1
|
Guo TJF, Singhera GK, Leung JM, Dorscheid DR. Airway Epithelial-Derived Immune Mediators in COVID-19. Viruses 2023; 15:1655. [PMID: 37631998 PMCID: PMC10458661 DOI: 10.3390/v15081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The airway epithelium, which lines the conducting airways, is central to the defense of the lungs against inhaled particulate matter and pathogens such as SARS-CoV-2, the virus that causes COVID-19. Recognition of pathogens results in the activation of an innate and intermediate immune response which involves the release of cytokines and chemokines by the airway epithelium. This response can inhibit further viral invasion and influence adaptive immunity. However, severe COVID-19 is characterized by a hyper-inflammatory response which can give rise to clinical presentations including lung injury and lead to acute respiratory distress syndrome, viral pneumonia, coagulopathy, and multi-system organ failure. In response to SARS-CoV-2 infection, the airway epithelium can mount a maladaptive immune response which can delay viral clearance, perpetuate excessive inflammation, and contribute to the pathogenesis of severe COVID-19. In this article, we will review the barrier and immune functions of the airway epithelium, how SARS-CoV-2 can interact with the epithelium, and epithelial-derived cytokines and chemokines and their roles in COVID-19 and as biomarkers. Finally, we will discuss these immune mediators and their potential as therapeutic targets in COVID-19.
Collapse
Affiliation(s)
- Tony J. F. Guo
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
| | - Gurpreet K. Singhera
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| | - Janice M. Leung
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| | - Delbert R. Dorscheid
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
2
|
Hénaut M, Carbonneau J, Rhéaume C, Levade I, Boivin G. In vitro fitness of SARS-CoV-2 variants as assessed by competition experiments followed by ddRT-PCR and whole genome sequencing. J Clin Virol 2023; 165:105517. [PMID: 37321149 DOI: 10.1016/j.jcv.2023.105517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVE To develop a new method for reliable and rapid determination of the fitness of SARS-CoV-2 variants of concern. METHODS Competition experiments between two SARS-CoV-2 variants were performed in cells of the upper (nasal human airway epithelium) and lower (Calu-3 cells) respiratory tracts followed by quantification of variant ratios by droplet digital reverse transcription (ddRT)-PCR. RESULTS In competition experiments, the delta variant outcompeted the alpha variant in both cells of the upper and lower respiratory tracts. A 50/50% mixture of delta and omicron variants indicated a predominance of omicron in the upper respiratory tract whereas delta predominated in the lower respiratory tract. There was no evidence of recombination events between variants in competition as assessed by whole gene sequencing. CONCLUSION Differential replication kinetics were shown between variants of concern which may explain, at least partly, the emergence and disease severity associated with new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Mathilde Hénaut
- Infectious Disease Research Center of the Centre Hospitalier Universitaire (CHU) de Quebec and Université Laval, Quebec City, QC, Canada
| | - Julie Carbonneau
- Infectious Disease Research Center of the Centre Hospitalier Universitaire (CHU) de Quebec and Université Laval, Quebec City, QC, Canada
| | - Chantal Rhéaume
- Infectious Disease Research Center of the Centre Hospitalier Universitaire (CHU) de Quebec and Université Laval, Quebec City, QC, Canada
| | - Ines Levade
- Quebec National Institute of Public Health, Montreal, QC, Canada
| | - Guy Boivin
- Infectious Disease Research Center of the Centre Hospitalier Universitaire (CHU) de Quebec and Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
3
|
Khan M, Clijsters M, Choi S, Backaert W, Claerhout M, Couvreur F, Van Breda L, Bourgeois F, Speleman K, Klein S, Van Laethem J, Verstappen G, Dereli AS, Yoo SJ, Zhou H, Dan Do TN, Jochmans D, Laenen L, Debaveye Y, De Munter P, Gunst J, Jorissen M, Lagrou K, Meersseman P, Neyts J, Thal DR, Topsakal V, Vandenbriele C, Wauters J, Mombaerts P, Van Gerven L. Anatomical barriers against SARS-CoV-2 neuroinvasion at vulnerable interfaces visualized in deceased COVID-19 patients. Neuron 2022; 110:3919-3935.e6. [PMID: 36446381 PMCID: PMC9647025 DOI: 10.1016/j.neuron.2022.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Can SARS-CoV-2 hitchhike on the olfactory projection and take a direct and short route from the nose into the brain? We reasoned that the neurotropic or neuroinvasive capacity of the virus, if it exists, should be most easily detectable in individuals who died in an acute phase of the infection. Here, we applied a postmortem bedside surgical procedure for the rapid procurement of tissue, blood, and cerebrospinal fluid samples from deceased COVID-19 patients infected with the Delta, Omicron BA.1, or Omicron BA.2 variants. Confocal imaging of sections stained with fluorescence RNAscope and immunohistochemistry afforded the light-microscopic visualization of extracellular SARS-CoV-2 virions in tissues. We failed to find evidence for viral invasion of the parenchyma of the olfactory bulb and the frontal lobe of the brain. Instead, we identified anatomical barriers at vulnerable interfaces, exemplified by perineurial olfactory nerve fibroblasts enwrapping olfactory axon fascicles in the lamina propria of the olfactory mucosa.
Collapse
Affiliation(s)
- Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Marnick Clijsters
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium
| | - Sumin Choi
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Wout Backaert
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Michiel Claerhout
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Floor Couvreur
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Laure Van Breda
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Florence Bourgeois
- Department of Otorhinolaryngology, Head and Neck Surgery, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Kato Speleman
- Department of Otorhinolaryngology, Head and Neck Surgery, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Sam Klein
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Johan Van Laethem
- Department of Infectious Diseases, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gill Verstappen
- Department of Otorhinolaryngology - Head and Neck Surgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Seung-Jun Yoo
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany; Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Hai Zhou
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Thuc Nguyen Dan Do
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Dirk Jochmans
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Lies Laenen
- Department of Laboratory Medicine & National Reference Center for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
| | - Yves Debaveye
- Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, KU Leuven, Leuven, Belgium
| | - Paul De Munter
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium
| | - Jan Gunst
- Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, KU Leuven, Leuven, Belgium
| | - Mark Jorissen
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Laboratory Medicine & National Reference Center for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Philippe Meersseman
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium; Laboratory of Neuropathology, Department of Imaging & Pathology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Vedat Topsakal
- Department of Otorhinolaryngology - Head and Neck Surgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christophe Vandenbriele
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Joost Wauters
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany.
| | - Laura Van Gerven
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Riccò M, Zaniboni A, Satta E, Ranzieri S, Marchesi F. Potential Use of Exhaled Breath Condensate for Diagnosis of SARS-CoV-2 Infections: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:diagnostics12092245. [PMID: 36140647 PMCID: PMC9497929 DOI: 10.3390/diagnostics12092245] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background. Reverse-transcriptase polymerase chain reaction (RT-qPCR) assays performed on respiratory samples collected through nasal swabs still represent the gold standard for COVID-19 diagnosis. Alternative methods to this invasive and time-consuming options are still being inquired, including the collection of airways lining fluids through exhaled breath condensate (EBC). Materials and Methods. We performed a systematic review and meta-analysis in order to explore the reliability of EBC as a way to collect respiratory specimens for RT-qPCR for diagnosis of COVID-19. Results. A total of 4 studies (205 specimens), were ultimately collected, with a pooled sensitivity of 69.5% (95%CI 26.8–93.4), and a pooled specificity of 98.3% (95%CI 87.8–99.8), associated with high heterogeneity and scarce diagnostic agreement with the gold standard represented by nasal swabs (Cohen’s kappa = 0.585). Discussion. Even though non-invasive options for diagnosis of COVID-19 are still necessary, EBC-based RT-qPCR showed scarce diagnostic performances, ultimately impairing its implementation in real-world settings. However, as few studies have been carried out to date, and the studies included in the present review are characterized by low numbers and low sample power, further research are requested to fully characterize the actual reliability of EBC-based RT-qPCR in the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Matteo Riccò
- Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), AUSL-IRCCS di Reggio Emilia, Via Amendola n.2, I-42122 Reggio Emilia, Italy
- Correspondence: ; Tel.: +39-339-2994-343
| | - Alessandro Zaniboni
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
| | - Elia Satta
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
| | - Silvia Ranzieri
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
| |
Collapse
|