1
|
Zhong L, Shi H, Li H, Xiao L, Peng Q, Liu Z, Wu P, Mo X. Acute Pancreatitis and Leukemoid Reaction as the Presenting Manifestation of Hemorrhagic Fever with Renal Syndrome: A Case Report. Infect Drug Resist 2024; 17:5347-5354. [PMID: 39635289 PMCID: PMC11616425 DOI: 10.2147/idr.s499197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
Background Hemorrhagic fever with renal syndrome (HFRS), caused by Orthohantavirus hantanense (HTNV) infection, is characterized by a range of symptom including fever, hemorrhage, and renal impairment. Acute pancreatitis and leukemoid reaction associated with HFRS have been less frequently reported. Case Presentation A 20-year-old male presented with fever, dizziness, and gastrointestinal symptom, which progressed to acute pancreatitis and leukemoid reaction. Despite initial treatment, his condition worsened, necessitating transfer to a tertiary care facility. Upon admission, the patient exhibited signs of organ dysfunction, and laboratory tests confirmed leukocytosis and thrombocytopenia, with imaging suggestive of pancreatitis. HTNV antibody test results were positive. Discussion This case illustrates the complexity of diagnosing HFRS when the disease presents atypically. The symptom that are shared with other conditions can lead to misdiagnosis. Treatment of HFRS patients requires a multidisciplinary approach, with particular attention to the timing and type of therapy to manage complications effectively. Conclusion This report emphasizes the importance of recognizing atypical presentations of HFRS and the benefits of a prompt and comprehensive treatment strategy. Early diagnosis and a tailored therapeutic approach are crucial for improving patient outcomes in such rare and complex cases. The case underscores the necessity for clinicians to be vigilant for secondary symptom of HFRS, particularly in high-incidence regions, and the role of early diagnosis and treatment in improving outcomes.
Collapse
Affiliation(s)
- Lanlan Zhong
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Huanyu Shi
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Hang Li
- Department of Emergency, Pingxiang People Hospital, Pingxiang, Jiangxi, 337000, People’s Republic of China
| | - Lu Xiao
- Department of Emergency, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Qianyi Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Zhiyong Liu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Ping Wu
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Xiaoye Mo
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| |
Collapse
|
2
|
Yao L, Wang X, Wang Z, Wang X. A Comprehensive Analysis Exploring the Vital Role of the Systemic Immune-Inflammatory Index Upon Admission in Severe Hemorrhagic Fever with Renal Syndrome. Int J Gen Med 2024; 17:4857-4866. [PMID: 39465187 PMCID: PMC11512764 DOI: 10.2147/ijgm.s480204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024] Open
Abstract
Objective To explore the value of the systemic immune-inflammatory index (SII) and the systemic inflammatory response index (SIRI) in patients with severe hemorrhagic fever with renal syndrome (HFRS) upon admission. Methods This study included a total of 165 patients with HFRS, who were divided into mild and severe groups based on the severity of the disease. By reviewing medical records, we collected the white blood cell (WBC), SII, and SIRI values of patients upon admission. Univariate and multivariate logistics regression analyses were performed to identify risk factors for severe HFRS. The receiver operating characteristic (ROC) curve was applied to calculate the area under the ROC curve (AUC) to analyze the predictive value of SII and SIRI for severe HFRS, and the results were compared with WBC and SIRI. Results Compared with the mild HFRS group, patients in the severe HFRS group had a longer duration of illness (P < 0.05), higher levels of WBC, neutrophil (NEUT), lymphocyte (LYMP), monocyte (MONO), procalcitonin (PCT), SIRI, alanine transaminase (ALT), and creatinine (Scr) (P < 0.05), while lower levels of ALB, platelet (PLT), platelet-to-lymphocyte rate (PLR), and SII, with statistically significant differences (P < 0.05). Binary logistics regression analysis indicated that WBC (OR: 1.190, 95% CI: 1.032-1.371), SII (OR: 0.967, 95% CI: 0.951-0.984), and SIRI (OR: 4.743, 95% CI: 2.077-10.830) were risk factors for severe HFRS. The AUCs of WBC, SII, and SIRI for predicting severe HFRS were 0.765, 0.803, and 0.785, respectively. Conclusion Low levels of SII and high levels of WBC and SIRI upon admission are risk factors for severe HFRS and have certain value in predicting the progression of HFRS to severe cases, among which SII exhibits the best predictive value.
Collapse
Affiliation(s)
- Lihua Yao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, People’s Republic of China
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People’s Republic of China
| | - Xinlu Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, People’s Republic of China
| | - Zihao Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, People’s Republic of China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, People’s Republic of China
| |
Collapse
|
3
|
Zhang J, Zhang J, Wang Y, Sun Y, Wang Y, Wang Y, Yang D, Qiao X, Liu X, Ding J, Zhang X, Zhang W, Wang Z, Hu C, Han C, Liu T, Yang S, Sun Y, Cheng L, Jiang D, Yang K. A comprehensive investigation of Glycoprotein-based nucleic acid vaccines for Hantaan Virus. NPJ Vaccines 2024; 9:196. [PMID: 39443512 PMCID: PMC11500389 DOI: 10.1038/s41541-024-00991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) occurs throughout Eurasia with considerable morbidity and mortality. Currently, the absence of specific treatments or effective antiviral drugs for hantavirus infection makes developing safe and effective vaccines a high priority. Here, we report the development of three novel nucleic acid vaccine candidates, mRNA, naked DNA, and DNA encapsulated in lipid nanoparticles, encoding the glycoproteins of the Hantaan virus (HTNV). To comprehensively evaluate the potential of candidate HTNV nucleic acid vaccines in preventing HFRS, we focus on evaluating their immunogenicity and efficacy in mice and comparing them with an inactivated vaccine as the benchmark. Our findings reveal that all candidate vaccines activated instant and sustained immune responses, offering comparable in vivo protective efficacy to the inactivated vaccines. Notably, compared to the inactivated vaccine, mRNA vaccine induced stronger virus-specific T-helper 1 cell immune response, while DNA-LNP elicited higher levels of neutralizing antibodies in mice. These results mark a significant step in developing nucleic acid vaccines for HTNV, suggesting that sequential immunization with DNA and mRNA vaccines could further amplify the advantages of nucleic acid vaccines.
Collapse
Affiliation(s)
- Jiaxing Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
- College of Life Sciences, Northwest University, Xi'an, China
| | - Junqi Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Yanbo Wang
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Yubo Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Yongkai Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Yueyue Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Duan Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Xupeng Qiao
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Xiaoqian Liu
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Jiaqi Ding
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Xiyang Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Wenbiao Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Zhenjie Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Chenchen Hu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Chenying Han
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Tianyue Liu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Shuya Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Yuanjie Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China
| | - Linfeng Cheng
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China.
| | - Dongbo Jiang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China.
- The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China.
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China.
- The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China.
- Department of Rheumatology, Tangdu Hospital, Air-Force Medical University (The Fourth Military Medical University), Xi'an, China.
| |
Collapse
|
4
|
Ye Z, Liu X, Ding S, Lu L, Zhang T, Zhou W, Dong Y. Incidence rate of hemorrhagic fever with renal syndrome complicated with acute pancreatitis: a meta-analysis. Front Med (Lausanne) 2024; 11:1442276. [PMID: 39502643 PMCID: PMC11534719 DOI: 10.3389/fmed.2024.1442276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Background Acute pancreatitis (AP) is a rare but serious complication in patients diagnosed with hemorrhagic fever with renal syndrome (HFRS). When AP complicates HFRS, the clinical outcome significantly worsens and the risk of mortality increases. However, the incidence of AP in HFRS patients and its associated mortality risk remain unclear. To address this knowledge gap, we conducted a meta-analysis to determine the AP incidence rate in HFRS patients and assess the impact of AP on mortality in these patients. Methods We systematically searched seven databases (PubMed, Web of Science, EMBase, Sinomed, Chinese National Knowledge Infrastructure, WanFang Data, and Chongqing VIP) for relevant studies on HFRS complicated by AP. The studies were selected using predefined inclusion and exclusion criteria based on the Population, Intervention, Comparison, Outcome, and Study design principle. Two independent reviewers screened the studies, and the quality of the included studies was assessed using the Agency for Healthcare Research and Quality and the Newcastle-Ottawa Evaluation Scale (NOS). Results In total, 11 studies, encompassing 1,218 HFRS patients, met the inclusion criteria. The overall incidence of HFRS complicated by AP was 8.5% (95% CI for r 5.9-11.1%). The HFRS patients with AP had a significantly higher risk of mortality than those without AP (OR = 3.668, 95% CI for OR 1.112-12.031). No statistically significant differences were observed in the subgroup and meta-regression analyses. Conclusion Although the incidence of AP in HFRS patients is not high, it significantly increases the risk of mortality in these patients. Future large-scale prospective studies are required to further validate these findings.
Collapse
Affiliation(s)
- Zhenzhen Ye
- Youth Research and Innovation Team of Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
- Prevention Rural Environmental Health Technical Guidance Center of Jiangxi Provincial Center for Disease Control, Nanchang, Jiangxi, China
| | - Xiaoqing Liu
- Youth Research and Innovation Team of Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Major Epidemic Prevention and Control, Nanchang, Jiangxi, China
| | - Sheng Ding
- Youth Research and Innovation Team of Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Major Epidemic Prevention and Control, Nanchang, Jiangxi, China
| | - Ling Lu
- Prevention Rural Environmental Health Technical Guidance Center of Jiangxi Provincial Center for Disease Control, Nanchang, Jiangxi, China
| | - Tianchen Zhang
- Youth Research and Innovation Team of Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Major Epidemic Prevention and Control, Nanchang, Jiangxi, China
| | - Wenfang Zhou
- Youth Research and Innovation Team of Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
- Prevention Rural Environmental Health Technical Guidance Center of Jiangxi Provincial Center for Disease Control, Nanchang, Jiangxi, China
| | - Yonghai Dong
- Youth Research and Innovation Team of Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Major Epidemic Prevention and Control, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Liu Y, Liu C, Wang L, Chen X, Qiao H, Zhang Y, Cai B, Xue R, Yi C. Investigating the impact of climatic and environmental factors on HFRS prevalence in Anhui Province, China, using satellite and reanalysis data. Front Public Health 2024; 12:1447501. [PMID: 39411492 PMCID: PMC11475030 DOI: 10.3389/fpubh.2024.1447501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Hemorrhagic Fever with Renal Syndrome (HFRS) is the most commonly diagnosed zoonosis in Asia. Despite taking various preventive measures, HFRS remains prevalent across multiple regions in China. This study aims to investigate the impact of climatic and environmental factors on the prevalence of HFRS in Anhui Province, China, utilizing satellite and reanalysis data. Methods We collect monthly HFRS data from Anhui Province spanning 2005 to 2019 and integrated MODIS satellite datasets and ERA5 reanalysis data, including variables such as precipitation, temperature, humidity, solar radiation, aerosol optical depth (AOD), and Normalized Difference Vegetation Index (NDVI). Continuous wavelet transform, Spearman correlation analysis, and Poisson regression analysis are employed to assess the association between climatic and environmental factors and HFRS cases. Results Our findings reveal that HFRS cases predominantly occur during the spring and winter seasons, with the highest peak intensity observed in a 9-year cycle. Notably, the monthly average relative humidity exhibits a Spearman correlation coefficient of 0.404 at a 4-month lag, taking precedence over other contributing factors. Poisson regression analysis elucidates that NDVI at a 2-month lag, mean temperature (T) and solar radiation (SR) at a 4-month lag, precipitation (P), relative humidity (RH), and AOD at a 5-month lag exhibit the most robust explanatory power for HFRS occurrence. Moreover, the developed predictive model exhibiting commendable accuracy. Discussion This study provides key evidence for understanding how climatic and environmental factors influence the transmission of HFRS at the provincial scale. Insights from this research are critical for formulating effective preventive strategies and serving as a resource for HFRS prevention and control efforts.
Collapse
Affiliation(s)
- Ying Liu
- Department of Infection, Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
| | - Chengyuan Liu
- Department of Infection, Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
| | - Liping Wang
- Department of Infectious Diseases, Xuzhou Medical University, Xuzhou, China
| | - Xian Chen
- Department of Infection, Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
| | - Huijie Qiao
- Department of Infection, Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
| | - Yan Zhang
- Department of Infection, Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
| | - Binggang Cai
- Department of Infection, Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
| | - Rongrong Xue
- Department of Infection, Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
| | - Chuanxiang Yi
- Yancheng Meteorological Administration, Yancheng, China
| |
Collapse
|
6
|
Tortosa F, Perre F, Tognetti C, Lossetti L, Carrasco G, Guaresti G, Iglesias A, Espasandin Y, Izcovich A. Seroprevalence of hantavirus infection in non-epidemic settings over four decades: a systematic review and meta-analysis. BMC Public Health 2024; 24:2553. [PMID: 39300359 PMCID: PMC11414058 DOI: 10.1186/s12889-024-20014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
INTRODUCTION Hantavirus infection is a zoonotic disease from rodents to humans, necessitating seroprevalence assessment for disease burden clarification and control measure implementation. This study aimed to estimate global hantaviruses seroprevalence, examining variations by regions, populations or settings. METHODS A comprehensive database search identified studies on human hantaviruses seroprevalence using IgG detection until january 2024. A random-effects meta-analysis estimated pooled seroprevalence, with subgroup analyses for geographical region, population, setting or occupation. RESULTS Out of 3,382 abstracts reviewed, 110 studies were selected, comprising 81,815 observations and 3207 events. The global seroprevalence was calculated at 2.93% (2.34%-3.67%). In terms of geographical distribution, our analysis encompassed 61 studies from the Americas, where the seroprevalence was estimated at 2.43% (95% CI: 1.71%-3.46%), 33 studies from Europe indicating a seroprevalence of 2.98% (95% CI: 2.19%-4.06%), 10 studies from Asia revealing a seroprevalence of 6.84% (95% CI: 3.64%-12.50%), and 6 studies from Africa demonstrating a seroprevalence of 2.21% (95% CI: 1.82%-2.71%). Subgroup analysis underscored varying seroprevalence rates across different populations, settings, and occupations, highlighting the necessity for targeted interventions and preventive measures. CONCLUSION The analysis reveals a moderate global hantaviruses seroprevalence, emphasizing the viral family's complex transmission dynamics influenced by exposure and geographical factors. This highlights the need for targeted prevention and control strategies.
Collapse
Affiliation(s)
- Fernando Tortosa
- Carrera de Medicina, Universidad Nacional de Rio Negro, Rio Negro, Argentina.
| | | | - Celia Tognetti
- Carrera de Medicina, Universidad Nacional de Rio Negro, Rio Negro, Argentina
| | - Lucia Lossetti
- "Ramon Carrillo" Hospital, Bariloche, Rio Negro, Rio Negro, Argentina
| | - Gabriela Carrasco
- Carrera de Medicina, Universidad Nacional de Rio Negro, Rio Negro, Argentina
| | - German Guaresti
- Carrera de Medicina, Universidad Nacional de Rio Negro, Rio Negro, Argentina
| | - Ayelén Iglesias
- "Ramon Carrillo" Hospital, Bariloche, Rio Negro, Rio Negro, Argentina
| | - Yesica Espasandin
- "Ramon Carrillo" Hospital, Bariloche, Rio Negro, Rio Negro, Argentina
| | | |
Collapse
|
7
|
Zhou W, Dong Y, Liu X, Ding S, Si H, Yang C. A bibliometric analysis of domestic and international research on hemorrhagic fever with renal syndrome over the past 2 decades. Medicine (Baltimore) 2024; 103:e39737. [PMID: 39287241 PMCID: PMC11404925 DOI: 10.1097/md.0000000000039737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Bibliometrics and statistics were used to determine and analyze the research status of hemorrhagic fever with renal syndrome (HFRS) from 2004 to 2023, and objectively reflect the development and future trend of HFRS at home and abroad through comparison. METHODS To search the research literature on HFRS in China National Knowledge Network and Web of Science databases from January 2004 to December 2023, CiteSpace and VOSviewer were used to visually analyze the annual publication trends, authors, research institutions, countries, co-cited literature, keywords and other contents of the included literatures. RESULTS A total of 4460 Chinese literatures and 2372 foreign literatures were included. The number of HFRS published in the Web of Science database showed a trend of positive growth, while the number of HFRS published in China National Knowledge Network showed a trend of decline. Bai Xuefan and Wang Zhiqiang were the most published authors in China, and foreign scholars Vaheri, Antti, Ahlm, Clas. The main research institutions in the domestic literature were Zhejiang Provincial Center for Disease Control and Prevention, Liaoning Provincial Center for Disease Control and Prevention, while foreign research institutions concentrated on the University of Helsinki and Ministry of Health. The top 3 countries in the literature research of Web of Science are the USA, China, and Germany. CONCLUSION The analysis results of hot spots and trends suggested that we need to develop more reliable tools and methods in the monitoring and spatio-temporal analysis of HFRS epidemic data in the future, so as to provide references for the surveillance and early warning of zoonotic diseases in the field of public health research.
Collapse
Affiliation(s)
- Wenfang Zhou
- Jiangxi Provincial Key Laboratory of Major Epidemics Prevention and Control, Young Scientific Research and Innovation Team of Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi Province, China
| | | | | | | | | | | |
Collapse
|
8
|
Liu S, Deng Z, Li J, Zou L, Sun X, Liu X, Shi Y, Huang S, Wu Y, Lei J, Liu P, Zhang P, Xiong Y, Long ZE. Isolation and characterization of genetic variants of Orthohantavirus hantanense from clinical cases of HFRS in Jiangxi Province, China. PLoS Negl Trop Dis 2024; 18:e0012439. [PMID: 39235995 PMCID: PMC11376573 DOI: 10.1371/journal.pntd.0012439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Hemorrhagic fever with renal syndrome (HFRS) is a severe public health problem in Jiangxi province, China. Previous studies reported genetic variants of Orthohantavirus hantanense (Hantaan virus, HTNV) in rodents in this area. However, the relationship between HTNV variants and human infection needs to be confirmed. This study aimed to identify the HTNV variants in patients and to understand the clinical characteristics of HFRS caused by these variants. METHODS Samples were collected from hospitalized suspected cases of HFRS during the acute phase. HFRS cases were confirmed using quantitative real-time RT-PCR. Peripheral blood mononuclear cells (PBMC) from patients with HFRS were inoculated into Vero-E6 cells for viral isolation. The genomic sequences of HTNV from patients were obtained by amplicon-based next-generation sequencing. A retrospective analysis was conducted on the clinical characteristics of the patients. RESULTS HTNV RNA was detected in 53 of 183 suspected HFRS patients. Thirteen HTNVs were isolated from 32 PBMCs of HFRS cases. Whole genome sequences of 14 HTNVs were obtained, including 13 isolates in cell culture from 13 patients, and one from plasma of the fatal case which was not isolated successfully in cell culture. Genetic analysis revealed that the HTNV sequence from the 14 patients showed significant variations in nucleotide and amino acid to the HTNV strains found in other areas. Fever (100%, 53/53), thrombocytopenia (100%, 53/53), increased serum aspartate aminotransferase (100%, 53/53), and increased lactate dehydrogenase (96.2%, 51/53) were the most common characteristics. Severe acute kidney injury was observed in 13.2% (7/53) of cases. Clinical symptoms, such as pain, petechiae, and gastrointestinal or respiratory symptoms were uncommon. CONCLUSION The HTNV genetic variants cause human infections in Jiangxi. The clinical symptoms of HFRS caused by the HTNV genetic variant during the acute phase are atypical. In addition to renal dysfunction, attention should be paid to the common liver injuries caused by these genetic variants.
Collapse
Affiliation(s)
- Shiwen Liu
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
- Laboratory of Viral Infectious Disease, the Key Laboratory of Important and Emerging Viral Infectious Diseases of Jiangxi Health Commission, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Zhishi Deng
- Department of Infectious Diseases, Gao'an People's Hospital, Gao'an, Jiangxi, China
| | - Jianxiong Li
- Laboratory of Viral Infectious Disease, the Key Laboratory of Important and Emerging Viral Infectious Diseases of Jiangxi Health Commission, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Long Zou
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Xiuhui Sun
- Laboratory Department, Chongren County Center for Disease Prevention and Control, Chongren, Jiangxi, China
| | - Xiaoqing Liu
- Laboratory of Viral Infectious Disease, the Key Laboratory of Important and Emerging Viral Infectious Diseases of Jiangxi Health Commission, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Yong Shi
- Laboratory of Viral Infectious Disease, the Key Laboratory of Important and Emerging Viral Infectious Diseases of Jiangxi Health Commission, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Shunqiang Huang
- Department of Infectious Diseases, Gao'an People's Hospital, Gao'an, Jiangxi, China
| | - Yangbowen Wu
- Laboratory of Viral Infectious Disease, the Key Laboratory of Important and Emerging Viral Infectious Diseases of Jiangxi Health Commission, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Jinhui Lei
- Department of Infectious Diseases, Gao'an People's Hospital, Gao'an, Jiangxi, China
| | - Peipei Liu
- Department of Infectious Diseases, Gao'an People's Hospital, Gao'an, Jiangxi, China
| | - Pei Zhang
- Institutional Center for Shared Technologies and Facilities, Wuhan Institute of Virology, Wuhan, Hubei, China
| | - Ying Xiong
- Laboratory of Viral Infectious Disease, the Key Laboratory of Important and Emerging Viral Infectious Diseases of Jiangxi Health Commission, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Zhong-Er Long
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Jiang F, Zhao Y, Peng R, Wen Y, Bi Y, Zhou Y, Chen Y, Deng H, Han X, Chen Z. Clinical and etiological characteristics of severe hemorrhagic fever caused by coinfection of hantaan orthohantavirus and severe fever with thrombocytopenia syndrome virus. J Med Virol 2024; 96:e29931. [PMID: 39291826 DOI: 10.1002/jmv.29931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/18/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) and hemorrhagic fever with renal syndrome (HFRS) usually have different infection routes, and coinfection is relatively rare. This study examines the clinical and etiological characteristics of coinfection by these two pathogens to provide important references for clinical diagnosis and treatment. Blood samples from 22 clinically diagnosed patients with HFRS were collected for molecular detection of HFRS and common tick and mouse borne diseases. Inoculate the blood of six severe and critically patients into cells to isolate and proliferate potential viruses, and retest the cell culture to determine the pathogen. In addition, complete data were collected from these 22 HFRS and concurrent SFTS patients, and white blood cells (WBCs), platelet (PLT), blood urea nitrogen (BUN), creatinine (Cr) and other data were compared and analyzed. A total of 31 febrile patients, including 22 HFRS patients and 9 SFTS patients, were collected from September 2021 to October 2022. Among these HFRS patients, 11 were severe or critical. Severe and critical HFRS patients were characterized by rodent exposure history, pharyngeal and conjunctival hyperemia, abnormal WBC and PLT counts, and elevated BUN and Cr values. Virus isolation and molecular detection on blood samples from 6 patients showed that three of the six severe patients were positive for hantaan virus (HTNV), and two of the three HTNV positives were also positive for SFTS bunyavirus (SFTSV). The two coinfected patients exhibited different clinical and laboratory characteristics compared to those infected by either virus alone. Coinfection of HTNV and SFTSV leads to severe and complex hemorrhagic fever. Laboratory characteristics, such as the indicators of WBC, PLT, BUN, and Cr, may differ between HFRS and SFTS. These findings have implications and provide references for the diagnosis and treatment of coinfected cases.
Collapse
Affiliation(s)
- Feng Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yongxiang Zhao
- The Sixth People's Hospital of Dandong City, Dandong, China
| | - Ruihao Peng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ya Wen
- The Sixth People's Hospital of Dandong City, Dandong, China
| | - Yudan Bi
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yichen Zhou
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yao Chen
- Liaoning center for Agricultural Development Service, Shenyang, China
| | - Hua Deng
- Manzhouli International Travel Health Care Center, Manzhouli, China
| | - Xiaohu Han
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Innovative Institute of Zoonoses, Medical College (Inner Mongolia Minzu University), Tongliao, China
| |
Collapse
|
10
|
Shartova N, Korennoy F, Zelikhina S, Mironova V, Wang L, Malkhazova S. Spatial and temporal patterns of haemorrhagic fever with renal syndrome (HFRS) and the impact of environmental drivers in a border area of the Russian Far East. Zoonoses Public Health 2024; 71:489-502. [PMID: 38396153 DOI: 10.1111/zph.13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
AIMS Haemorrhagic fever with renal syndrome (HFRS) is a significant zoonotic disease transmitted by rodents. The distribution of HFRS in the European part of Russia has been studied quite well; however, much less is known about the endemic area in the Russian Far East. The mutual influence of the epidemic situation in the border regions and the possibility of cross-border transmission of infection remain poorly understood. This study aims to identify the spatiotemporal hot spots of the incidence and the impact of environmental drivers on the HFRS distribution in the Russian Far East. METHODS AND RESULTS A two-scale study design was performed. Kulldorf's spatial scan statistic was used to conduct spatiotemporal analysis at a regional scale from 2000 to 2020. In addition, an ecological niche model based on maximum entropy was applied to analyse the contribution of various factors and identify spatial favourability at the local scale. One spatiotemporal cluster that existed from 2002 to 2011 and located in the border area and one pure temporal cluster from 2004 to 2007 were revealed. The best suitability for orthohantavirus persistence was found along rivers, including those at the Chinese-Russian border, and was mainly explained by land cover, NDVI (as an indicator of vegetation density and greenness) and elevation. CONCLUSIONS Despite the stable incidence in recent years in, targeted prevention strategies are still needed due to the high potential for HRFS distribution in the southeast of the Russian Far East.
Collapse
Affiliation(s)
- Natalia Shartova
- International Laboratory of Landscape Ecology, Higher School of Economics, Moscow, Russia
| | - Fedor Korennoy
- FGBI Federal Center for Animal Health (FGBI ARRIAH), mkr. Yurevets, Vladimir, Russia
| | | | - Varvara Mironova
- Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
| | - Li Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
11
|
Brisse M, Ly H. GBP1, an interferon-inducible GTPase, inhibits Hantaan viral entry by restricting clathrin-mediated endocytosis. J Med Virol 2024; 96:e29818. [PMID: 39011797 DOI: 10.1002/jmv.29818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Affiliation(s)
- Morgan Brisse
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
12
|
Sehgal A, Sharma D, Kaushal N, Gupta Y, Martynova E, Kabwe E, Chandy S, Rizvanov A, Khaiboullina S, Baranwal M. Designing a Conserved Immunogenic Peptide Construct from the Nucleocapsid Protein of Puumala orthohantavirus. Viruses 2024; 16:1030. [PMID: 39066193 PMCID: PMC11281540 DOI: 10.3390/v16071030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Puumala orthohantavirus (PUUV) is an emerging zoonotic virus endemic to Europe and Russia that causes nephropathia epidemica, a mild form of hemorrhagic fever with renal syndrome (HFRS). There are limited options for treatment and diagnosis of orthohantavirus infection, making the search for potential immunogenic candidates crucial. In the present work, various bioinformatics tools were employed to design conserved immunogenic peptides containing multiple epitopes of PUUV nucleocapsid protein. Eleven conserved peptides (90% conservancy) of the PUUV nucleocapsid protein were identified. Three conserved peptides containing multiple T and B cell epitopes were selected using a consensus epitope prediction algorithm. Molecular docking using the HPEP dock server demonstrated strong binding interactions between the epitopes and HLA molecules (ten alleles for each class I and II HLA). Moreover, an analysis of population coverage using the IEDB database revealed that the identified peptides have over 90% average population coverage across six continents. Molecular docking and simulation analysis reveal a stable interaction with peptide constructs of chosen immunogenic peptides and Toll-like receptor-4. These computational analyses demonstrate selected peptides' immunogenic potential, which needs to be validated in different experimental systems.
Collapse
Affiliation(s)
- Ayushi Sehgal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147001, India; (A.S.); (D.S.); (N.K.); (Y.G.)
| | - Diksha Sharma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147001, India; (A.S.); (D.S.); (N.K.); (Y.G.)
| | - Neha Kaushal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147001, India; (A.S.); (D.S.); (N.K.); (Y.G.)
| | - Yogita Gupta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147001, India; (A.S.); (D.S.); (N.K.); (Y.G.)
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia; (E.M.); (E.K.); (S.K.)
| | - Emmanuel Kabwe
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia; (E.M.); (E.K.); (S.K.)
| | - Sara Chandy
- Childs Trust Medical Research Foundation (CTMRF) Kanchi, Chennai 600034, India;
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia; (E.M.); (E.K.); (S.K.)
| | - Svetlana Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia; (E.M.); (E.K.); (S.K.)
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147001, India; (A.S.); (D.S.); (N.K.); (Y.G.)
| |
Collapse
|
13
|
Shi S, Zhang A, Zhang J, Xu S. Partial hypopituitarism with ACTH deficiency as the main manifestation as a complication of hemorrhagic fever with renal syndrome. BMC Endocr Disord 2024; 24:61. [PMID: 38715016 PMCID: PMC11075197 DOI: 10.1186/s12902-024-01587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Hypopituitarism is a relatively rare complication of hemorrhagic fever with renal syndrome. However, almost all available reported cases were total anterior pituitary hypofunction, isolated growth-hormone deficiency, or isolated gonadotropin deficiency. Here, we firstly describe a patient with partial hypopituitarism with ACTH deficiency as the main manifestation as a complication of hemorrhagic fever with renal syndrome.
Collapse
Affiliation(s)
- Shaomin Shi
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 139 JingzhouStreet, Xiangyang, Hubei, 441000, China
| | - Aoni Zhang
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 139 JingzhouStreet, Xiangyang, Hubei, 441000, China
| | - Jingjing Zhang
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 139 JingzhouStreet, Xiangyang, Hubei, 441000, China.
| | - Shaoyong Xu
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 139 JingzhouStreet, Xiangyang, Hubei, 441000, China.
- Center for Clinical Evidence-Based and Translational Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
14
|
Zhao HD, Qian HB, Wang ZK, Ren RK, Yu TB, Liu HL. Patient with suspected co-infection of hemorrhagic fever with renal syndrome and malaria: a case report. Front Med (Lausanne) 2024; 11:1341015. [PMID: 38751985 PMCID: PMC11094318 DOI: 10.3389/fmed.2024.1341015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Background Hemorrhagic fever with renal syndrome (HFRS) is a natural epidemic disease that can be caused by the Hantaan virus (HTNV). Malaria is caused by plasmodium and can be transmitted by a mosquito bite. The similar manifestations shared by these disorders pose a challenge for clinicians in differential diagnosis, in particular, coupled with a false-positive serological test. Case presentation A 46-year-old man was admitted for fever and chills for over 10 days and was suspected of being co-infected with HFRS and malaria due to a history of travel to malaria-endemic areas and a positive HTNV-immunoglobulin M (IgM) test. Although leukocytosis, thrombocytopenia, renal injury, lymphocytosis, overexpression of interleukin-6, and procalcitonin were observed during the hospitalization, the hypotensive, oliguria, and polyuria phases of the HFRS course were not observed. Instead, typical symptoms of malaria were found, including a progressive decrease in erythrocytes and hemoglobin levels with signs of anemia. Furthermore, because the patient had no history of exposure to HFRS endemic areas, exposure to an HTNV-infected rodent, or a positive HTNV-IgG test, and false serological tests of IgM can be caused by various factors, the HFRS coinfection with malaria was ruled out. Conclusion Misdiagnosis can be easily induced by a false serological test, in particular the IgM test which can be influenced by various factors. A combination of health history, epidemiology, physical examination, precise application of specific examinations involving tests of conventional laboratory parameters as well as well-accepted methods such as the immunochromatographic (ICG) test, real-time reverse transcription-polymerase chain reaction (PCR), and Western blot (WB), and acquaintance with disorders with similar manifestations will contribute to the precise diagnosis in clinical treatment.
Collapse
Affiliation(s)
- Han-Dong Zhao
- Central Laboratory of Virology, Shaanxi Provincial Hospital of Infectious Diseases, The Eighth Hospital Affiliated to Medical College of Xi’an Jiaotong University, Xi’an, China
- Clinical Laboratory Center, Shaanxi Provincial Hospital of Infectious Diseases, The Eighth Hospital Affiliated to Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Hong-Bo Qian
- Clinical Laboratory Center, Shaanxi Provincial Hospital of Infectious Diseases, The Eighth Hospital Affiliated to Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Ze-Kun Wang
- Department of Radiology, Shaanxi Provincial Hospital of Infectious Diseases, The Eighth Hospital Affiliated to Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Rui-Kang Ren
- Network and Information Center, Shaanxi Provincial Hospital of Infectious Diseases, The Eighth Hospital Affiliated to Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Tong-Bo Yu
- Clinical Laboratory Center, Shaanxi Provincial Hospital of Infectious Diseases, The Eighth Hospital Affiliated to Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Hong-Li Liu
- Clinical Laboratory Center, Xi’an People’s Hospital (Xi’an Fourth Hospital) Guang-Ren Hospital Affiliated to Xi’an Jiaotong University Health Science Center, Xi’an, China
| |
Collapse
|
15
|
Wang Y, Liang Z, Qing S, Xi Y, Xu C, Lin F. Asymmetric impact of climatic parameters on hemorrhagic fever with renal syndrome in Shandong using a nonlinear autoregressive distributed lag model. Sci Rep 2024; 14:9739. [PMID: 38679612 PMCID: PMC11056385 DOI: 10.1038/s41598-024-58023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) poses a major threat in Shandong. This study aimed to investigate the long- and short-term asymmetric effects of meteorological factors on HFRS and establish an early forecasting system using autoregressive distributed lag (ARDL) and nonlinear ARDL (NARDL) models. Between 2004 and 2019, HFRS exhibited a declining trend (average annual percentage change = - 9.568%, 95% CI - 16.165 to - 2.451%) with a bimodal seasonality. A long-term asymmetric influence of aggregate precipitation (AP) (Wald long-run asymmetry [WLR] = - 2.697, P = 0.008) and aggregate sunshine hours (ASH) (WLR = 2.561, P = 0.011) on HFRS was observed. Additionally, a short-term asymmetric impact of AP (Wald short-run symmetry [WSR] = - 2.419, P = 0.017), ASH (WSR = 2.075, P = 0.04), mean wind velocity (MWV) (WSR = - 4.594, P < 0.001), and mean relative humidity (MRH) (WSR = - 2.515, P = 0.013) on HFRS was identified. Also, HFRS demonstrated notable variations in response to positive and negative changes in ∆MRH(-), ∆AP(+), ∆MWV(+), and ∆ASH(-) at 0-2 month delays over the short term. In terms of forecasting, the NARDL model demonstrated lower error rates compared to ARDL. Meteorological parameters have substantial long- and short-term asymmetric and/or symmetric impacts on HFRS. Merging NARDL model with meteorological factors can enhance early warning systems and support proactive measures to mitigate the disease's impact.
Collapse
Affiliation(s)
- Yongbin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, The First Affiliated Hospital of Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, Henan Province, 453003, People's Republic of China.
| | - Ziyue Liang
- Department of Epidemiology and Health Statistics, School of Public Health, The First Affiliated Hospital of Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Siyu Qing
- Department of Epidemiology and Health Statistics, School of Public Health, The First Affiliated Hospital of Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yue Xi
- Department of Epidemiology and Health Statistics, School of Public Health, The First Affiliated Hospital of Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Chunjie Xu
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Fei Lin
- Department of Epidemiology and Health Statistics, School of Public Health, The First Affiliated Hospital of Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, Henan Province, 453003, People's Republic of China.
| |
Collapse
|
16
|
Mačak Šafranko Ž, Jakopec L, Svaguša K, Cvetko Krajinović L, Tomasović D, Lukić LJ, Markotić A. Serum Concentrations of TIM-3, LAG-3, and PD-1 in Patients with Hemorrhagic Fever with Renal Syndrome. Life (Basel) 2024; 14:551. [PMID: 38792573 PMCID: PMC11121887 DOI: 10.3390/life14050551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 05/26/2024] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease widespread in Europe and Asia. HFRS is caused by negative-sensed single-stranded RNA orthohantaviruses transmitted to humans through inhaling aerosolized excreta of infected rodents. Symptoms of HFRS include acute kidney injury, thrombocytopenia, hemorrhages, and hypotension. The immune response raised against viral antigens plays an important role in the pathogenesis of HFRS. Inhibitory co-receptors are essential in regulating immune responses, mitigating immunopathogenesis, and reducing tissue damage. Our research showed an increased soluble form of inhibitory co-receptors TIM-3, LAG-3, and PD-1 in HFRS patients associated with disease severity. Our study aimed to investigate the impact of HFRS on the concentrations of soluble forms of inhibitory receptors TIM-3, LAG-3, and PD-1 in the patient's serum and the potential correlation with key clinical parameters. Our study aimed to investigate the impact of HFRS on the concentrations of soluble forms of inhibitory receptors TIM-3, LAG-3, and PD-1 in the patient's serum and their possible association with relevant clinical parameters. Using multiplex immunoassay, we found elevated levels of TIM-3, LAG-3, and PD-1 proteins in the serum of HFRS patients. Furthermore, increased levels were associated with creatinine, urea, lactate dehydrogenase concentrations, and platelet count. These findings suggest that these proteins play a role in regulating the immune response and disease progression.
Collapse
Affiliation(s)
- Željka Mačak Šafranko
- Research Unit, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Lana Jakopec
- Research Unit, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Karla Svaguša
- Research Unit, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Lidija Cvetko Krajinović
- Research Unit, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Domagoj Tomasović
- Research Unit, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Ljiljana Lukić
- Research Unit, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Alemka Markotić
- Research Unit, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Faculty of Medicine, Catholic University of Croatia, 10000 Zagreb, Croatia
| |
Collapse
|
17
|
Lu W, Kuang L, Hu Y, Shi J, Li Q, Tian W. Epidemiological and clinical characteristics of death from hemorrhagic fever with renal syndrome: a meta-analysis. Front Microbiol 2024; 15:1329683. [PMID: 38638893 PMCID: PMC11024303 DOI: 10.3389/fmicb.2024.1329683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Hemorrhagic fever with renal syndrome (HFRS) is an acute infectious disease comprising five stages: fever, hypotension, oliguria, diuresis (polyuria), and convalescence. Increased vascular permeability, coagulopathy, and renal injury are typical clinical features of HFRS, which has a case fatality rate of 1-15%. Despite this, a comprehensive meta-analyses of the clinical characteristics of patients who died from HFRS is lacking. Methods Eleven Chinese- and English-language research databases were searched, including the China National Knowledge Infrastructure Database, Wanfang Database, SinoMed, VIP Database, PubMed, Embase, Scopus, Cochrane Library, Web of Science, Proquest, and Ovid, up to October 5, 2023. The search focused on clinical features of patients who died from HFRS. The extracted data were analyzed using STATA 14.0. Results A total of 37 articles on 140,295 patients with laboratory-confirmed HFRS were included. Categorizing patients into those who died and those who survived, it was found that patients who died were older and more likely to smoke, have hypertension, and have diabetes. Significant differences were also observed in the clinical manifestations of multiple organ dysfunction syndrome, shock, occurrence of overlapping disease courses, cerebral edema, cerebral hemorrhage, toxic encephalopathy, convulsions, arrhythmias, heart failure, dyspnea, acute respiratory distress syndrome, pulmonary infection, liver damage, gastrointestinal bleeding, acute kidney injury, and urine protein levels. Compared to patients who survived, those who died were more likely to demonstrate elevated leukocyte count; decreased platelet count; increased lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase levels; prolonged activated partial thromboplastin time and prothrombin time; and low albumin and chloride levels and were more likely to use continuous renal therapy. Interestingly, patients who died received less dialysis and had shorter average length of hospital stay than those who survived. Conclusion Older patients and those with histories of smoking, hypertension, diabetes, central nervous system damage, heart damage, liver damage, kidney damage, or multiorgan dysfunction were at a high risk of death. The results can be used to assess patients' clinical presentations and assist with prognostication.Systematic review registration:https://www.crd.york.ac.uk/prospero/, (CRD42023454553).
Collapse
Affiliation(s)
- Wei Lu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Lin Kuang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuxing Hu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jialing Shi
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Wen Tian
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
Wang Z, Yang C, Li B, Wu H, Xu Z, Feng Z. Comparison of simulation and predictive efficacy for hemorrhagic fever with renal syndrome incidence in mainland China based on five time series models. Front Public Health 2024; 12:1365942. [PMID: 38496387 PMCID: PMC10941340 DOI: 10.3389/fpubh.2024.1365942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
Background Hemorrhagic fever with renal syndrome (HFRS) is a zoonotic infectious disease commonly found in Asia and Europe, characterized by fever, hemorrhage, shock, and renal failure. China is the most severely affected region, necessitating an analysis of the temporal incidence patterns in the country. Methods We employed Autoregressive Integrated Moving Average (ARIMA), Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), Nonlinear AutoRegressive with eXogenous inputs (NARX), and a hybrid CNN-LSTM model to model and forecast time series data spanning from January 2009 to November 2023 in the mainland China. By comparing the simulated performance of these models on training and testing sets, we determined the most suitable model. Results Overall, the CNN-LSTM model demonstrated optimal fitting performance (with Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE) of 93.77/270.66, 7.59%/38.96%, and 64.37/189.73 for the training and testing sets, respectively, lower than those of individual CNN or LSTM models). Conclusion The hybrid CNN-LSTM model seamlessly integrates CNN's data feature extraction and LSTM's recurrent prediction capabilities, rendering it theoretically applicable for simulating diverse distributed time series data. We recommend that the CNN-LSTM model be considered as a valuable time series analysis tool for disease prediction by policy-makers.
Collapse
Affiliation(s)
- ZhenDe Wang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - ChunXiao Yang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Bing Li
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - HongTao Wu
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhen Xu
- Chinese Center for Disease Control and Prevention, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - ZiJian Feng
- Chinese Preventive Medicine Association, Beijing, China
| |
Collapse
|
19
|
Ye P, Zhao L, Pang R, Zheng X. A retrospective study of variations in the kinds of diseases discharged from the Department of Infectious Diseases of a large general hospital in Central China during 2013-2019. Front Public Health 2024; 12:1289972. [PMID: 38420029 PMCID: PMC10899503 DOI: 10.3389/fpubh.2024.1289972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Objective To analyze the changing trend of the absolute number and constituent ratio of various in-patient diseases in the Department of Infectious Diseases of a large general hospital in Central China during 2013-2019. Methods A retrospective study was conducted to analyze the diagnostic data of discharged patients for seven consecutive years, from 2013 to 2019. The first discharge diagnosis is used as the basis for the disease classification. The absolute number, constituent ratio, and changing trend of major diseases in hepatobiliary diseases and infectious diseases were analyzed. Results The changing trend of the diseases during 2013-2019 showed that the absolute number of cases of hepatobiliary disease did not change significantly (p = 0.615), while the constituent ratio decreased significantly, from 68.01% in 2013 to 55.29% in 2019 (p<0.001). The absolute number (constituent ratio) of cases of infectious diseases increased significantly from 585 (21.91%) in 2013 to 1,244 (36.86%) in 2019 (p = 0.015, p<0.001). The major part of the increase was non-communicable infectious diseases (NCIDs). Conclusion During 2013-2019, the proportion of cases of hepatobiliary disease gradually decreased. The absolute number and proportion of cases of infectious diseases, especially NCIDs, have increased rapidly.
Collapse
Affiliation(s)
| | | | | | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
20
|
Demirev AV, Lee S, Park S, Kim H, Cho S, Lee K, Kim K, Song JW, Park MS, Kim JI. Exploring the Genetic Diversity and Molecular Evolution of Seoul and Hantaan Orthohantaviruses. Viruses 2024; 16:105. [PMID: 38257805 PMCID: PMC10818986 DOI: 10.3390/v16010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Seoul (SEOV) and Hantaan (HTNV) orthohantaviruses are significant zoonotic pathogens responsible for hemorrhagic fever with renal syndrome. Here, we investigated the molecular evolution of SEOV and HTNV through phylogenetic and bioinformatic analyses using complete genome sequences of their large (L), medium (M), and small (S) gene segments. Despite similar epizootic cycles and clinical symptoms, SEOV and HTNV exhibited distinct genetic and evolutionary dynamics. The phylogenetic trees of each segment consistently showed major genetic clades associated with the geographical distribution of both viruses. Remarkably, SEOV M and S segments exhibit higher evolutionary rates, rapidly increasing genetic diversity, and a more recent origin in contrast to HTNV. Reassortment events were infrequent, but both viruses appear to utilize the M gene segment in genetic exchanges. SEOV favors the L or M segment reassortment, while HTNV prefers the M or S segment exchange. Purifying selection dominates in all three gene segments of both viruses, yet SEOV experiences an elevated positive selection in its glycoprotein Gc ectodomain. Key amino acid differences, including a positive 'lysine fence' (through residues K77, K82, K231, K307, and K310) located at the tip of the Gn, alongside the physical stability around an RGD-like motif through M108-F334 interaction, may contribute to the unique antigenic properties of SEOV. With the increasing global dispersion and potential implications of SEOV for the global public health landscape, this study highlights the unique evolutionary dynamics and antigenic properties of SEOV and HTNV in informing vaccine design and public health preparedness.
Collapse
Affiliation(s)
- Atanas V. Demirev
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
| | - Sangyi Lee
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
| | - Sejik Park
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
| | - Hyunbeen Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
| | - Seunghye Cho
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
| | - Kyuyoung Lee
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
| | - Kisoon Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Biosafety Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Biosafety Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
21
|
Gao Q, Wang S, Wang Q, Cao G, Fang C, Zhan B. Epidemiological characteristics and prediction model construction of hemorrhagic fever with renal syndrome in Quzhou City, China, 2005-2022. Front Public Health 2024; 11:1333178. [PMID: 38274546 PMCID: PMC10808376 DOI: 10.3389/fpubh.2023.1333178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Background Hemorrhagic fever with renal syndrome (HFRS) is one of the 10 major infectious diseases that jeopardize human health and is distributed in more than 30 countries around the world. China is the country with the highest number of reported HFRS cases worldwide, accounting for 90% of global cases. The incidence level of HFRS in Quzhou is at the forefront of Zhejiang Province, and there is no specific treatment for it yet. Therefore, it is crucial to grasp the epidemiological characteristics of HFRS in Quzhou and establish a prediction model for HFRS to lay the foundation for early warning of HFRS. Methods Descriptive epidemiological methods were used to analyze the epidemic characteristics of HFRS, the incidence map was drawn by ArcGIS software, the Seasonal AutoRegressive Integrated Moving Average (SARIMA) and Prophet model were established by R software. Then, root mean square error (RMSE) and mean absolute error (MAE) were used to evaluate the fitting and prediction performances of the model. Results A total of 843 HFRS cases were reported in Quzhou City from 2005 to 2022, with the highest annual incidence rate in 2007 (3.93/100,000) and the lowest in 2022 (1.05/100,000) (P trend<0.001). The incidence is distributed in a seasonal double-peak distribution, with the first peak from October to January and the second peak from May to July. The incidence rate in males (2.87/100,000) was significantly higher than in females (1.32/100,000). Farmers had the highest number of cases, accounting for 79.95% of the total number of cases. The incidence is high in the northwest of Quzhou City, with cases concentrated on cultivated land and artificial land. The RMSE and MAE values of the Prophet model are smaller than those of the SARIMA (1,0,1) (2,1,0)12 model. Conclusion From 2005 to 2022, the incidence of HFRS in Quzhou City showed an overall downward trend, but the epidemic in high-incidence areas was still serious. In the future, the dynamics of HFRS outbreaks and host animal surveillance should be continuously strengthened in combination with the Prophet model. During the peak season, HFRS vaccination and health education are promoted with farmers as the key groups.
Collapse
Affiliation(s)
- Qing Gao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuangqing Wang
- Quzhou Center for Disease Control and Prevention, Quzhou, Zhejiang, China
| | - Qi Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guoping Cao
- Quzhou Center for Disease Control and Prevention, Quzhou, Zhejiang, China
| | - Chunfu Fang
- Quzhou Center for Disease Control and Prevention, Quzhou, Zhejiang, China
| | - Bingdong Zhan
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Quzhou Center for Disease Control and Prevention, Quzhou, Zhejiang, China
| |
Collapse
|
22
|
Skripchenko NV, Alekseeva LA, Zheleznikova GF, Skripchenko EY, Bessonova TV, Zhirkov AA. [Factors of the hemostasis system as biomarkers of severe course of acute viral infections]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:63-74. [PMID: 38529865 DOI: 10.17116/jnevro202412403163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The authors give literature review of hemostasis and immune system factors intraction as main biomarkers of a severe cause of viral infectious diseases. Pro-inflamatory cytokines as the main markers of inflammation, can serve both as biomarkers of the clinical severity of the infectious process and reflect the state of the hemostatic and fibrinolytic systems, since components of these systems are present in various structures of the central nervous system and affect the development of neurons and synaptic plasticity. An inverse correlation has been proven between the concentration of D-dimer and the oxygenation index, and the development of DIC is not associated with the presence of respiratory failure in patients with influenza type A, while the ferritin concentration directly reflects the severity of the disease. One of the markers of endothelial damage may be soluble thrombomodulin, which, however, is rarely used in routine clinical practice. Cytoflavin is a highly effective pathogenetic drug that affects various parts of the hemostasis system, has anti-ischemic, antioxidant, antihypoxic, immunocorrective effect, which is indicated for any generalized infectious disease since its debut.
Collapse
Affiliation(s)
- N V Skripchenko
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
- Saint Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - L A Alekseeva
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - G F Zheleznikova
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - E Yu Skripchenko
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
- Saint Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - T V Bessonova
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - A A Zhirkov
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| |
Collapse
|
23
|
Han YH, Lee CS. FDG PET/CT in Hantavirus Hemorrhagic Fever With Renal Syndrome. Clin Nucl Med 2023; 48:1073-1075. [PMID: 37934706 PMCID: PMC10662585 DOI: 10.1097/rlu.0000000000004915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/21/2023] [Indexed: 11/09/2023]
Abstract
ABSTRACT A 58-year-old man with fever, myalgia, and dysuria was admitted to the hospital. Because of prolonged fever, FDG PET/CT was performed. Surprisingly, bilateral kidneys were rapidly enlarged for 5 days with the renal parenchyma showing intense hypermetabolism. FDG PET/CT demonstrated physiology of Hantavirus invading kidneys and causing nephritis. This case illustrates that FDG PET/CT could be the choice of image modality for diagnosis and treatment evaluation of patients suspected of hemorrhagic fever with renal syndrome. To the best of our knowledge, this is the first report of FDG PET/CT image for a patient with hemorrhagic fever with renal syndrome.
Collapse
Affiliation(s)
| | - Chang-Seop Lee
- Internal Medicine, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| |
Collapse
|