cells and tissues have emerged, collectively called volume electron microscopy (vEM). Developments in vEM have been dubbed a quiet revolution as the field evolved from established transmission and scanning electron microscopy techniques, so early publications largely focused on the bioscience applications rather than the underlying technological breakthroughs. However, with an explosion in the uptake of vEM across the biosciences and fast-paced advances in volume, resolution, throughput and ease of use, it is timely to introduce the field to new audiences. In this Primer, we introduce the different vEM imaging modalities, the specialized sample processing and image analysis pipelines that accompany each modality and the types of information revealed in the data. We showcase key applications in the biosciences where vEM has helped make breakthrough discoveries and consider limitations and future directions. We aim to show new users how vEM can support discovery science in their own research fields and inspire broader uptake of the technology, finally allowing its full adoption into mainstream biological imaging.
Collapse
Affiliation(s)
- Christopher J. Peddie
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Christel Genoud
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kimberly Meechan
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Present address: Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Kristina D. Micheva
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Constantin Pape
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Robert G. Parton
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicole L. Schieber
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Yannick Schwab
- Cell Biology and Biophysics Unit/ Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Aubrey Aubrey
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Lucy M. Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| |
Collapse
|
27
|
Prydz K, Saraste J. The life cycle and enigmatic egress of coronaviruses. Mol Microbiol 2022; 117:1308-1316. [PMID: 35434857 PMCID: PMC9321882 DOI: 10.1111/mmi.14907] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
There has been considerable recent interest in the life cycle of Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2), the causative agent of the Covid‐19 pandemic. Practically every step in CoV replication—from cell attachment and uptake via genome replication and expression to virion assembly has been considered as a specific event that potentially could be targeted by existing or novel drugs. Interference with cellular egress of progeny viruses could also be adopted as a possible therapeutic strategy; however, the situation is complicated by the fact that there is no broad consensus on how CoVs find their way out of their host cells. The viral nucleocapsid, consisting of the genomic RNA complexed with nucleocapsid proteins obtains a membrane envelope during virus budding into the lumen of the intermediate compartment (IC) at the endoplasmic reticulum (ER)–Golgi interface. From here, several alternative routes for CoV extracellular release have been proposed. Strikingly, recent studies have shown that CoV infection leads to the disassembly of the Golgi ribbon and the mobilization of host cell compartments and protein machineries that are known to promote Golgi‐independent trafficking to the cell surface. Here, we discuss the life cycle of CoVs with a special focus on different possible pathways for virus egress.
Collapse
Affiliation(s)
- Kristian Prydz
- Department of Biosciences, University of Oslo, Norway and Department of Biomedicine and Molecular Imaging Center University of Bergen Norway
| | | |
Collapse
|
28
|
Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther 2022; 7:26. [PMID: 35087058 PMCID: PMC8793099 DOI: 10.1038/s41392-022-00884-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent of the pandemic disease COVID-19, which is so far without efficacious treatment. The discovery of therapy reagents for treating COVID-19 are urgently needed, and the structures of the potential drug-target proteins in the viral life cycle are particularly important. SARS-CoV-2, a member of the Orthocoronavirinae subfamily containing the largest RNA genome, encodes 29 proteins including nonstructural, structural and accessory proteins which are involved in viral adsorption, entry and uncoating, nucleic acid replication and transcription, assembly and release, etc. These proteins individually act as a partner of the replication machinery or involved in forming the complexes with host cellular factors to participate in the essential physiological activities. This review summarizes the representative structures and typically potential therapy agents that target SARS-CoV-2 or some critical proteins for viral pathogenesis, providing insights into the mechanisms underlying viral infection, prevention of infection, and treatment. Indeed, these studies open the door for COVID therapies, leading to ways to prevent and treat COVID-19, especially, treatment of the disease caused by the viral variants are imperative.
Collapse
Affiliation(s)
- Weizhu Yan
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Yanhui Zheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Xiaotao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Bin He
- Department of Emergency Medicine, West China Hospital of Sichuan University, 610041, Chengdu, China.
- The First People's Hospital of Longquanyi District Chengdu, 610100, Chengdu, China.
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
29
|
Lee JY, Wing PAC, Gala DS, Noerenberg M, Järvelin AI, Titlow J, Zhuang X, Palmalux N, Iselin L, Thompson MK, Parton RM, Prange-Barczynska M, Wainman A, Salguero FJ, Bishop T, Agranoff D, James W, Castello A, McKeating JA, Davis I. Absolute quantitation of individual SARS-CoV-2 RNA molecules provides a new paradigm for infection dynamics and variant differences. eLife 2022; 11:74153. [PMID: 35049501 PMCID: PMC8776252 DOI: 10.7554/elife.74153] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Despite an unprecedented global research effort on SARS-CoV-2, early replication events remain poorly understood. Given the clinical importance of emergent viral variants with increased transmission, there is an urgent need to understand the early stages of viral replication and transcription. We used single-molecule fluorescence in situ hybridisation (smFISH) to quantify positive sense RNA genomes with 95% detection efficiency, while simultaneously visualising negative sense genomes, subgenomic RNAs, and viral proteins. Our absolute quantification of viral RNAs and replication factories revealed that SARS-CoV-2 genomic RNA is long-lived after entry, suggesting that it avoids degradation by cellular nucleases. Moreover, we observed that SARS-CoV-2 replication is highly variable between cells, with only a small cell population displaying high burden of viral RNA. Unexpectedly, the B.1.1.7 variant, first identified in the UK, exhibits significantly slower replication kinetics than the Victoria strain, suggesting a novel mechanism contributing to its higher transmissibility with important clinical implications.
Collapse
Affiliation(s)
- Jeffrey Y Lee
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Peter AC Wing
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), The University of OxfordOxfordUnited Kingdom
| | - Dalia S Gala
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Marko Noerenberg
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom,MRC-University of Glasgow Centre for Virus Research, The University of GlasgowGlasgowUnited Kingdom
| | - Aino I Järvelin
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Joshua Titlow
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom
| | - Natasha Palmalux
- MRC-University of Glasgow Centre for Virus Research, The University of GlasgowGlasgowUnited Kingdom
| | - Louisa Iselin
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Mary Kay Thompson
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Richard M Parton
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Maria Prange-Barczynska
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Ludwig Institute for Cancer Research, The University of OxfordOxfordUnited Kingdom
| | - Alan Wainman
- Sir William Dunn School of Pathology, The University of OxfordOxfordUnited Kingdom
| | | | - Tammie Bishop
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Ludwig Institute for Cancer Research, The University of OxfordOxfordUnited Kingdom
| | - Daniel Agranoff
- Department of Infectious Diseases, University Hospitals Sussex NHS Foundation TrustBrightonUnited Kingdom
| | - William James
- Sir William Dunn School of Pathology, The University of OxfordOxfordUnited Kingdom,James & Lillian Martin Centre, Sir William Dunn School of Pathology, The University of OxfordOxfordUnited Kingdom
| | - Alfredo Castello
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom,MRC-University of Glasgow Centre for Virus Research, The University of GlasgowGlasgowUnited Kingdom
| | - Jane A McKeating
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), The University of OxfordOxfordUnited Kingdom
| | - Ilan Davis
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| |
Collapse
|