1
|
Lopes MS, Silva MD, Azeredo J, Melo LDR. Coagulase-Negative Staphylococci phages panorama: Genomic diversity and in vitro studies for a therapeutic use. Microbiol Res 2024; 290:127944. [PMID: 39550872 DOI: 10.1016/j.micres.2024.127944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Coagulase-negative staphylococci (CoNS) are commensal bacteria of the human skin and mucosal membranes. The incidence of nosocomial infections caused by these species is on the rise, leading to a potential increase in antibiotic tolerance and resistance. Phages are emerging as a promising alternative to combat CoNS infections. Scientists are isolating phages infecting CoNS with a particular interest in S. epidermidis. This review compiles and analyses CoNS phages for several parameters including source, geographical location, host species, morphological diversity, and genomic diversity. Additionally, recent studies have highlighted the potential of these phages based on host range, in vitro evaluation of performance and stability, and interaction with biofilms. This comprehensive analysis enables a better understanding of the steps involved in using these phages for therapeutic purposes.
Collapse
Affiliation(s)
- Maria Sequeira Lopes
- CEB - Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
| | - Maria Daniela Silva
- CEB - Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Luís D R Melo
- CEB - Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
2
|
Yang J, Zhu X, Xu X, Sun Q. Recent knowledge in phages, phage-encoded endolysin, and phage encapsulation against foodborne pathogens. Crit Rev Food Sci Nutr 2024; 64:12040-12060. [PMID: 37589483 DOI: 10.1080/10408398.2023.2246554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The use of antibiotics had reached a plateau due to antibiotic resistance, overuse, and residue. Bacteriophages have recently attracted considerable attention as alternative biocontrol agents. Here, we provide an up-to-date overview of phage applications in the food industry. We reviewed recently reported phages against ten typical foodborne pathogens, studies of competitive phage-encoded endolysins, and the primary outcomes of phage encapsulation in food packaging and pathogen detection. Furthermore, we identified existing barriers that still need to be addressed and proposed potential solutions to overcome these obstacles in the future.
Collapse
Affiliation(s)
- Jie Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Xiaolong Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| |
Collapse
|
3
|
Kolenda C, Bonhomme M, Medina M, Pouilly M, Rousseau C, Troesch E, Martins-Simoes P, Stegger M, Verhoeven PO, Laumay F, Laurent F. Potential of training of anti- Staphylococcus aureus therapeutic phages against Staphylococcus epidermidis multidrug-resistant isolates is restricted by inter- and intra-sequence type specificity. mSystems 2024; 9:e0085024. [PMID: 39248470 PMCID: PMC11494967 DOI: 10.1128/msystems.00850-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 09/10/2024] Open
Abstract
Phage therapy appears to be a promising approach to tackle multidrug-resistant bacteria, including staphylococci. However, most anti-staphylococcal phages have been characterized in Staphylococcus aureus, while a limited number of studies investigated phage activity against S. epidermidis. We studied the potential of phage training to extend the host range of two types of anti-S. aureus phages against S. epidermidis isolates. The Appelmans protocol was applied to a mixture of Kayvirus and a mixture of Silviavirus phages repeatedly exposed to seven S. epidermidis strains representative of nosocomial-associated sequence types (ST), including the world-wide disseminated ST2. We observed increased activity only for the Kayvirus mixture against two of these strains (ST2 or ST35). Phage subpopulations isolated from the training mixture using these two strains (five/strain) exhibited different evolved phenotypes, active only against their isolation strain or strains of the same ST. Of note, 16/47 ST2 strains were susceptible to one of the groups of trained phages. A comparative genomic analysis of ancestral and trained phage genomes, conducted to identify potential bacterial determinants of such specific activity, found numerous recombination events between two of the three ancestors. However, a small number of trained phage genes had nucleotide sequence modifications impacting the corresponding protein compared to ancestral phages, two to four of them per phage genome being specific of each group of phage subpopulations exhibiting different host range. The results suggest that anti-S. aureus phages can be adapted to S. epidermidis isolates but with inter- and intra-ST specificity.ImportanceS. epidermidis is increasingly recognized as a threat for public health. Its clinical importance is notably related to multidrug resistance. Phage therapy is one of the most promising alternative therapeutic strategies to antibiotics. Nonetheless, only very few phages active against this bacterial species have been described. In the present study, we showed that phage training can be used to extend the host range of polyvalent Kayvirus phages within the Staphylococcus genera to include S. epidermidis species. In the context of rapid development of phage therapy, in vitro forced adaptation of previously characterized phages could be an appealing alternative to fastidious repeated isolation of new phages to improve the therapeutic potential of a phage collection.
Collapse
Affiliation(s)
- Camille Kolenda
- Service de bactériologie, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
- Equipe StaPath, CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Mélanie Bonhomme
- Service de bactériologie, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
- Equipe StaPath, CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Mathieu Medina
- Service de bactériologie, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
- Equipe StaPath, CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Mateo Pouilly
- Service de bactériologie, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Clara Rousseau
- Service de bactériologie, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Emma Troesch
- Service de bactériologie, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Patricia Martins-Simoes
- Service de bactériologie, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
- Equipe StaPath, CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Marc Stegger
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia
| | - Paul O. Verhoeven
- GIMAP Team, CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, St-Etienne, France
| | - Floriane Laumay
- Service de bactériologie, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
- Equipe StaPath, CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
- Faculté de Pharmacie, Université Claude Bernard Lyon 1, Lyon, France
| | - Frédéric Laurent
- Service de bactériologie, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
- Equipe StaPath, CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
- Faculté de Pharmacie, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
4
|
Hosseini Hooshiar M, Salari S, Nasiri K, Salim US, Saeed LM, Yasamineh S, Safaralizadeh R. The potential use of bacteriophages as antibacterial agents in dental infection. Virol J 2024; 21:258. [PMID: 39425223 PMCID: PMC11490148 DOI: 10.1186/s12985-024-02510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024] Open
Abstract
Dental infections, such as apical Periodontitis, periodontitis, and peri-implantitis (PI), are closely associated with specific bacterial species, including Streptococcus mutans (S. mutans), Porphyromonas gingivalis (P. gingivalis), and Fusobacterium nucleatum (F. nucleatum), among others. Antibiotics are extensively utilized for prophylactic and therapeutic purposes in the treatment of dental infections and other dental-related issues. Unfortunately, the rapid emergence of antimicrobial resistance has accompanied the increased use of antibiotics in recent years. Specific bacterial pathogens have reached a critical stage of antibiotic resistance, characterized by the proliferation of pan-resistant strains and the scarcity of viable therapeutic alternatives. Therapeutic use of particular bacteriophage (phage) particles that target bacterial pathogens is one potential alternative to antibiotics that are now being seriously considered for treating bacterial illnesses. A kind of virus known as a phage is capable of infecting and eliminating bacteria. Because they can't infect cells in plants and animals, phages might be a harmless substitute for antibiotics. To control oral disorders including periodontitis and dental caries, several research have been conducted in this area to study and identify phages from human saliva and dental plaque. The capacity of these agents to disturb biofilms expands their effectiveness against dental plaque biofilms and oral pathogens in cases of periodontitis, PI, and apical periodontitis. This review summarizes the current antibacterial properties of phages used to treat a variety of dental infections, such as periodontitis, peri-implantitis, infected dentin, and apical periodontitis.
Collapse
Affiliation(s)
| | - Sara Salari
- Doctor of Dental Surgery, Islamic Azad University of Medical Sciences, Esfahan, Iran
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Ula Samir Salim
- Department of Dentistry, Al-Noor University College, Nineveh, Iraq
| | - Lamya M Saeed
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Reza Safaralizadeh
- Restorative Dentistry Department of Dental Faculty, TABRIZ Medical University, Tabriz, Iran.
| |
Collapse
|
5
|
Vladkova TG, Smani Y, Martinov BL, Gospodinova DN. Recent Progress in Terrestrial Biota Derived Antibacterial Agents for Medical Applications. Molecules 2024; 29:4889. [PMID: 39459256 PMCID: PMC11510244 DOI: 10.3390/molecules29204889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Conventional antibiotic and multidrug treatments are becoming less and less effective and the discovery of new effective and safe antibacterial agents is becoming a global priority. Returning to a natural antibacterial product is a relatively new current trend. Terrestrial biota is a rich source of biologically active substances whose antibacterial potential has not been fully utilized. The aim of this review is to present the current state-of-the-art terrestrial biota-derived antibacterial agents inspired by natural treatments. It summarizes the most important sources and newly identified or modified antibacterial agents and treatments from the last five years. It focuses on the significance of plant- animal- and bacteria-derived biologically active agents as powerful alternatives to antibiotics, as well as the advantages of utilizing natural antibacterial molecules alone or in combination with antibiotics. The main conclusion is that terrestrial biota-derived antibacterial products and substances open a variety of new ways for modern improved therapeutic strategies. New terrestrial sources of known antibacterial agents and new antibacterial agents from terrestrial biota were discovered during the last 5 years, which are under investigation together with some long-ago known but now experiencing their renaissance for the development of new medical treatments. The use of natural antibacterial peptides as well as combinational therapy by commercial antibiotics and natural products is outlined as the most promising method for treating bacterial infections. In vivo testing and clinical trials are necessary to reach clinical application.
Collapse
Affiliation(s)
- Todorka G. Vladkova
- Department of Polymer Engineering, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria
| | - Younes Smani
- Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain;
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain
| | - Boris L. Martinov
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| | - Dilyana N. Gospodinova
- Faculty of Electrical Engineering, Technical University of Sofia, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| |
Collapse
|
6
|
Beck C, Krusche J, Notaro A, Walter A, Kränkel L, Vollert A, Stemmler R, Wittmann J, Schaller M, Slavetinsky C, Mayer C, De Castro C, Peschel A. Wall teichoic acid substitution with glucose governs phage susceptibility of Staphylococcus epidermidis. mBio 2024; 15:e0199023. [PMID: 38470054 PMCID: PMC11005348 DOI: 10.1128/mbio.01990-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The species- and clone-specific susceptibility of Staphylococcus cells for bacteriophages is governed by the structures and glycosylation patterns of wall teichoic acid (WTA) glycopolymers. The glycosylation-dependent phage-WTA interactions in the opportunistic pathogen Staphylococcus epidermidis and in other coagulase-negative staphylococci (CoNS) have remained unknown. We report a new S. epidermidis WTA glycosyltransferase TagE whose deletion confers resistance to siphoviruses such as ΦE72 but enables binding of otherwise unbound podoviruses. S. epidermidis glycerolphosphate WTA was found to be modified with glucose in a tagE-dependent manner. TagE is encoded together with the enzymes PgcA and GtaB providing uridine diphosphate-activated glucose. ΦE72 transduced several other CoNS species encoding TagE homologs, suggesting that WTA glycosylation via TagE is a frequent trait among CoNS that permits interspecies horizontal gene transfer. Our study unravels a crucial mechanism of phage-Staphylococcus interaction and horizontal gene transfer, and it will help in the design of anti-staphylococcal phage therapies.IMPORTANCEPhages are highly specific for certain bacterial hosts, and some can transduce DNA even across species boundaries. How phages recognize cognate host cells remains incompletely understood. Phages infecting members of the genus Staphylococcus bind to wall teichoic acid (WTA) glycopolymers with highly variable structures and glycosylation patterns. How WTA is glycosylated in the opportunistic pathogen Staphylococcus epidermidis and in other coagulase-negative staphylococci (CoNS) species has remained unknown. We describe that S. epidermidis glycosylates its WTA backbone with glucose, and we identify a cluster of three genes responsible for glucose activation and transfer to WTA. Their inactivation strongly alters phage susceptibility patterns, yielding resistance to siphoviruses but susceptibility to podoviruses. Many different CoNS species with related glycosylation genes can exchange DNA via siphovirus ΦE72, suggesting that glucose-modified WTA is crucial for interspecies horizontal gene transfer. Our finding will help to develop antibacterial phage therapies and unravel routes of genetic exchange.
Collapse
Affiliation(s)
- Christian Beck
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Janes Krusche
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Anna Notaro
- Department of Agricultural Sciences, University of Naples, Naples, Italy
| | - Axel Walter
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions/Glycobiology, University of Tübingen, Tübingen, Germany
| | - Lara Kränkel
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Anneli Vollert
- Electron-Microscopy, Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Regine Stemmler
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Johannes Wittmann
- Leibniz Institute, DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Martin Schaller
- Electron-Microscopy, Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Christoph Slavetinsky
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Pediatric Surgery and Urology, University Children's Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Christoph Mayer
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions/Glycobiology, University of Tübingen, Tübingen, Germany
| | | | - Andreas Peschel
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Beck C, Krusche J, Elsherbini AMA, Du X, Peschel A. Phage susceptibility determinants of the opportunistic pathogen Staphylococcus epidermidis. Curr Opin Microbiol 2024; 78:102434. [PMID: 38364502 DOI: 10.1016/j.mib.2024.102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
Staphylococcus epidermidis is a common member of the human skin and nose microbiomes and a frequent cause of invasive infections. Transducing phages accomplish the horizontal transfer of resistance and virulence genes by mispackaging of mobile-genetic elements, contributing to severe, therapy-refractory S. epidermidis infections. Lytic phages on the other hand can be interesting candidates for new anti-S. epidermidis phage therapies. Despite the importance of phages, we are only beginning to unravel S. epidermidis phage interactions. Recent studies shed new light on S. epidermidis phage diversity, host range, and receptor specificities. Modulation of cell wall teichoic acids, the major phage receptor structures, along with other phage defense mechanisms, are crucial determinants for S. epidermidis susceptibility to different phage groups.
Collapse
Affiliation(s)
- Christian Beck
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Janes Krusche
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Ahmed M A Elsherbini
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Xin Du
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Andreas Peschel
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
8
|
Plumet L, Morsli M, Ahmad-Mansour N, Clavijo-Coppens F, Berry L, Sotto A, Lavigne JP, Costechareyre D, Molle V. Isolation and Characterization of New Bacteriophages against Staphylococcal Clinical Isolates from Diabetic Foot Ulcers. Viruses 2023; 15:2287. [PMID: 38140529 PMCID: PMC10747802 DOI: 10.3390/v15122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Staphylococcus sp. is the most common bacterial genus in infections related to diabetic foot ulcers (DFUs). The emergence of multidrug-resistant bacteria places a serious burden on public health systems. Phage therapy is an alternative treatment to antibiotics, overcoming the issue of antibiotic resistance. In this study, six phages (SAVM01 to SAVM06) were isolated from effluents and were used against a panel of staphylococcal clinical samples isolated from DFUs. A genomic analysis revealed that the phages belonged to the Herelleviridae family, with sequences similar to those of the Kayvirus genus. No lysogeny-associated genes, known virulence or drug resistance genes were identified in the phage genomes. The phages displayed a strong lytic and antibiofilm activity against DFU clinical isolates, as well as against opportunistic pathogenic coagulase-negative staphylococci. The results presented here suggest that these phages could be effective biocontrol agents against staphylococcal clinical isolates from DFUs.
Collapse
Affiliation(s)
- Lucile Plumet
- VBIC, INSERM U1047, University of Montpellier, 34095 Montpellier, France; (L.P.); (N.A.-M.)
| | - Madjid Morsli
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, 30908 Nîmes, France; (M.M.); (J.-P.L.)
| | - Nour Ahmad-Mansour
- VBIC, INSERM U1047, University of Montpellier, 34095 Montpellier, France; (L.P.); (N.A.-M.)
| | | | - Laurence Berry
- Laboratory of Pathogen and Host Immunity, CNRS UMR5294, University of Montpellier, 34095 Montpellier, France;
| | - Albert Sotto
- VBIC, INSERM U1047, Department of Infectious Diseases, University of de Montpellier, CHU Nîmes, 30908 Nîmes, France;
| | - Jean-Philippe Lavigne
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, 30908 Nîmes, France; (M.M.); (J.-P.L.)
| | | | - Virginie Molle
- VBIC, INSERM U1047, University of Montpellier, 34095 Montpellier, France; (L.P.); (N.A.-M.)
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, 30908 Nîmes, France; (M.M.); (J.-P.L.)
| |
Collapse
|
9
|
Štrancar V, Marušić M, Tušar J, Praček N, Kolenc M, Šuster K, Horvat S, Janež N, Peterka M. Isolation and in vitro characterization of novel S. epidermidis phages for therapeutic applications. Front Cell Infect Microbiol 2023; 13:1169135. [PMID: 37293203 PMCID: PMC10244729 DOI: 10.3389/fcimb.2023.1169135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
S. epidermidis is an important opportunistic pathogen causing chronic prosthetic joint infections associated with biofilm growth. Increased tolerance to antibiotic therapy often requires prolonged treatment or revision surgery. Phage therapy is currently used as compassionate use therapy and continues to be evaluated for its viability as adjunctive therapy to antibiotic treatment or as an alternative treatment for infections caused by S. epidermidis to prevent relapses. In the present study, we report the isolation and in vitro characterization of three novel lytic S. epidermidis phages. Their genome content analysis indicated the absence of antibiotic resistance genes and virulence factors. Detailed investigation of the phage preparation indicated the absence of any prophage-related contamination and demonstrated the importance of selecting appropriate hosts for phage development from the outset. The isolated phages infect a high proportion of clinically relevant S. epidermidis strains and several other coagulase-negative species growing both in planktonic culture and as a biofilm. Clinical strains differing in their biofilm phenotype and antibiotic resistance profile were selected to further identify possible mechanisms behind increased tolerance to isolated phages.
Collapse
Affiliation(s)
- Vida Štrancar
- Centre of Excellence for Biosensors, Instrumentation and Process Control, Ajdovščina, Slovenia
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Monika Marušić
- Centre of Excellence for Biosensors, Instrumentation and Process Control, Ajdovščina, Slovenia
| | - Jasmina Tušar
- Centre of Excellence for Biosensors, Instrumentation and Process Control, Ajdovščina, Slovenia
| | - Neža Praček
- Centre of Excellence for Biosensors, Instrumentation and Process Control, Ajdovščina, Slovenia
| | - Marko Kolenc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Šuster
- Valdoltra Orthopaedic Hospital, Ankaran, Slovenia
| | - Simon Horvat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Nika Janež
- Centre of Excellence for Biosensors, Instrumentation and Process Control, Ajdovščina, Slovenia
| | - Matjaž Peterka
- Centre of Excellence for Biosensors, Instrumentation and Process Control, Ajdovščina, Slovenia
| |
Collapse
|
10
|
Bakuradze N, Merabishvili M, Kusradze I, Ceyssens PJ, Onsea J, Metsemakers WJ, Grdzelishvili N, Natroshvili G, Tatrishvili T, Lazvliashvili D, Mitskevich N, Pirnay JP, Chanishvili N. Characterization of a Bacteriophage GEC_vB_Bfr_UZM3 Active against Bacteroides fragilis. Viruses 2023; 15:v15051042. [PMID: 37243129 DOI: 10.3390/v15051042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/15/2023] [Accepted: 04/15/2023] [Indexed: 05/28/2023] Open
Abstract
Bacteroides fragilis is a commensal gut bacterium that is associated with a number of blood and tissue infections. It has not yet been recognized as one of the drug-resistant human pathogens, but cases of the refractory infections, caused by strains that are not susceptible to the common antibiotic regimes established for B. fragilis, have been more frequently reported. Bacteriophages (phages) were found to be a successful antibacterial alternative to antibiotic therapy in many cases of multidrug-resistant (MDR) bacterial infections. We have characterized the bacteriophage GEC_vB_Bfr_UZM3 (UZM3), which was used for the treatment of a patient with a chronic osteomyelitis caused by a B. fragilis mixed infection. Studied biological and morphological properties of UZM3 showed that it seems to represent a strictly lytic phage belonging to a siphovirus morphotype. It is characterized by high stability at body temperature and in pH environments for about 6 h. Whole genome sequencing analysis of the phage UZM3 showed that it does not harbor any known virulence genes and can be considered as a potential therapeutic phage to be used against B. fragilis infections.
Collapse
Affiliation(s)
- Nata Bakuradze
- Laboratory of Microbial Biotechnology, Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi 0160, Georgia
- Department of Biology, Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia
- AIETI Medical School, Davit Tvildiani Medical University, Tbilisi 0159, Georgia
| | - Maia Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, 1120 Brussels, Belgium
| | - Ia Kusradze
- Laboratory of General Microbiology, Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi 0160, Georgia
- Faculty of Medicine, European University, Tbilisi 0141, Georgia
| | | | - Jolien Onsea
- Department of Trauma Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Nino Grdzelishvili
- Laboratory of Microbial Biotechnology, Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi 0160, Georgia
- Faculty of Natural Science and Medicine, Ilia State University, Tbilisi 0162, Georgia
| | - Guliko Natroshvili
- Laboratory of Microbial Biotechnology, Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi 0160, Georgia
| | - Tamar Tatrishvili
- Laboratory of Microbial Biotechnology, Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi 0160, Georgia
- Faculty of Natural Science and Medicine, Ilia State University, Tbilisi 0162, Georgia
| | - Davit Lazvliashvili
- Laboratory of Microbial Biotechnology, Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi 0160, Georgia
- Faculty of Natural Science and Medicine, Ilia State University, Tbilisi 0162, Georgia
| | - Nunu Mitskevich
- Department of Biology, Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, 1120 Brussels, Belgium
| | - Nina Chanishvili
- Laboratory of Microbial Biotechnology, Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi 0160, Georgia
| |
Collapse
|
11
|
Popovic M. The SARS-CoV-2 Hydra, a tiny monster from the 21st century: Thermodynamics of the BA.5.2 and BF.7 variants. MICROBIAL RISK ANALYSIS 2023; 23:100249. [PMID: 36777924 PMCID: PMC9898946 DOI: 10.1016/j.mran.2023.100249] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 06/01/2023]
Abstract
SARS-CoV-2 resembles the ancient mythical creature Hydra. Just like with the Hydra, when one head is cut, it is followed by appearance of two more heads, suppression of one SARS-CoV-2 variant causes appearance of newer variants. Unlike Hydra that grows identical heads, newer SARS-CoV-2 variants are usually more infective, which can be observed as time evolution of the virus at hand, which occurs through acquisition of mutations during time. The appearance of new variants is followed by appearance of new COVID-19 pandemic waves. With the appearance of new pandemic waves and determining of sequences, in the scientific community and general public the question is always raised of whether the new variant will be more virulent and more pathogenic. The two variants characterized in this paper, BA.5.2 and BF.7, have caused a pandemic wave during the late 2022. This paper gives full chemical and thermodynamic characterization of the BA.5.2 and BF.7 variants of SARS-CoV-2. Having in mind that Gibbs energy of binding and biosynthesis represent the driving forces for the viral life cycle, based on the calculated thermodynamic properties we can conclude that the newer variants are more infective than earlier ones, but that their pathogenicity has not changed.
Collapse
Affiliation(s)
- Marko Popovic
- School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
12
|
Biothermodynamics of Viruses from Absolute Zero (1950) to Virothermodynamics (2022). Vaccines (Basel) 2022; 10:vaccines10122112. [PMID: 36560522 PMCID: PMC9784531 DOI: 10.3390/vaccines10122112] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Biothermodynamics of viruses is among the youngest but most rapidly developing scientific disciplines. During the COVID-19 pandemic, it closely followed the results published by molecular biologists. Empirical formulas were published for 50 viruses and thermodynamic properties for multiple viruses and virus variants, including all variants of concern of SARS-CoV-2, SARS-CoV, MERS-CoV, Ebola virus, Vaccinia and Monkeypox virus. A review of the development of biothermodynamics of viruses during the last several decades and intense development during the last 3 years is described in this paper.
Collapse
|
13
|
Fanaei Pirlar R, Wagemans J, Kunisch F, Lavigne R, Trampuz A, Gonzalez Moreno M. Novel Stenotrophomonas maltophilia Bacteriophage as Potential Therapeutic Agent. Pharmaceutics 2022; 14:pharmaceutics14102216. [PMID: 36297651 PMCID: PMC9612306 DOI: 10.3390/pharmaceutics14102216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
A novel bacteriophage CUB19 specific to the bacterial species Stenotrophomonas maltophilia was isolated from hospital sewage and characterized as a new species belonging to a proposed new phage genus ‘Cubvirus’ (Caudoviricetes). Its genome contains a total of 48,301 bp and 79 predicted genes, among which some have been associated with packaging and lysis-associated proteins, structural proteins, or DNA- and metabolism-associated proteins. No lysogeny-associated proteins or known virulence proteins were identified on the phage genome. CUB19 showed stability over a wide range of temperatures (−20 °C–60 °C) and pH values (pH 3–pH 13). Despite its narrow host range, this phage has potent observed antimicrobial and antibiofilm activity. A time-killing curve assay showed significant biofilm reduction after 24 h exposure to CUP19. Isothermal microcalorimetry assays investigating phage-antibiotic combinations revealed the effectiveness of CUB19 during co-administration with increasing antibiotic doses, regardless of the administration approach (simultaneous or staggered). These are encouraging indications for its application as a targeted therapeutic agent against resilient biofilm-associated Stenotrophomonas infections.
Collapse
Affiliation(s)
- Rima Fanaei Pirlar
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| | - Jeroen Wagemans
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Fabian Kunisch
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
- Faculty of Medicine, Westälische Wilhelms-Universität Münster, Domagkstraße 3, 48149 Münster, Germany
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Andrej Trampuz
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| | - Mercedes Gonzalez Moreno
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
- Correspondence:
| |
Collapse
|