1
|
Yuan C, Guan K, Zhang G. STEAP3 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication by Regulating Fatty Acid and Lipid Droplet Synthesis. Vet Sci 2025; 12:147. [PMID: 40005907 PMCID: PMC11861627 DOI: 10.3390/vetsci12020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) is a contagious disease that impacts swine health worldwide. Lipid metabolism plays a vital role in energy production and is regulated by various genes involved in lipogenesis and lipolysis. In this study, we found that PRRSV infection significantly reduced the protein expression of STEAP3. The overexpression of STEAP3 can notably inhibit PRRSV replication. Additionally, we utilized transcriptomics and metabolomics to examine the effects of STEAP3 on PRRSV replication, identifying important pathways associated with energy metabolism and lipogenesis. We subsequently found that STEAP3 can suppress PRRSV replication by regulating fatty acid synthesis and enhancing lipid droplet formation. Overall, these findings indicate that STEAP3 could be a potential target for developing strategies to manage PRRSV infection by modulating lipid metabolism.
Collapse
Affiliation(s)
- Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China;
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China;
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Jiang T, Hao T, Chen W, Li C, Pang S, Fu C, Cheng J, Zhang C, Ghorbanpour M, Miao S. Reprogrammed Plant Metabolism During Viral Infections: Mechanisms, Pathways and Implications. MOLECULAR PLANT PATHOLOGY 2025; 26:e70066. [PMID: 39972520 PMCID: PMC11839395 DOI: 10.1111/mpp.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
Plant viruses pose a significant threat to global agriculture, leading to substantial crop losses that jeopardise food security and disrupt ecosystem stability. These viral infections often reprogramme plant metabolism, compromising key pathways critical for growth and defence. For instance, infections by cucumber mosaic virus alter amino acid and secondary metabolite biosynthesis, including flavonoid and phenylpropanoid pathways, thereby weakening plant defences. Similarly, tomato bushy stunt virus disrupts lipid metabolism by altering the synthesis and accumulation of sterols and phospholipids, which are essential for viral replication and compromise membrane integrity. Recent advancements in gene-editing technologies, such as CRISPR/Cas9, and metabolomics offer innovative strategies to mitigate these impacts. Precise genetic modifications can restore or optimise disrupted metabolic pathways, enhancing crop resilience to viral infections. Metabolomics further aids in identifying metabolic biomarkers linked to viral resistance, guiding breeding programmes aimed at developing virus-resistant plants. By reducing the susceptibility of crops to viral infections, these approaches hold significant potential to reduce dependence on chemical pesticides, increase crop yields and promote sustainable agricultural practices. Future research should focus on expanding our understanding of virus-host interactions at the molecular level while exploring the long-term ecological impacts of viral infections. Interdisciplinary approaches integrating multi-omics technologies and sustainable management strategies will be critical in addressing the challenges posed by plant viruses and ensuring global agricultural stability.
Collapse
Affiliation(s)
- Tong Jiang
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Tianwen Hao
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Wenjing Chen
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Chengliang Li
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Shuqi Pang
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Chenglong Fu
- Shandong Meng'en Modern Agriculture Development Co. Ltd.LiaochengChina
| | - Jie Cheng
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Chaobo Zhang
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural ResourcesArak UniversityArakIran
| | - Shuo Miao
- North China Forestry Experiment CenterChinese Academy of ForestryBeijingChina
| |
Collapse
|
3
|
Koganti K, Amara Babu NLA, Sattu NR, Rao KP. A liquid chromatography-tandem mass spectrometry method development for the quantification of favipiravir drug and its related impurities in rat plasma and its application to pharmacokinetic studies. Biomed Chromatogr 2024; 38:e5816. [PMID: 38128129 DOI: 10.1002/bmc.5816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Favipiravir is an antiviral drug used for the treatment of virus-based diseases such as influenza. In this context, the development of a reliable liquid chromatography-tandem mass spectrometry method for the quantification of the drug and its impurities is necessary, particularly following the COVID-19 pandemic. Chromatographic separation was achieved on an inertial ODS column using gradient elution with a buffer containing triethylamine in high-performance liquid chromatography water and adjusting its pH with formic acid. The mixture of buffer and acetonitrile was used as a mobile phase with a flow rate of 1 ml/min at ambient temperature. The separation of favipiravir and its related impurities from remdesivir as an internal standard was achieved. The results indicated that all the variables, like precision, accuracy, linearity, matrix effect and stability, were successfully achieved within the limits of US Food and Drug Administration guidelines. This study could provide a new protocol for the development of new analytical methods for the detection of favipiravir and its impurities.
Collapse
Affiliation(s)
- Kalyani Koganti
- New Generation Materials Lab, Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science Technology and Research (Deemed to be University), Guntur, Andhra Pradesh, India
- MSN Laboratories Pvt Limited, Sangareddy (District), Telangana, India
| | - Namburi L A Amara Babu
- New Generation Materials Lab, Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science Technology and Research (Deemed to be University), Guntur, Andhra Pradesh, India
- Syngene International Ltd., Bangalore, Karnataka, India
| | - Naga Raju Sattu
- Aurobindo Pharma Limited, Medak (District), Telangana, India
| | - Koya Prabhakara Rao
- New Generation Materials Lab, Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science Technology and Research (Deemed to be University), Guntur, Andhra Pradesh, India
| |
Collapse
|
4
|
Shen HH, Zhao Q, Wen YP, Wu R, Du SY, Huang XB, Wen XT, Cao SJ, Zeng L, Yan QG. Porcine reproductive and respiratory syndrome virus upregulates SMPDL3B to promote viral replication by modulating lipid metabolism. iScience 2023; 26:107450. [PMID: 37583552 PMCID: PMC10424083 DOI: 10.1016/j.isci.2023.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a severe threat to the health of pigs globally. Host factors play a critical role in PRRSV replication. Using PRRSV as a model for genome-scale CRISPR knockout (KO) screening, we identified a host factor critical to PRRSV infection: sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B). Our findings show that SMPDL3B restricted PRRSV attachment, entry, replication, and secretion and that its depletion significantly inhibited PRRSV proliferation, indicating that SMPDL3B plays a positive role in PRRSV replication. Our data also show that SMPDL3B deficiency resulted in an accumulation of intracellular lipid droplets (LDs). The expression level of key genes (ACC, SCD-1, and FASN) involved in lipogenesis was increased, whereas the fundamental lipolysis gene, ATGL, was inhibited when SMPDL3B was knocked down. Overall, our findings suggest that SMPDL3B deficiency can effectively inhibit viral infection through the modulation of lipid metabolism.
Collapse
Affiliation(s)
- Huan-Huan Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Yi-Ping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Rui Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Sen-Yan Du
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Xiao-Bo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Xin-Tian Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - San-Jie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Qi-Gui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| |
Collapse
|
5
|
Laurent T, Carlson LA. The organization of double-stranded RNA in the chikungunya virus replication organelle. PLoS Negl Trop Dis 2023; 17:e0011404. [PMID: 37406010 DOI: 10.1371/journal.pntd.0011404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/22/2023] [Indexed: 07/07/2023] Open
Abstract
Alphaviruses are mosquito-borne, positive-sense single-stranded RNA viruses. Amongst the alphaviruses, chikungunya virus is notable as a large source of human illness, especially in tropical and subtropical regions. When they invade a cell, alphaviruses generate dedicated organelles for viral genome replication, so-called spherules. Spherules form as outward-facing buds at the plasma membrane, and it has recently been shown that the thin membrane neck that connects this membrane bud with the cytoplasm is guarded by a two-megadalton protein complex that contains all the enzymatic functions necessary for RNA replication. The lumen of the spherules contains a single copy of the negative-strand template RNA, present in a duplex with newly synthesized positive-sense RNA. Less is known about the organization of this double-stranded RNA as compared to the protein components of the spherule. Here, we analyzed cryo-electron tomograms of chikungunya virus spherules in terms of the organization of the double-stranded RNA replication intermediate. We find that the double-stranded RNA has a shortened apparent persistence length as compared to unconstrained double-stranded RNA. Around half of the genome is present in either of five conformations identified by subtomogram classification, each representing a relatively straight segment of ~25-32 nm. Finally, the RNA occupies the spherule lumen at a homogeneous density, but has a preferred orientation to be perpendicular to a vector pointing from the membrane neck towards the spherule center. Taken together, this analysis lays another piece of the puzzle of the highly coordinated alphavirus genome replication.
Collapse
Affiliation(s)
- Timothée Laurent
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå, Sweden
| | - Lars-Anders Carlson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå, Sweden
| |
Collapse
|
6
|
Casorla-Perez LA, Guennoun R, Cubillas C, Peng B, Kornfeld K, Wang D. Orsay Virus Infection of Caenorhabditis elegans Is Modulated by Zinc and Dependent on Lipids. J Virol 2022; 96:e0121122. [PMID: 36342299 PMCID: PMC9682997 DOI: 10.1128/jvi.01211-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
Abstract
Viruses utilize host lipids to promote the viral life cycle, but much remains unknown as to how this is regulated. Zinc is a critical element for life, and few studies have linked zinc to lipid homeostasis. We demonstrated that Caenorhabditis elegans infection by Orsay virus is dependent upon lipids and that mutation of the master regulator of lipid biosynthesis, sbp-1, reduced Orsay virus RNA levels by ~236-fold. Virus infection could be rescued by dietary supplementation with lipids downstream of fat-6/fat-7. Mutation of a zinc transporter encoded by sur-7, which suppresses the lipid defect of sbp-1, also rescued Orsay virus infection. Furthermore, reducing zinc levels by chemical chelation in the sbp-1 mutant also increased lipids and rescued Orsay virus RNA levels. Finally, increasing zinc levels by dietary supplementation led to an ~1,620-fold reduction in viral RNA. These findings provide insights into the critical interactions between zinc and host lipids necessary for virus infection. IMPORTANCE Orsay virus is the only known natural virus pathogen of Caenorhabditis elegans, which shares many evolutionarily conserved pathways with humans. We leveraged the powerful genetic tractability of C. elegans to characterize a novel interaction between zinc, lipids, and virus infection. Inhibition of the Orsay virus replication in the sbp-1 mutant animals, explained by the lipid depletion, can be rescued by a genetic and pharmacological approach that reduces the zinc accumulation and rescues the lipid levels in this mutant animal. Interestingly, the human ortholog of sbp-1, srebp-1, has been reported to play a role for virus infection, and zinc has been shown to inhibit the virus replication of multiple viruses. However, the mechanism through which zinc is acting is not well understood. These results suggest that the lipid regulation mediated by zinc may play a relevant role during mammalian virus infection.
Collapse
Affiliation(s)
| | - Ranya Guennoun
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ciro Cubillas
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bo Peng
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kerry Kornfeld
- Developmental Biology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Xu T, Li LX, Jia Y, Wu Q, Zhu W, Xu Z, Zheng B, Lu X. One microRNA has the potential to target whole viral mRNAs in a given human coronavirus. Front Microbiol 2022; 13:1035044. [PMID: 36439806 PMCID: PMC9686371 DOI: 10.3389/fmicb.2022.1035044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
MicroRNAs (miRNAs) can repress viral replication by targeting viral messenger RNA (mRNA), which makes them potential antiviral agents. The antiviral effects of miRNAs on infectious viruses have been explored extensively; however, recent studies mainly considered the action modes of miRNAs, neglecting another key factor, the molecular biology of viruses, which may be particularly important in the study of miRNA actions against a given virus. In this paper, the action modes of miRNAs and the molecular biology of viruses are jointly considered for the first time and based on the reported roles of miRNAs on viruses and human coronaviruses (HCoVs) molecular biology, the general and specific interaction modes of miRNAs-HCoVs are systematically reviewed. It was found that HCoVs transcriptome is a nested set of subgenomic mRNAs, sharing the same 5' leader, 3' untranslated region (UTR) and open reading frame (ORF). For a given HCoV, one certain miRNA with a target site in the 5' leader or 3' UTR has the potential to target all viral mRNAs, indicating tremendous antiviral effects against HCoVs. However, for the shared ORFs, some parts are untranslatable attributed to the translation pattern of HCoVs mRNA, and it is unknown whether the base pairing between the untranslated ORFs and miRNAs plays a regulatory effect on the local mRNAs where the untranslated ORFs are located; therefore, the regulatory effects of miRNAs with targets within the shared ORFs are complicated and need to be confirmed. Collectively, miRNAs may bepromising antiviral agents against HCoVs due to their intrinsically nested set of mRNAs, and some gaps are waiting to be filled. In this review, insight is provided into the exploration of miRNAs that can interrupt HCoVs infection.
Collapse
Affiliation(s)
- Tielong Xu
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Long-xue Li
- Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yao Jia
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qingni Wu
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Weifeng Zhu
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhou Xu
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Bin Zheng
- National Institute of Parasitic Diseases Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Xuexin Lu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
8
|
The Evolutionary Dance between Innate Host Antiviral Pathways and SARS-CoV-2. Pathogens 2022; 11:pathogens11050538. [PMID: 35631059 PMCID: PMC9147806 DOI: 10.3390/pathogens11050538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023] Open
Abstract
Compared to what we knew at the start of the SARS-CoV-2 global pandemic, our understanding of the interplay between the interferon signaling pathway and SARS-CoV-2 infection has dramatically increased. Innate antiviral strategies range from the direct inhibition of viral components to reprograming the host’s own metabolic pathways to block viral infection. SARS-CoV-2 has also evolved to exploit diverse tactics to overcome immune barriers and successfully infect host cells. Herein, we review the current knowledge of the innate immune signaling pathways triggered by SARS-CoV-2 with a focus on the type I interferon response, as well as the mechanisms by which SARS-CoV-2 impairs those defenses.
Collapse
|
9
|
Feng Z, Inaba JI, Nagy PD. Tombusviruses Target a Major Crossroad in the Endocytic and Recycling Pathways via Co-opting Rab7 Small GTPase. J Virol 2021; 95:e0107621. [PMID: 34406861 PMCID: PMC8513485 DOI: 10.1128/jvi.01076-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Positive-strand RNA viruses induce the biogenesis of unique membranous organelles called viral replication organelles (VROs), which perform virus replication in infected cells. Tombusviruses have been shown to rewire cellular trafficking and metabolic pathways, remodel host membranes, and recruit multiple host factors to support viral replication. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely related carnation Italian ringspot virus (CIRV) usurp Rab7 small GTPase to facilitate building VROs in the surrogate host yeast and in plants. Depletion of Rab7 small GTPase, which is needed for late endosome and retromer biogenesis, strongly inhibits TBSV and CIRV replication in yeast and in planta. The viral p33 replication protein interacts with Rab7 small GTPase, which results in the relocalization of Rab7 into the large VROs. Similar to the depletion of Rab7, the deletion of either MON1 or CCZ1 heterodimeric GEFs (guanine nucleotide exchange factors) of Rab7 inhibited TBSV RNA replication in yeast. This suggests that the activated Rab7 has proviral functions. We show that the proviral function of Rab7 is to facilitate the recruitment of the retromer complex and the endosomal sorting nexin-BAR proteins into VROs. We demonstrate that TBSV p33-driven retargeting of Rab7 into VROs results in the delivery of several retromer cargos with proviral functions. These proteins include lipid enzymes, such as Vps34 PI3K (phosphatidylinositol 3-kinase), PI4Kα-like Stt4 phosphatidylinositol 4-kinase, and Psd2 phosphatidylserine decarboxylase. In summary, based on these and previous findings, we propose that subversion of Rab7 into VROs allows tombusviruses to reroute endocytic and recycling trafficking to support virus replication. IMPORTANCE The replication of positive-strand RNA viruses depends on the biogenesis of viral replication organelles (VROs). However, the formation of membranous VROs is not well understood yet. Using tombusviruses and the model host yeast, we discovered that the endosomal Rab7 small GTPase is critical for the formation of VROs. Interaction between Rab7 and the TBSV p33 replication protein leads to the recruitment of Rab7 into VROs. TBSV-driven usurping of Rab7 has proviral functions through facilitating the delivery of the co-opted retromer complex, sorting nexin-BAR proteins, and lipid enzymes into VROs to create an optimal milieu for virus replication. These results open up the possibility that controlling cellular Rab7 activities in infected cells could be a target for new antiviral strategies.
Collapse
Affiliation(s)
- Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Jun-ichi Inaba
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
10
|
Li G, Su B, Fu P, Bai Y, Ding G, Li D, Wang J, Yang G, Chu B. NPC1-regulated dynamic of clathrin-coated pits is essential for viral entry. SCIENCE CHINA-LIFE SCIENCES 2021; 65:341-361. [PMID: 34047913 PMCID: PMC8160554 DOI: 10.1007/s11427-021-1929-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Viruses utilize cellular lipids and manipulate host lipid metabolism to ensure their replication and spread. Therefore, the identification of lipids and metabolic pathways that are suitable targets for antiviral development is crucial. Using a library of compounds targeting host lipid metabolic factors and testing them for their ability to block pseudorabies virus (PRV) and vesicular stomatitis virus (VSV) infection, we found that U18666A, a specific inhibitor of Niemann-Pick C1 (NPC1), is highly potent in suppressing the entry of diverse viruses including pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). NPC1 deficiency markedly attenuates viral growth by decreasing cholesterol abundance in the plasma membrane, thereby inhibiting the dynamics of clathrin-coated pits (CCPs), which are indispensable for clathrin-mediated endocytosis. Significantly, exogenous cholesterol can complement the dynamics of CCPs, leading to efficient viral entry and infectivity. Administration of U18666A improves the survival and pathology of PRV- and influenza A virus-infected mice. Thus, our studies demonstrate a unique mechanism by which NPC1 inhibition achieves broad antiviral activity, indicating a potential new therapeutic strategy against SARS-CoV-2, as well as other emerging viruses.
Collapse
Affiliation(s)
- Guoli Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Bingqian Su
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Pengfei Fu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Yilin Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Guangxu Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Dahua Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guoyu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China.
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Beibei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China.
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
11
|
The retromer is co-opted to deliver lipid enzymes for the biogenesis of lipid-enriched tombusviral replication organelles. Proc Natl Acad Sci U S A 2021; 118:2016066118. [PMID: 33376201 DOI: 10.1073/pnas.2016066118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Biogenesis of viral replication organelles (VROs) is critical for replication of positive-strand RNA viruses. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely related carnation Italian ringspot virus (CIRV) hijack the retromer to facilitate building VROs in the surrogate host yeast and in plants. Depletion of retromer proteins, which are needed for biogenesis of endosomal tubular transport carriers, strongly inhibits the peroxisome-associated TBSV and the mitochondria-associated CIRV replication in yeast and in planta. In vitro reconstitution revealed the need for the retromer for the full activity of the viral replicase. The viral p33 replication protein interacts with the retromer complex, including Vps26, Vps29, and Vps35. We demonstrate that TBSV p33-driven retargeting of the retromer into VROs results in delivery of critical retromer cargoes, such as 1) Psd2 phosphatidylserine decarboxylase, 2) Vps34 phosphatidylinositol 3-kinase (PI3K), and 3) phosphatidylinositol 4-kinase (PI4Kα-like). The recruitment of these cellular enzymes by the co-opted retromer is critical for de novo production and enrichment of phosphatidylethanolamine phospholipid, phosphatidylinositol-3-phosphate [PI(3)P], and phosphatidylinositol-4-phosphate [PI(4)P] phosphoinositides within the VROs. Co-opting cellular enzymes required for lipid biosynthesis and lipid modifications suggest that tombusviruses could create an optimized lipid/membrane microenvironment for efficient VRO assembly and protection of the viral RNAs during virus replication. We propose that compartmentalization of these lipid enzymes within VROs helps tombusviruses replicate in an efficient milieu. In summary, tombusviruses target a major crossroad in the secretory and recycling pathways via coopting the retromer complex and the tubular endosomal network to build VROs in infected cells.
Collapse
|
12
|
Deng Y, Angelova A. Coronavirus-Induced Host Cubic Membranes and Lipid-Related Antiviral Therapies: A Focus on Bioactive Plasmalogens. Front Cell Dev Biol 2021; 9:630242. [PMID: 33791293 PMCID: PMC8006408 DOI: 10.3389/fcell.2021.630242] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Coronaviruses have lipid envelopes required for their activity. The fact that coronavirus infection provokes the formation of cubic membranes (CM) (denoted also as convoluted membranes) in host cells has not been rationalized in the development of antiviral therapies yet. In this context, the role of bioactive plasmalogens (vinyl ether glycerophospholipids) is not completely understood. These lipid species display a propensity for non-lamellar phase formation, facilitating membrane fusion, and modulate the activity of membrane-bound proteins such as enzymes and receptors. At the organism level, plasmalogen deficiency is associated with cardiometabolic disorders including obesity and type 2 diabetes in humans. A straight link is perceived with the susceptibility of such patients to SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) infection, the severity of illness, and the related difficulty in treatment. Based on correlations between the coronavirus-induced modifications of lipid metabolism in host cells, plasmalogen deficiency in the lung surfactant of COVID-19 patients, and the alterations of lipid membrane structural organization and composition including the induction of CM, we emphasize the key role of plasmalogens in the coronavirus (SARS-CoV-2, SARS-CoV, or MERS-CoV) entry and replication in host cells. Considering that plasmalogen-enriched lung surfactant formulations may improve the respiratory process in severe infected individuals, plasmalogens can be suggested as an anti-viral prophylactic, a lipid biomarker in SARS-CoV and SARS-CoV-2 infections, and a potential anti-viral therapeutic component of lung surfactant development for COVID-19 patients.
Collapse
Affiliation(s)
- Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay UMR 8612, Châtenay-Malabry, France
| |
Collapse
|
13
|
The Fatty Acid Lipid Metabolism Nexus in COVID-19. Viruses 2021; 13:v13010090. [PMID: 33440724 PMCID: PMC7826519 DOI: 10.3390/v13010090] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Enteric symptomology seen in early-stage severe acute respiratory syndrome (SARS)-2003 and COVID-19 is evidence of virus replication occurring in the intestine, liver and pancreas. Aberrant lipid metabolism in morbidly obese individuals adversely affects the COVID-19 immune response and increases disease severity. Such observations are in line with the importance of lipid metabolism in COVID-19, and point to the gut as a site for intervention as well as a therapeutic target in treating the disease. Formation of complex lipid membranes and palmitoylation of coronavirus proteins are essential during viral replication and assembly. Inhibition of fatty acid synthase (FASN) and restoration of lipid catabolism by activation of AMP-activated protein kinase (AMPK) impede replication of coronaviruses closely related to SARS-coronavirus-2 (CoV-2). In vitro findings and clinical data reveal that the FASN inhibitor, orlistat, and the AMPK activator, metformin, may inhibit coronavirus replication and reduce systemic inflammation to restore immune homeostasis. Such observations, along with the known mechanisms of action for these types of drugs, suggest that targeting fatty acid lipid metabolism could directly inhibit virus replication while positively impacting the patient's response to COVID-19.
Collapse
|
14
|
Pagliari F, Marafioti MG, Genard G, Candeloro P, Viglietto G, Seco J, Tirinato L. ssRNA Virus and Host Lipid Rearrangements: Is There a Role for Lipid Droplets in SARS-CoV-2 Infection? Front Mol Biosci 2020; 7:578964. [PMID: 33134318 PMCID: PMC7579428 DOI: 10.3389/fmolb.2020.578964] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Since its appearance, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has immediately alarmed the World Health Organization for its very high contagiousness and the complexity of patient clinical profiles. The worldwide scientific community is today gathered in a massive effort in order to develop safe vaccines and effective therapies in the shortest possible time. Every day, new pieces of SARS-CoV-2 infective puzzle are disclosed. Based on knowledge gained with other related coronaviruses and, more in general, on single-strand RNA viruses, we highlight underexplored molecular routes in which lipids and lipid droplets (LDs) might serve essential functions in viral infections. In fact, both lipid homeostasis and the pathways connected to lipids seem to be fundamental in all phases of the coronavirus infection. This review aims at describing potential roles for lipid and LDs in host-virus interactions and suggesting LDs as new and central cellular organelles to be investigated as potential targets against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Francesca Pagliari
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Maria Grazia Marafioti
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Geraldine Genard
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Patrizio Candeloro
- BioNEM Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Joao Seco
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Luca Tirinato
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.,BioNEM Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
15
|
Koh C, Islam MN, Ye YH, Chotiwan N, Graham B, Belisle JT, Kouremenos KA, Dayalan S, Tull DL, Klatt S, Perera R, McGraw EA. Dengue virus dominates lipid metabolism modulations in Wolbachia-coinfected Aedes aegypti. Commun Biol 2020; 3:518. [PMID: 32948809 PMCID: PMC7501868 DOI: 10.1038/s42003-020-01254-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
Competition between viruses and Wolbachia for host lipids is a proposed mechanism of Wolbachia-mediated virus blocking in insects. Yet, the metabolomic interaction between virus and symbiont within the mosquito has not been clearly defined. We compare the lipid profiles of Aedes aegypti mosquitoes bearing mono- or dual-infections of the Wolbachia wMel strain and dengue virus serotype 3 (DENV3). We found metabolic signatures of infection-induced intracellular events but little evidence to support direct competition between Wolbachia and virus for host lipids. Lipid profiles of dual-infected mosquitoes resemble those of DENV3 mono-infected mosquitoes, suggesting virus-driven modulation dominates over that of Wolbachia. Interestingly, knockdown of key metabolic enzymes suggests cardiolipins are host factors for DENV3 and Wolbachia replication. These findings define the Wolbachia-DENV3 metabolic interaction as indirectly antagonistic, rather than directly competitive, and reveal new research avenues with respect to mosquito × virus interactions at the molecular level. Koh, Islam, Ye et al. describe lipid profiles of Aedes aegypti mosquitoes bearing mono- or dual-infections of Wolbachia (wMel) and dengue virus serotype 3 (DENV3), finding that virus modulation dominates the dual-infection lipid profile and that cardiolipins support DENV3 and Wolbachia replication. This study suggests that direct competition for lipids do not underlie Wolbachia-mediated virus blocking.
Collapse
Affiliation(s)
- Cassandra Koh
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - M Nurul Islam
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Yixin H Ye
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Nunya Chotiwan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Barbara Graham
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - John T Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Konstantinos A Kouremenos
- Metabolomics Australia, Bio21 Institute of Molecular Sciences and Biotechnology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Saravanan Dayalan
- Metabolomics Australia, Bio21 Institute of Molecular Sciences and Biotechnology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dedreia L Tull
- Metabolomics Australia, Bio21 Institute of Molecular Sciences and Biotechnology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Stephan Klatt
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Sciences and Biotechnology, University of Melbourne, Parkville, VIC, 3010, Australia.,The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Rushika Perera
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.,Department of Entomology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16801, USA
| |
Collapse
|
16
|
De Silva IW, Nayek S, Singh V, Reddy J, Granger JK, Verbeck GF. Paper spray mass spectrometry utilizing Teslin® substrate for rapid detection of lipid metabolite changes during COVID-19 infection. Analyst 2020; 145:5725-5732. [PMID: 32696763 DOI: 10.1039/d0an01074j] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The SARS-CoV-2 virus is known as the causal agent for the current COVID-19 global pandemic. The majority of COVID-19 patients develop acute respiratory distress syndrome (ARDS), while some experience a cytokine storm effect, which is considered as one of the leading causes of patient mortality. Lipids are known to be involved in the various stages of the lifecycle of a virus functioning as receptors or co-receptors that controls viral propagation inside the host cell. Therefore, lipid-related metabolomics aims to provide insight into the immune response of the novel coronavirus. Our study has focused on determination of the potential metabolomic biomarkers utilizing a Teslin® Substrate in paper spray mass spectrometry (PS-MS) for the development of a rapid detection test within 60 seconds of analysis time. In this study, results were correlated with PCR tests to reflect that the systemic responses of the cells were affected by the COVID-19 virus.
Collapse
Affiliation(s)
- Imesha W De Silva
- University of North Texas, Department of Chemistry, 1155 Union Circle, #305070, Denton, TX 76203, USA.
| | - Subhayu Nayek
- University of North Texas, Department of Biology, 1155 Union Circle, #305220, Denton, TX 76203, USA
| | - Vijay Singh
- Health TrackRx™, 1500 Interstate 35W, Denton, TX 7620, USA
| | - Jay Reddy
- Health TrackRx™, 1500 Interstate 35W, Denton, TX 7620, USA
| | - John K Granger
- Health TrackRx™, 1500 Interstate 35W, Denton, TX 7620, USA
| | - Guido F Verbeck
- University of North Texas, Department of Chemistry, 1155 Union Circle, #305070, Denton, TX 76203, USA.
| |
Collapse
|
17
|
Abstract
Antiviral drugs have traditionally been developed by directly targeting essential viral components. However, this strategy often fails due to the rapid generation of drug-resistant viruses. Recent genome-wide approaches, such as those employing small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeats (CRISPR) or those using small molecule chemical inhibitors targeting the cellular "kinome," have been used successfully to identify cellular factors that can support virus replication. Since some of these cellular factors are critical for virus replication, but are dispensable for the host, they can serve as novel targets for antiviral drug development. In addition, potentiation of immune responses, regulation of cytokine storms, and modulation of epigenetic changes upon virus infections are also feasible approaches to control infections. Because it is less likely that viruses will mutate to replace missing cellular functions, the chance of generating drug-resistant mutants with host-targeted inhibitor approaches is minimized. However, drug resistance against some host-directed agents can, in fact, occur under certain circumstances, such as long-term selection pressure of a host-directed antiviral agent that can allow the virus the opportunity to adapt to use an alternate host factor or to alter its affinity toward the target that confers resistance. This review describes novel approaches for antiviral drug development with a focus on host-directed therapies and the potential mechanisms that may account for the acquisition of antiviral drug resistance against host-directed agents.
Collapse
|
18
|
Limsuwat N, Boonarkart C, Phakaratsakul S, Suptawiwat O, Auewarakul P. Influence of cellular lipid content on influenza A virus replication. Arch Virol 2020; 165:1151-1161. [PMID: 32227307 PMCID: PMC7223680 DOI: 10.1007/s00705-020-04596-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
Influenza A virus (IAV) depends on the metabolism of its cellular host to provide energy and essential factors, including lipids, for viral replication. Previous studies have shown that fatty acids (FAs) play an important role in IAV replication and that inhibition of FA biosynthesis can diminish viral replication. However, cellular lipids can either be synthesized intracellularly or be imported from the extracellular environment. Interfering with FA import mechanisms may reduce the cellular lipid content and inhibit IAV replication. To test this hypothesis, MDCK and Detroit 562 cells were infected with IAV followed by exposure to palmitic acid and inhibitors of FA import. Replication of IAV significantly increased when infected cells were supplied with palmitic acid. This enhancement could be reduced by adding an FA import inhibitor. The addition of palmitic acid significantly increased the cellular lipid content, and this increased level was reduced by treatment with an FA import inhibitor. These results show that reducing the cellular lipid level might be an approach for IAV therapy.
Collapse
Affiliation(s)
- Nattavatchara Limsuwat
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok, 10700, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok, 10700, Thailand
| | - Supinya Phakaratsakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok, 10700, Thailand
| | - Ornpreya Suptawiwat
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok, 10700, Thailand.
| |
Collapse
|
19
|
Balogh E, Juhász C, Dankó T, Fodor J, Tóbiás I, Gullner G. The expression of several pepper fatty acid desaturase genes is robustly activated in an incompatible pepper-tobamovirus interaction, but only weakly in a compatible interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:347-358. [PMID: 32004918 DOI: 10.1016/j.plaphy.2020.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/18/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The replication of positive strand RNA viruses in plant cells is markedly influenced by the desaturation status of fatty acid chains in lipids of intracellular plant membranes. At present, little is known about the role of lipid desaturation in the replication of tobamoviruses. Therefore, we investigated the expression of fatty acid desaturase (FAD) genes and the fatty acid composition of pepper leaves inoculated with two different tobamoviruses. Obuda pepper virus (ObPV) inoculation induced a hypersensitive reaction (incompatible interaction) while Pepper mild mottle virus (PMMoV) inoculation caused a systemic infection (compatible interaction). Changes in the expression of 16 FADs were monitored in pepper leaves following ObPV and PMMoV inoculations. ObPV inoculation rapidly and markedly upregulated seven Δ12-FADs that encode enzymes putatively located in the endoplasmic reticulum membrane. In contrast, PMMoV inoculation resulted in a weaker but rapid upregulation of two Δ12-FADs and a Δ15-FAD. The expression of genes encoding plastidial FADs was not influenced neither by ObPV nor by PMMoV. In accordance with gene expression results, a significant accumulation of linoleic acid was observed by gas chromatography-mass spectrometry in ObPV-, but not in PMMoV-inoculated leaves. ObPV inoculation led to a marked accumulation of H2O2 in the inoculated leaves. Therefore, the effect of H2O2 treatments on the expression of six tobamovirus-inducible FADs was also studied. The expression of these FADs was upregulated to different degrees by H2O2 that correlated with ObPV-inducibility of these FADs. These results underline the importance of further studies on the role of pepper FADs in pepper-tobamovirus interactions.
Collapse
Affiliation(s)
- Eszter Balogh
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022, Budapest, Herman Ottó út 15, Hungary
| | - Csilla Juhász
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022, Budapest, Herman Ottó út 15, Hungary
| | - Tamás Dankó
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022, Budapest, Herman Ottó út 15, Hungary
| | - József Fodor
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022, Budapest, Herman Ottó út 15, Hungary
| | - István Tóbiás
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022, Budapest, Herman Ottó út 15, Hungary
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022, Budapest, Herman Ottó út 15, Hungary.
| |
Collapse
|
20
|
He G, Zhang Z, Sathanantham P, Zhang X, Wu Z, Xie L, Wang X. An engineered mutant of a host phospholipid synthesis gene inhibits viral replication without compromising host fitness. J Biol Chem 2019; 294:13973-13982. [PMID: 31362985 DOI: 10.1074/jbc.ra118.007051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
Viral infections universally rely on numerous hijacked host factors to be successful. It is therefore possible to control viral infections by manipulating host factors that are critical for viral replication. Given that host genes may play essential roles in certain cellular processes, any successful manipulations for virus control should cause no or mild effects on host fitness. We previously showed that a group of positive-strand RNA viruses enrich phosphatidylcholine (PC) at the sites of viral replication. Specifically, brome mosaic virus (BMV) replication protein 1a interacts with and recruits a PC synthesis enzyme, phosphatidylethanolamine methyltransferase, Cho2p, to the viral replication sites that are assembled on the perinuclear endoplasmic reticulum (ER) membrane. Deletion of the CHO2 gene inhibited BMV replication by 5-fold; however, it slowed down host cell growth as well. Here, we show that an engineered Cho2p mutant supports general PC synthesis and normal cell growth but blocks BMV replication. This mutant interacts and colocalizes with BMV 1a but prevents BMV 1a from localizing to the perinuclear ER membrane. The mislocalized BMV 1a fails to induce the formation of viral replication complexes. Our study demonstrates an effective antiviral strategy in which a host lipid synthesis gene is engineered to control viral replication without comprising host growth.
Collapse
Affiliation(s)
- Guijuan He
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.,School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Zhenlu Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.,School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061.,National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Preethi Sathanantham
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Xin Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Zujian Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lianhui Xie
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| |
Collapse
|
21
|
Vijay R, Sims AC, Bloodsworth KJ, Kim YM, Moore RJ, Kyle JE, Nakayasu ES, Metz TO. Metabolite, Protein, and Lipid Extraction (MPLEx): A Method that Simultaneously Inactivates Middle East Respiratory Syndrome Coronavirus and Allows Analysis of Multiple Host Cell Components Following Infection. Methods Mol Biol 2019; 2099:173-194. [PMID: 31883096 PMCID: PMC7121680 DOI: 10.1007/978-1-0716-0211-9_14] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry (MS)-based, integrated proteomics, metabolomics, and lipidomics (collectively, multi-omics) studies provide a very detailed snapshot of virus-induced changes to the host following infection and can lead to the identification of novel prophylactic and therapeutic targets for preventing or lessening disease severity. Multi-omics studies with Middle East respiratory syndrome coronavirus (MERS-CoV) are challenging as the requirements of biosafety level 3 containment limit the numbers of samples that can be safely managed. To address these issues, the multi-omics sample preparation technique MPLEx (metabolite, protein, and lipid extraction) was developed to partition a single sample into three distinct parts (metabolites, proteins, and lipids) for multi-omics analysis, while simultaneously inactivating MERS-CoV by solubilizing and disrupting the viral envelope and denaturing viral proteins. Here we describe the MPLEx protocol, highlight the step of inactivation, and describe the details of downstream processing, instrumental analysis of the three separate analytes, and their subsequent informatics pipelines.
Collapse
Affiliation(s)
- Rahul Vijay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA USA
| | - Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kent J Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
22
|
Sharma A, Knollmann-Ritschel B. Current Understanding of the Molecular Basis of Venezuelan Equine Encephalitis Virus Pathogenesis and Vaccine Development. Viruses 2019; 11:v11020164. [PMID: 30781656 PMCID: PMC6410161 DOI: 10.3390/v11020164] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/30/2022] Open
Abstract
Dedication This review is dedicated in the memory of Dr Radha K. Maheshwari, a great mentor and colleague, whose passion for research and student training has left a lasting effect on this manuscript and many other works. Abstract Venezuelan equine encephalitis virus (VEEV) is an alphavirus in the family Togaviridae. VEEV is highly infectious in aerosol form and a known bio-warfare agent that can cause severe encephalitis in humans. Periodic outbreaks of VEEV occur predominantly in Central and South America. Increased interest in VEEV has resulted in a more thorough understanding of the pathogenesis of this disease. Inflammation plays a paradoxical role of antiviral response as well as development of lethal encephalitis through an interplay between the host and viral factors that dictate virus replication. VEEV has efficient replication machinery that adapts to overcome deleterious mutations in the viral genome or improve interactions with host factors. In the last few decades there has been ongoing development of various VEEV vaccine candidates addressing the shortcomings of the current investigational new drugs or approved vaccines. We review the current understanding of the molecular basis of VEEV pathogenesis and discuss various types of vaccine candidates.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | |
Collapse
|
23
|
Feng Z, Xu K, Kovalev N, Nagy PD. Recruitment of Vps34 PI3K and enrichment of PI3P phosphoinositide in the viral replication compartment is crucial for replication of a positive-strand RNA virus. PLoS Pathog 2019; 15:e1007530. [PMID: 30625229 PMCID: PMC6342326 DOI: 10.1371/journal.ppat.1007530] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/22/2019] [Accepted: 12/16/2018] [Indexed: 12/12/2022] Open
Abstract
Tombusviruses depend on subversions of multiple host factors and retarget cellular pathways to support viral replication. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus (CIRV) recruit the cellular Vps34 phosphatidylinositol 3-kinase (PI3K) into the large viral replication compartment. The kinase function of Vps34 is critical for TBSV replication, suggesting that PI(3)P phosphoinositide is utilized by TBSV for building of the replication compartment. We also observed increased expression of Vps34 and the higher abundance of PI(3)P in the presence of the tombusviral replication proteins, which likely leads to more efficient tombusvirus replication. Accordingly, overexpression of PI(3)P phosphatase in yeast or plants inhibited TBSV replication on the peroxisomal membranes and CIRV replication on the mitochondrial membranes. Moreover, the purified PI(3)P phosphatase reduced TBSV replicase assembly in a cell-free system. Detection of PI(3)P with antibody or a bioprobe revealed the enrichment of PI(3)P in the replication compartment. Vps34 is directly recruited into the replication compartment through interaction with p33 replication protein. Gene deletion analysis in surrogate yeast host unraveled that TBSV replication requires the vesicle transport function of Vps34. In the absence of Vps34, TBSV cannot efficiently recruit the Rab5-positive early endosomes, which provide PE-rich membranes for membrane biogenesis of the TBSV replication compartment. We found that Vps34 and PI(3)P needed for the stability of the p33 replication protein, which is degraded by the 26S proteasome when PI(3)P abundance was decreased by an inhibitor of Vps34. In summary, Vps34 and PI(3)P are needed for providing the optimal microenvironment for the replication of the peroxisomal TBSV and the mitochondrial CIRV. Replication of RNA viruses infecting various eukaryotic organisms is the central step in the infection process that leads to generation of progeny viruses. The replication process requires the assembly of numerous viral replicase complexes within the large replication compartment, whose formation is not well understood. Using tombusviruses and the model host yeast, the authors discovered that a highly conserved cellular lipid kinase, Vps34 phosphatidylinositol 3-kinase (PI3K), is critical for the formation of the viral replication compartment. Expression of PI3K mutants and the PI(3)P phosphatase revealed that the PI(3)P phosphoinositide produced by Vps34 is crucial for tombusvirus replication. Tombusviruses co-opt Vps34 through interaction with the viral replication protein into the replication compartment. In vitro reconstitution of the tombusvirus replicase revealed the need for Vps34 and PI(3)P for the full-activity of the viral replicase. Chemical inhibition of Vps34 in yeast or plants showed that PI(3)P is important for the replication of several plant viruses within the Tombusviridae family and the insect-infecting Nodamuravirus. These results open up the possibility that the cellular Vps34 PI3K could be a target for new antiviral strategies.
Collapse
Affiliation(s)
- Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kai Xu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail: (KX); (PDN)
| | - Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (KX); (PDN)
| |
Collapse
|
24
|
Mhlwatika Z, Aderibigbe BA. Application of Dendrimers for the Treatment of Infectious Diseases. Molecules 2018; 23:E2205. [PMID: 30200314 PMCID: PMC6225509 DOI: 10.3390/molecules23092205] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/14/2023] Open
Abstract
Dendrimers are drug delivery systems that are characterized by a three-dimensional, star-shaped, branched macromolecular network. They possess ideal properties such as low polydispersity index, biocompatibility and good water solubility. They are made up of the interior and the exterior layers. The exterior layer consists of functional groups that are useful for conjugation of drugs and targeting moieties. The interior layer exhibits improved drug encapsulation efficiency, reduced drug toxicity, and controlled release mechanisms. These unique properties make them useful for drug delivery. Dendrimers have attracted considerable attention as drug delivery system for the treatment of infectious diseases. The treatment of infectious diseases is hampered severely by drug resistance. Several properties of dendrimers such as their ability to overcome drug resistance, toxicity and control the release mechanism of the encapsulated drugs make them ideal systems for the treatment of infectious disease. The aim of this review is to discuss the potentials of dendrimers for the treatment of viral and parasitic infections.
Collapse
Affiliation(s)
- Zandile Mhlwatika
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| |
Collapse
|
25
|
Aktepe TE, Mackenzie JM. Shaping the flavivirus replication complex: It is curvaceous! Cell Microbiol 2018; 20:e12884. [PMID: 29933527 PMCID: PMC7162344 DOI: 10.1111/cmi.12884] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 12/21/2022]
Abstract
Flavivirus replication is intimately involved with remodelled membrane organelles that are compartmentalised for different functions during their life cycle. Recent advances in lipid analyses and gene depletion have identified a number of host components that enable efficient virus replication in infected cells. Here, we describe the current understanding on the role and contribution of host lipids and membrane bending proteins to flavivirus replication, with a particular focus on the components that bend and shape the membrane bilayer to induce the flavivirus-induced organelles characteristic of infection.
Collapse
Affiliation(s)
- Turgut E. Aktepe
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Jason M. Mackenzie
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
26
|
Lamm CE, Kraner ME, Hofmann J, Börnke F, Mock HP, Sonnewald U. Hop/Sti1 - A Two-Faced Cochaperone Involved in Pattern Recognition Receptor Maturation and Viral Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:1754. [PMID: 29075278 PMCID: PMC5641557 DOI: 10.3389/fpls.2017.01754] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/25/2017] [Indexed: 05/03/2023]
Abstract
Perception of pathogens by host pattern recognition receptors (PRRs) or R proteins is a prerequisite to promote successful immune responses. The Hsp70/Hsp90 organizing protein Hop/Sti1, a multifunctional cochaperone, has been implicated in the maturation of a receptor-like kinase (RLK) necessary for chitin sensing. However, it remains unknown whether Hop/Sti1 is generally participating in PRR genesis. Using RNA-interference (RNAi), we silenced Hop/Sti1 expression in Nicotiana tabacum to gain further insight into the role of the cochaperone in plant defense responses. As expected, transgenic plants do not respond to chitin treatment anymore. In contrast to this, trafficking and functionality of the flagellin PRR FLS2 were unaltered, suggesting a selective involvement of Hop/Sti1 during PRR maturation. Furthermore, Hop/Sti1 was identified as a cellular determinant of Potato virus Y (PVY) symptom development in tobacco, since PVY was able to accumulate to near wild-type level without provoking the usual veinal necrosis phenotype. In addition, typical antiviral host defense responses were suppressed in the transgenic plants. These data suggest that perception of PVY is dependent on Hop/Sti1-mediated receptor maturation, while viral symptoms represent a failing attempt to restrict PVY spread. In addition, Hop/Sti1 colocalized with virus-induced membrane aggregates in wild-type plants. The retention of Hop/Sti1 in potential viral replication complexes suggests a role during viral translation/replication, explaining why RNAi-lines do not exhibit increased susceptibility to PVY. This study provides evidence for a dual role of Hop/Sti1 in PRR maturation and pathogen perception as well as in promoting viral proliferation.
Collapse
Affiliation(s)
- Christian E. Lamm
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Max. E. Kraner
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg Hofmann
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Frederik Börnke
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Uwe Sonnewald
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
27
|
Complex Coding and Regulatory Polymorphisms in a Restriction Factor Determine the Susceptibility of Drosophila to Viral Infection. Genetics 2017. [PMID: 28630113 PMCID: PMC5560813 DOI: 10.1534/genetics.117.201970] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
It is common to find that major-effect genes are an important cause of variation in susceptibility to infection. Here we have characterized natural variation in a gene called pastrel that explains over half of the genetic variance in susceptibility to the Drosophila C virus (DCV) in populations of Drosophila melanogaster We found extensive allelic heterogeneity, with a sample of seven alleles of pastrel from around the world conferring four phenotypically distinct levels of resistance. By modifying candidate SNPs in transgenic flies, we show that the largest effect is caused by an amino acid polymorphism that arose when an ancestral threonine was mutated to alanine, greatly increasing resistance to DCV. Overexpression of the ancestral, susceptible allele provides strong protection against DCV; indicating that this mutation acted to improve an existing restriction factor. The pastrel locus also contains complex structural variation and cis-regulatory polymorphisms altering gene expression. We find that higher expression of pastrel is associated with increased survival after DCV infection. To understand why this variation is maintained in populations, we investigated genetic variation surrounding the amino acid variant that is causing flies to be resistant. We found no evidence of natural selection causing either recent changes in allele frequency or geographical variation in frequency, suggesting that this is an old polymorphism that has been maintained at a stable frequency. Overall, our data demonstrate how complex genetic variation at a single locus can control susceptibility to a virulent natural pathogen.
Collapse
|
28
|
Pietilä MK, Hellström K, Ahola T. Alphavirus polymerase and RNA replication. Virus Res 2017; 234:44-57. [DOI: 10.1016/j.virusres.2017.01.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
|
29
|
Guo H, Huang M, Yuan Q, Wei Y, Gao Y, Mao L, Gu L, Tan YW, Zhong Y, Liu D, Sun S. The Important Role of Lipid Raft-Mediated Attachment in the Infection of Cultured Cells by Coronavirus Infectious Bronchitis Virus Beaudette Strain. PLoS One 2017; 12:e0170123. [PMID: 28081264 PMCID: PMC5231368 DOI: 10.1371/journal.pone.0170123] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 12/29/2016] [Indexed: 11/19/2022] Open
Abstract
Lipid raft is an important element for the cellular entry of some viruses, including coronavirus infectious bronchitis virus (IBV). However, the exact role of lipid rafts in the cellular membrane during the entry of IBV into host cells is still unknown. In this study, we biochemically fractionated IBV-infected cells via sucrose density gradient centrifugation after depleting plasma membrane cholesterol with methyl-β-cyclodextrin or Mevastatin. Our results demonstrated that unlike IBV non-structural proteins, IBV structural proteins co-localized with lipid raft marker caveolin-1. Infectivity assay results of Vero cells illustrated that the drug-induced disruption of lipid rafts significantly suppressed IBV infection. Further studies revealed that lipid rafts were not required for IBV genome replication or virion release at later stages. However, the drug-mediated depletion of lipid rafts in Vero cells before IBV attachment significantly reduced the expression of viral structural proteins, suggesting that drug treatment impaired the attachment of IBV to the cell surface. Our results indicated that lipid rafts serve as attachment factors during the early stages of IBV infection, especially during the attachment stage.
Collapse
Affiliation(s)
- Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
| | - Mei Huang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Quan Yuan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yanquan Wei
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
| | - Yuan Gao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
| | - Lejiao Mao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
| | - Lingjun Gu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
- College of Animal Science, Yangtze University, Jingzhou, P.R. China
| | - Yong Wah Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yanxin Zhong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Dingxiang Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (SS); (DL)
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
- * E-mail: (SS); (DL)
| |
Collapse
|
30
|
Isolation and Characterization of Pepper Genes Interacting with the CMV-P1 Helicase Domain. PLoS One 2016; 11:e0146320. [PMID: 26751216 PMCID: PMC4709182 DOI: 10.1371/journal.pone.0146320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/14/2015] [Indexed: 01/04/2023] Open
Abstract
Cucumber mosaic virus (CMV) is a destructive pathogen affecting Capsicum annuum (pepper) production. The pepper Cmr1 gene confers resistance to most CMV strains, but is overcome by CMV-P1 in a process dependent on the CMV-P1 RNA1 helicase domain (P1 helicase). Here, to identify host factors involved in CMV-P1 infection in pepper, a yeast two-hybrid library derived from a C. annuum ‘Bukang’ cDNA library was screened, producing a total of 76 potential clones interacting with the P1 helicase. Beta-galactosidase filter lift assay, PCR screening, and sequencing analysis narrowed the candidates to 10 genes putatively involved in virus infection. The candidate host genes were silenced in Nicotiana benthamiana plants that were then inoculated with CMV-P1 tagged with the green fluorescent protein (GFP). Plants silenced for seven of the genes showed development comparable to N. benthamiana wild type, whereas plants silenced for the other three genes showed developmental defects including stunting and severe distortion. Silencing formate dehydrogenase and calreticulin-3 precursor led to reduced virus accumulation. Formate dehydrogenase-silenced plants showed local infection in inoculated leaves, but not in upper (systemic) leaves. In the calreticulin-3 precursor-silenced plants, infection was not observed in either the inoculated or the upper leaves. Our results demonstrate that formate dehydrogenase and calreticulin-3 precursor are required for CMV-P1 infection.
Collapse
|
31
|
Reid CR, Airo AM, Hobman TC. The Virus-Host Interplay: Biogenesis of +RNA Replication Complexes. Viruses 2015; 7:4385-413. [PMID: 26287230 PMCID: PMC4576186 DOI: 10.3390/v7082825] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 12/22/2022] Open
Abstract
Positive-strand RNA (+RNA) viruses are an important group of human and animal pathogens that have significant global health and economic impacts. Notable members include West Nile virus, Dengue virus, Chikungunya, Severe acute respiratory syndrome (SARS) Coronavirus and enteroviruses of the Picornaviridae family.Unfortunately, prophylactic and therapeutic treatments against these pathogens are limited. +RNA viruses have limited coding capacity and thus rely extensively on host factors for successful infection and propagation. A common feature among these viruses is their ability to dramatically modify cellular membranes to serve as platforms for genome replication and assembly of new virions. These viral replication complexes (VRCs) serve two main functions: To increase replication efficiency by concentrating critical factors and to protect the viral genome from host anti-viral systems. This review summarizes current knowledge of critical host factors recruited to or demonstrated to be involved in the biogenesis and stabilization of +RNA virus VRCs.
Collapse
Affiliation(s)
- Colleen R Reid
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Adriana M Airo
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Tom C Hobman
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
32
|
Identification of Host Cell Factors Associated with Astrovirus Replication in Caco-2 Cells. J Virol 2015; 89:10359-70. [PMID: 26246569 DOI: 10.1128/jvi.01225-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/28/2015] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED Astroviruses are small, nonenveloped viruses with a single-stranded positive-sense RNA genome causing acute gastroenteritis in children and immunocompromised patients. Since positive-sense RNA viruses have frequently been found to replicate in association with membranous structures, in this work we characterized the replication of the human astrovirus serotype 8 strain Yuc8 in Caco-2 cells, using density gradient centrifugation and free-flow zonal electrophoresis (FFZE) to fractionate cellular membranes. Structural and nonstructural viral proteins, positive- and negative-sense viral RNA, and infectious virus particles were found to be associated with a distinct population of membranes separated by FFZE. The cellular proteins associated with this membrane population in infected and mock-infected cells were identified by tandem mass spectrometry. The results indicated that membranes derived from multiple cell organelles were present in the population. Gene ontology and protein-protein interaction network analysis showed that groups of proteins with roles in fatty acid synthesis and ATP biosynthesis were highly enriched in the fractions of this population in infected cells. Based on this information, we investigated by RNA interference the role that some of the identified proteins might have in the replication cycle of the virus. Silencing of the expression of genes involved in cholesterol (DHCR7, CYP51A1) and fatty acid (FASN) synthesis, phosphatidylinositol (PI4KIIIβ) and inositol phosphate (ITPR3) metabolism, and RNA helicase activity (DDX23) significantly decreased the amounts of Yuc8 genomic and antigenomic RNA, synthesis of the structural protein VP90, and virus yield. These results strongly suggest that astrovirus RNA replication and particle assembly take place in association with modified membranes potentially derived from multiple cell organelles. IMPORTANCE Astroviruses are common etiological agents of acute gastroenteritis in children and immunocompromised patients. More recently, they have been associated with neurological diseases in mammals, including humans, and are also responsible for different pathologies in birds. In this work, we provide evidence that astrovirus RNA replication and virus assembly occur in contact with cell membranes potentially derived from multiple cell organelles and show that membrane-associated cellular proteins involved in lipid metabolism are required for efficient viral replication. Our findings provide information to enhance our knowledge of astrovirus biology and provide information that might be useful for the development of therapeutic interventions to prevent virus replication.
Collapse
|
33
|
Aktepe TE, Pham H, Mackenzie JM. Differential utilisation of ceramide during replication of the flaviviruses West Nile and dengue virus. Virology 2015; 484:241-250. [PMID: 26122470 DOI: 10.1016/j.virol.2015.06.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/05/2015] [Accepted: 06/12/2015] [Indexed: 01/22/2023]
Abstract
It is well established that +ssRNA viruses manipulate cellular lipid homoeostasis and distribution to facilitate efficient replication. Here, we show that the cellular lipid ceramide is redistributed to the West Nile virus strain Kunjin virus (WNVKUN) replication complex (RC) but not to the dengue virus serotype 2 strain New Guinea C (DENVNGC) RC. We show that prolonged chemical inhibition of serine palmitoyltransferase with myriocin had a significant deleterious effect on WNVKUN replication but enhanced DENVNGC replication. Additionally, inhibition of ceramide synthase with Fumonisin B1 had a detrimental effect on WNVKUN replication and release of infectious virus particles but contrastingly an enhancing effect on DENVNGC replication and virus production. These observations suggest that ceramide production via the de novo and salvage pathway is a requirement for WNVKUN replication but inhibitory for DENVNGC replication. Thus, although these two viruses are from the same genus, they have a differential ceramide requirement for replication.
Collapse
Affiliation(s)
- Turgut E Aktepe
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Helen Pham
- Department of Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
34
|
Multiple functions of capsid proteins in (+) stranded RNA viruses during plant–virus interactions. Virus Res 2015; 196:140-9. [DOI: 10.1016/j.virusres.2014.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/18/2022]
|
35
|
Schneider AM, Schmidt S, Jonas S, Vollmer B, Khazina E, Weichenrieder O. Structure and properties of the esterase from non-LTR retrotransposons suggest a role for lipids in retrotransposition. Nucleic Acids Res 2013; 41:10563-72. [PMID: 24003030 PMCID: PMC3905857 DOI: 10.1093/nar/gkt786] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Non-LTR retrotransposons are mobile genetic elements and play a major role in eukaryotic genome evolution and disease. Similar to retroviruses they encode a reverse transcriptase, but their genomic integration mechanism is fundamentally different, and they lack homologs of the retroviral nucleocapsid-forming protein Gag. Instead, their first open reading frames encode distinct multi-domain proteins (ORF1ps) presumed to package the retrotransposon-encoded RNA into ribonucleoprotein particles (RNPs). The mechanistic roles of ORF1ps are poorly understood, particularly of ORF1ps that appear to harbor an enzymatic function in the form of an SGNH-type lipolytic acetylesterase. We determined the crystal structures of the coiled coil and esterase domains of the ORF1p from the Danio rerio ZfL2-1 element. We demonstrate a dimerization of the coiled coil and a hydrolytic activity of the esterase. Furthermore, the esterase binds negatively charged phospholipids and liposomes, but not oligo-(A) RNA. Unexpectedly, the esterase can split into two dynamic half-domains, suited to engulf long fatty acid substrates extending from the active site. These properties indicate a role for lipids and membranes in non-LTR retrotransposition. We speculate that Gag-like membrane targeting properties of ORF1ps could play a role in RNP assembly and in membrane-dependent transport or localization processes.
Collapse
Affiliation(s)
- Anna M Schneider
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany and Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
36
|
The resistance protein Tm-1 inhibits formation of a Tomato mosaic virus replication protein-host membrane protein complex. J Virol 2013; 87:7933-9. [PMID: 23658455 DOI: 10.1128/jvi.00743-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Tm-1 gene of tomato confers resistance to Tomato mosaic virus (ToMV). Tm-1 encodes a protein that binds ToMV replication proteins and inhibits the RNA-dependent RNA replication of ToMV. The replication proteins of resistance-breaking mutants of ToMV do not bind Tm-1, indicating that the binding is important for inhibition. In this study, we analyzed how Tm-1 inhibits ToMV RNA replication in a cell-free system using evacuolated tobacco protoplast extracts. In this system, ToMV RNA replication is catalyzed by replication proteins bound to membranes, and the RNA polymerase activity is unaffected by treatment with 0.5 M NaCl-containing buffer and remains associated with membranes. We show that in the presence of Tm-1, negative-strand RNA synthesis is inhibited; the replication proteins associate with membranes with binding that is sensitive to 0.5 M NaCl; the viral genomic RNA used as a translation template is not protected from nuclease digestion; and host membrane proteins TOM1, TOM2A, and ARL8 are not copurified with the membrane-bound 130K replication protein. Deletion of the polymerase read-through domain or of the 3' untranslated region (UTR) of the genome did not prevent the formation of complexes between the 130K protein and the host membrane proteins, the 0.5 M NaCl-resistant binding of the replication proteins to membranes, and the protection of the genomic RNA from nucleases. These results indicate that Tm-1 binds ToMV replication proteins to inhibit key events in replication complex formation on membranes that precede negative-strand RNA synthesis.
Collapse
|
37
|
Ishibashi K, Miyashita S, Katoh E, Ishikawa M. Host membrane proteins involved in the replication of tobamovirus RNA. Curr Opin Virol 2012; 2:699-704. [DOI: 10.1016/j.coviro.2012.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
|
38
|
Yi Z, Yuan Z, Rice CM, MacDonald MR. Flavivirus replication complex assembly revealed by DNAJC14 functional mapping. J Virol 2012; 86:11815-32. [PMID: 22915803 PMCID: PMC3486285 DOI: 10.1128/jvi.01022-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/12/2012] [Indexed: 01/20/2023] Open
Abstract
DNAJC14 is an Hsp40 family member that broadly modulates flavivirus replication. The mechanism by which DNAJC14 stoichiometrically participates in flavivirus replication complex (RC) formation is unknown; both reduced and elevated levels result in replication inhibition. Using yellow fever virus (YFV), we demonstrate that DNAJC14 redistributes and clusters with YFV nonstructural proteins via a transmembrane domain and a newly identified membrane-binding domain (MBD), which both mediate targeting to detergent-resistant membranes. Furthermore, the RC and DNAJC14 reside as part of a protein interaction network that remains after 1% Triton solubilization. Mutagenesis studies demonstrate that entry into this protein interaction network requires the DNAJC14 C-terminal self-interaction domain. Fusion of the DNAJC14 MBD and self-interaction domain with another Hsp40 family protein is sufficient to confer YFV-inhibitory activity. Our findings support a novel model of DNAJC14 action that includes specific membrane targeting of both DNAJC14 and YFV replication proteins, the formation of protein interactions, and a microdomain-specific chaperone event leading to RC formation. This process alters the properties of the RC membrane and results in the formation of a protein scaffold that maintains the RC.
Collapse
Affiliation(s)
- Zhigang Yi
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| |
Collapse
|
39
|
Ibrahim A, Hutchens HM, Berg RH, Loesch-Fries LS. Alfalfa mosaic virus replicase proteins, P1 and P2, localize to the tonoplast in the presence of virus RNA. Virology 2012; 433:449-61. [PMID: 22999257 DOI: 10.1016/j.virol.2012.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 12/25/2022]
Abstract
To identify the virus components important for assembly of the Alfalfa mosaic virus replicase complex, we used live cell imaging of Arabidopsis thaliana protoplasts that expressed various virus cDNAs encoding native and GFP-fusion proteins of P1 and P2 replicase proteins and full-length virus RNAs. Expression of P1-GFP alone resulted in fluorescent vesicle-like bodies in the cytoplasm that colocalized with FM4-64, an endocytic marker, and RFP-AtVSR2, RabF2a/Rha1-mCherry, and RabF2b/Ara7-mCherry, all of which localize to multivesicular bodies (MVBs), which are also called prevacuolar compartments, that mediate traffic to the lytic vacuole. GFP-P2 was driven from the cytosol to MVBs when expressed with P1 indicating that P1 recruited GFP-P2. P1-GFP localized on the tonoplast, which surrounds the vacuole, in the presence of infectious virus RNA, replication competent RNA2, or P2 and replication competent RNA1 or RNA3. This suggests that a functional replication complex containing P1, P2, and a full-length AMV RNA assembles on MVBs to traffic to the tonoplast.
Collapse
Affiliation(s)
- Amr Ibrahim
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
40
|
Delang L, Paeshuyse J, Neyts J. The role of phosphatidylinositol 4-kinases and phosphatidylinositol 4-phosphate during viral replication. Biochem Pharmacol 2012; 84:1400-8. [PMID: 22885339 PMCID: PMC7111036 DOI: 10.1016/j.bcp.2012.07.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 12/20/2022]
Abstract
Phosphoinositides (PI) are phospholipids that mediate signaling cascades in the cell by binding to effector proteins. Reversible phosphorylation of the inositol ring at positions 3, 4 and 5 results in the synthesis of seven different phosphoinositides. Each phosphoinositide has a unique subcellular distribution with a predominant localization in subsets of membranes. These lipids play a major role in recruiting and regulating the function of proteins at membrane interfaces [1]. Several bacteria and viruses modulate and exploit the host PI metabolism to ensure efficient replication and survival. Here, we focus on the roles of cellular phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4-kinases (PI4Ks) during the replication cycle of various viruses. It has been well documented that phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ, EC 2.7.1.67) is indispensable for viral RNA replication of several picornaviruses. Two recruitment strategies were reported: (i) binding and modulation of GBF1/Arf1 to enhance recruitment of PI4KIIIβ and (ii) interaction with ACBD3 for recruitment of PI4KIIIβ. PI4KIII has also been demonstrated to be crucial for hepatitis C virus (HCV) replication. PI4KIII appears to be directly recruited and activated by HCV NS5A protein to the replication complexes. In contrast to picornaviruses, it is still debated whether the α or the β isoform is the most important. PI4KIII can be explored as a target for inhibition of viral replication. The challenge will be to develop highly selective inhibitors for PI4KIIIα and/or β and to avoid off-target toxicity.
Collapse
Affiliation(s)
- Leen Delang
- Rega Institute for Medical Research, KU Leuven, Belgium
| | | | | |
Collapse
|
41
|
Morozov SY, Solovyev AG. Did silencing suppression counter-defensive strategy contribute to origin and evolution of the triple gene block coding for plant virus movement proteins? FRONTIERS IN PLANT SCIENCE 2012; 3:136. [PMID: 22783263 PMCID: PMC3390553 DOI: 10.3389/fpls.2012.00136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/05/2012] [Indexed: 05/25/2023]
Affiliation(s)
- Sergey Y. Morozov
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, Russia
| | - Andrey G. Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, Russia
| |
Collapse
|
42
|
Moser TS, Schieffer D, Cherry S. AMP-activated kinase restricts Rift Valley fever virus infection by inhibiting fatty acid synthesis. PLoS Pathog 2012; 8:e1002661. [PMID: 22532801 PMCID: PMC3330235 DOI: 10.1371/journal.ppat.1002661] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 03/07/2012] [Indexed: 11/18/2022] Open
Abstract
The cell intrinsic innate immune responses provide a first line of defense against viral infection, and often function by targeting cellular pathways usurped by the virus during infection. In particular, many viruses manipulate cellular lipids to form complex structures required for viral replication, many of which are dependent on de novo fatty acid synthesis. We found that the energy regulator AMPK, which potently inhibits fatty acid synthesis, restricts infection of the Bunyavirus, Rift Valley Fever Virus (RVFV), an important re-emerging arthropod-borne human pathogen for which there are no effective vaccines or therapeutics. We show restriction of RVFV both by AMPK and its upstream activator LKB1, indicating an antiviral role for this signaling pathway. Furthermore, we found that AMPK is activated during RVFV infection, leading to the phosphorylation and inhibition of acetyl-CoA carboxylase, the first rate-limiting enzyme in fatty acid synthesis. Activating AMPK pharmacologically both restricted infection and reduced lipid levels. This restriction could be bypassed by treatment with the fatty acid palmitate, demonstrating that AMPK restricts RVFV infection through its inhibition of fatty acid biosynthesis. Lastly, we found that this pathway plays a broad role in antiviral defense since additional viruses from disparate families were also restricted by AMPK and LKB1. Therefore, AMPK is an important component of the cell intrinsic immune response that restricts infection through a novel mechanism involving the inhibition of fatty acid metabolism. RNA viruses represent an important worldwide source of infection and disease in both humans and animals. While individual viruses have unique characteristics, some stages of infection are conserved and must be completed in order to successfully infect and grow. Viruses must undergo genome replication, protein synthesis, and assembly of new virus particles. In particular, numerous RNA viruses manipulate cellular membranes to create new complex structures required for viral replication in a process that is often dependent on fatty acid biosynthesis. This is a process that is tightly regulated by the energy sensor AMPK. We have found that energy-mediated activation of AMPK restricts infection of the Bunyavirus Rift Valley fever virus by decreasing levels of fatty acid synthesis. Furthermore, several additional RNA viruses from disparate families that share this dependence of membrane modification and fatty acid synthesis are also restricted by AMPK. Thus AMPK likely represents a novel component of the cell intrinsic immune response to RNA viruses, and may be a good target for the development of antiviral therapeutics against a range of medically important viruses.
Collapse
Affiliation(s)
| | | | - Sara Cherry
- Department of Microbiology, Penn Genome Frontiers Institute, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
43
|
|