1
|
Iman K, Mirza MU, Sadia F, Froeyen M, Trant JF, Chaudhary SU. Pharmacophore-Assisted Covalent Docking Identifies a Potential Covalent Inhibitor for Drug-Resistant Genotype 3 Variants of Hepatitis C Viral NS3/4A Serine Protease. Viruses 2024; 16:1250. [PMID: 39205224 PMCID: PMC11359326 DOI: 10.3390/v16081250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The emergence of drug-resistance-inducing mutations in Hepatitis C virus (HCV) coupled with genotypic heterogeneity has made targeting NS3/4A serine protease difficult. In this work, we investigated the mutagenic variations in the binding pocket of Genotype 3 (G3) HCV NS3/4A and evaluated ligands for efficacious inhibition. We report mutations at 14 positions within the ligand-binding residues of HCV NS3/4A, including H57R and S139P within the catalytic triad. We then modelled each mutational variant for pharmacophore-based virtual screening (PBVS) followed by covalent docking towards identifying a potential covalent inhibitor, i.e., cpd-217. The binding stability of cpd-217 was then supported by molecular dynamic simulation followed by MM/GBSA binding free energy calculation. The free energy decomposition analysis indicated that the resistant mutants alter the HCV NS3/4A-ligand interaction, resulting in unbalanced energy distribution within the binding site, leading to drug resistance. Cpd-217 was identified as interacting with all NS3/4A G3 variants with significant covalent docking scores. In conclusion, cpd-217 emerges as a potential inhibitor of HCV NS3/4A G3 variants that warrants further in vitro and in vivo studies. This study provides a theoretical foundation for drug design and development targeting HCV G3 NS3/4A.
Collapse
Affiliation(s)
- Kanzal Iman
- Biomedical Informatics & Engineering Research Laboratory, Department of Life Sciences, Lahore University of Management Sciences, Lahore 36000, Pakistan; (K.I.); (F.S.)
| | - Muhammad Usman Mirza
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada;
| | - Fazila Sadia
- Biomedical Informatics & Engineering Research Laboratory, Department of Life Sciences, Lahore University of Management Sciences, Lahore 36000, Pakistan; (K.I.); (F.S.)
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, KU Leuven—University of Leuven, B-3000 Leuven, Belgium;
| | - John F. Trant
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada;
| | - Safee Ullah Chaudhary
- Biomedical Informatics & Engineering Research Laboratory, Department of Life Sciences, Lahore University of Management Sciences, Lahore 36000, Pakistan; (K.I.); (F.S.)
| |
Collapse
|
2
|
Reese TC, Devineni A, Smith T, Lalami I, Ahn JM, Raj GV. Evaluating physiochemical properties of FDA-approved orally administered drugs. Expert Opin Drug Discov 2024; 19:225-238. [PMID: 37921049 DOI: 10.1080/17460441.2023.2275617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Analyses of orally administered FDA-approved drugs from 1990 to 1993 enabled the identification of a set of physiochemical properties known as Lipinski's Rule of Five (Ro5). The original Ro5 and extended versions still remain the reference criteria for drug development programs. Since many bioactive compounds do not conform to the Ro5, we validated the relevance of and adherence to these rulesets in a contemporary cohort of FDA-approved drugs. AREAS COVERED The authors noted that a significant proportion of FDA-approved orally administered parent compounds from 2011 to 2022 deviate from the original Ro5 criteria (~38%) or the Ro5 with extensions (~53%). They then evaluated if a contemporary Ro5 criteria (cRo5) could be devised to better predict oral bioavailability. Furthermore, they discuss many case studies showcasing the need for and benefit of increasing the size of certain compounds and cover several evolving strategies for improving oral bioavailability. EXPERT OPINION Despite many revisions to the Ro5, the authors find that no single proposed physiochemical rule has universal concordance with absolute oral bioavailability. Innovations in drug delivery and formulation have dramatically expanded the range of physicochemical properties and the chemical diversity for oral administration.
Collapse
Affiliation(s)
- Tanner C Reese
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Anvita Devineni
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Tristan Smith
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Ismail Lalami
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
3
|
Liu D, Ndongwe TP, Ji J, Huber AD, Michailidis E, Rice CM, Ralston R, Tedbury PR, Sarafianos SG. Mechanisms of Action of the Host-Targeting Agent Cyclosporin A and Direct-Acting Antiviral Agents against Hepatitis C Virus. Viruses 2023; 15:981. [PMID: 37112961 PMCID: PMC10143304 DOI: 10.3390/v15040981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Several direct-acting antivirals (DAAs) are available, providing interferon-free strategies for a hepatitis C cure. In contrast to DAAs, host-targeting agents (HTAs) interfere with host cellular factors that are essential in the viral replication cycle; as host genes, they are less likely to rapidly mutate under drug pressure, thus potentially exhibiting a high barrier to resistance, in addition to distinct mechanisms of action. We compared the effects of cyclosporin A (CsA), a HTA that targets cyclophilin A (CypA), to DAAs, including inhibitors of nonstructural protein 5A (NS5A), NS3/4A, and NS5B, in Huh7.5.1 cells. Our data show that CsA suppressed HCV infection as rapidly as the fastest-acting DAAs. CsA and inhibitors of NS5A and NS3/4A, but not of NS5B, suppressed the production and release of infectious HCV particles. Intriguingly, while CsA rapidly suppressed infectious extracellular virus levels, it had no significant effect on the intracellular infectious virus, suggesting that, unlike the DAAs tested here, it may block a post-assembly step in the viral replication cycle. Hence, our findings shed light on the biological processes involved in HCV replication and the role of CypA.
Collapse
Affiliation(s)
- Dandan Liu
- CS Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65201, USA
| | - Tanya P. Ndongwe
- CS Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65201, USA
| | - Juan Ji
- CS Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65201, USA
| | - Andrew D. Huber
- CS Bond Life Sciences Center, Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Biochemical Pharmacology, Center for ViroScience and Cure, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Robert Ralston
- CS Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65201, USA
| | - Philip R. Tedbury
- CS Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65201, USA
- Laboratory of Biochemical Pharmacology, Center for ViroScience and Cure, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Stefan G. Sarafianos
- CS Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65201, USA
- Laboratory of Biochemical Pharmacology, Center for ViroScience and Cure, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Goyal A, Kharkwal H, Piplani M, Singh Y, Murugesan S, Aggarwal A, Kumar P, Chander S. Spotlight on 4-substituted quinolines as potential anti-infective agents: Journey beyond chloroquine. Arch Pharm (Weinheim) 2023; 356:e2200361. [PMID: 36494101 DOI: 10.1002/ardp.202200361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Abstract
Continued emerging resistance of pathogens against the clinically approved candidates and their associated limitations continuously demand newer agents having better potency with a more suited safety profile. Quinoline nuclei containing scaffolds of natural and synthetic origin have been documented for diverse types of pharmacological activities, and a number of drugs are clinically approved. In the present review, we unprecedentedly covered the biological potential of 4-substituted quinoline and elaborated a rationale for its special privilege to afford the significant number of approved clinical drugs, particularly against infectious pathogens. Compounds with 4-substituted quinoline are well documented for antimalarial activity, but in the last two decades, they have been extensively explored for activity against cancer, tuberculosis, and several other pathogens including viruses, bacteria, fungi, and other infectious pathogens. In the present study, the anti-infective spectrum of this scaffold is discussed against viruses, mycobacteria, malarial parasites, and fungal and bacterial strains, along with recent updates in this area, with special emphasis on the structure-activity relationship.
Collapse
Affiliation(s)
- Ankush Goyal
- School of Pharmacy, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | - Harsha Kharkwal
- Amity Institute of Phytochemistry & Phytomedicine, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Mona Piplani
- School of Pharmacy, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | - Yogendra Singh
- School of Pharmacy, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | | | - Amit Aggarwal
- School of Pharmacy, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | - Piyush Kumar
- Department of Chemistry, Indian Institute of Technology, Jammu, Jammu and Kashmir, India
| | - Subhash Chander
- Amity Institute of Phytochemistry & Phytomedicine, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
5
|
Brown W, Galpin JD, Rosenblum C, Tsang M, Ahern CA, Deiters A. Chemically Acylated tRNAs are Functional in Zebrafish Embryos. J Am Chem Soc 2023; 145:2414-2420. [PMID: 36669466 PMCID: PMC10155198 DOI: 10.1021/jacs.2c11452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Genetic code expansion has pushed protein chemistry past the canonical 22 amino acids. The key enzymes that make this possible are engineered aminoacyl tRNA synthetases. However, as the number of genetically encoded amino acids has increased over the years, obvious limits in the type and size of novel side chains that can be accommodated by the synthetase enzyme become apparent. Here, we show that chemically acylating tRNAs allow for robust, site-specific incorporation of unnatural amino acids into proteins in zebrafish embryos, an important model organism for human health and development. We apply this approach to incorporate a unique photocaged histidine analogue for which synthetase engineering efforts have failed. Additionally, we demonstrate optical control over different enzymes in live embryos by installing photocaged histidine into their active sites.
Collapse
Affiliation(s)
- Wes Brown
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jason D Galpin
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Carolyn Rosenblum
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
6
|
Fink T, Jerala R. Designed protease-based signaling networks. Curr Opin Chem Biol 2022; 68:102146. [DOI: 10.1016/j.cbpa.2022.102146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/27/2022]
|
7
|
Sukmarini L. Antiviral Peptides (AVPs) of Marine Origin as Propitious Therapeutic Drug Candidates for the Treatment of Human Viruses. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092619. [PMID: 35565968 PMCID: PMC9101517 DOI: 10.3390/molecules27092619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022]
Abstract
The marine environment presents a favorable avenue for potential therapeutic agents as a reservoir of new bioactive natural products. Due to their numerous potential pharmacological effects, marine-derived natural products—particularly marine peptides—have gained considerable attention. These peptides have shown a broad spectrum of biological functions, such as antimicrobial, antiviral, cytotoxic, immunomodulatory, and analgesic effects. The emergence of new virus strains and viral resistance leads to continuing efforts to develop more effective antiviral drugs. Interestingly, antimicrobial peptides (AMPs) that possess antiviral properties and are alternatively regarded as antiviral peptides (AVPs) demonstrate vast potential as alternative peptide-based drug candidates available for viral infection treatments. Hence, AVPs obtained from various marine organisms have been evaluated. This brief review features recent updates of marine-derived AVPs from 2011 to 2021. Moreover, the biosynthesis of this class of compounds and their possible mechanisms of action are also discussed. Selected peptides from various marine organisms possessing antiviral activities against important human viruses—such as human immunodeficiency viruses, herpes simplex viruses, influenza viruses, hepatitis C virus, and coronaviruses—are highlighted herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, West Java, Indonesia
| |
Collapse
|
8
|
Patil VS, Harish DR, Vetrivel U, Roy S, Deshpande SH, Hegde HV. Hepatitis C Virus NS3/4A Inhibition and Host Immunomodulation by Tannins from Terminalia chebula: A Structural Perspective. Molecules 2022; 27:molecules27031076. [PMID: 35164341 PMCID: PMC8839135 DOI: 10.3390/molecules27031076] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/15/2022] [Accepted: 01/22/2022] [Indexed: 01/27/2023] Open
Abstract
Terminalia chebula Retz. forms a key component of traditional folk medicine and is also reported to possess antihepatitis C virus (HCV) and immunomodulatory activities. However, information on the intermolecular interactions of phytochemicals from this plant with HCV and human proteins are yet to be established. Thus, by this current study, we investigated the HCV NS3/4A inhibitory and host immune-modulatory activity of phytocompounds from T. chebula through in silico strategies involving network pharmacology and structural bioinformatics techniques. To start with, the phytochemical dataset of T. chebula was curated from biological databases and the published literature. Further, the target ability of the phytocompounds was predicted using BindingDB for both HCV NS3/4A and other probable host targets involved in the immune system. Further, the identified targets were docked to the phytochemical dataset using AutoDock Vina executed through the POAP pipeline. The resultant docked complexes with significant binding energy were subjected to 50 ns molecular dynamics (MD) simulation in order to infer the stability of complex formation. During network pharmacology analysis, the gene set pathway enrichment of host targets was performed using the STRING and Reactome pathway databases. Further, the biological network among compounds, proteins, and pathways was constructed using Cytoscape 3.6.1. Furthermore, the druglikeness, side effects, and toxicity of the phytocompounds were also predicted using the MolSoft, ADVERpred, and PreADMET methods, respectively. Out of 41 selected compounds, 10 were predicted to target HCV NS3/4A and also to possess druglike and nontoxic properties. Among these 10 molecules, Chebulagic acid and 1,2,3,4,6-Pentagalloyl glucose exhibited potent HCV NS3/4A inhibitory activity, as these scored a lowest binding energy (BE) of −8.6 kcal/mol and −7.7 kcal/mol with 11 and 20 intermolecular interactions with active site residues, respectively. These findings are highly comparable with Asunaprevir (known inhibitor of HCV NS3/4A), which scored a BE of −7.4 kcal/mol with 20 key intermolecular interactions. MD studies also strongly suggest that chebulagic acid and 1,2,3,4,6-Pentagalloyl glucose as promising leads, as these molecules showed stable binding during 50 ns of production run. Further, the gene set enrichment and network analysis of 18 protein targets prioritized 10 compounds and were predicted to potentially modulate the host immune system, hemostasis, cytokine levels, interleukins signaling pathways, and platelet aggregation. On overall analysis, this present study predicts that tannins from T. chebula have a potential HCV NS3/4A inhibitory and host immune-modulatory activity. However, further experimental studies are required to confirm the efficacies.
Collapse
Affiliation(s)
- Vishal S. Patil
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
| | - Darasaguppe R. Harish
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
- Correspondence: (D.R.H.); (S.R.)
| | - Umashankar Vetrivel
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
- ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
- Correspondence: (D.R.H.); (S.R.)
| | - Sanjay H. Deshpande
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
- Regional Centre for Biotechnology, NCR-Biotech Science Cluster, Faridabad 121001, India
| | - Harsha V. Hegde
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
| |
Collapse
|
9
|
Zheng C, Schneider M, Marion A, Antes I. The Q41R mutation in the HCV-protease enhances the reactivity towards MAVS by suppressing non-reactive pathways. Phys Chem Chem Phys 2022; 24:2126-2138. [PMID: 35029245 DOI: 10.1039/d1cp05002h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent experimental findings pointed out a new mutation in the HCV protease, Q41R, responsible for a significant enhancement of the enzyme's reactivity towards the mitochondrial antiviral-signaling protein (MAVS). The Q41R mutation is located rather far from the active site, and its involvement in the overall reaction mechanism is thus unclear. We used classical molecular dynamics and QM/MM to study the acylation reaction of HCV NS3/4A protease variants bound to MAVS and the NS4A/4B substrate and uncovered the indirect mechanism by which the Q41R mutation plays a critical role in the efficient cleavage of the substrate. Our simulations reveal that there are two major conformations of the MAVS H1'(p) residue for the wild type protease and only one conformation for the Q41R mutant. The conformational space of H1'(p) is restricted by the Q41R mutation due to a π-π stacking between H1'(p) and R41 as well as a strong hydrogen bond between the backbone of H57 and the side chain of R41. Further QM/MM calculations indicate that the complex with the conformation ruled out by the Q41R substitution is a non-reactive species due to its higher free energy barrier for the acylation reaction. Based on our calculations, we propose a kinetic mechanism that explains experimental data showing an increase of apparent rate constants for MAVS cleavage in Q41R mutants. Our model predicts that the non-reactive conformation of the enzyme-substrate complex modulates reaction kinetics like an uncompetitive inhibitor.
Collapse
Affiliation(s)
- Chen Zheng
- Technische Universität München (TUM), TUM School of Life Sciences, Freising 85354, Germany. .,Technische Universität München (TUM), TUM Center for Functional Protein Assemblies, Garching 85747, Germany
| | - Markus Schneider
- Technische Universität München (TUM), TUM School of Life Sciences, Freising 85354, Germany. .,Technische Universität München (TUM), TUM Center for Functional Protein Assemblies, Garching 85747, Germany
| | - Antoine Marion
- Technische Universität München (TUM), TUM School of Life Sciences, Freising 85354, Germany. .,Middle East Technical University, Department of Chemistry, Ankara 06800, Turkey.
| | - Iris Antes
- Technische Universität München (TUM), TUM School of Life Sciences, Freising 85354, Germany. .,Technische Universität München (TUM), TUM Center for Functional Protein Assemblies, Garching 85747, Germany
| |
Collapse
|
10
|
Li J, Boix E. Host Defence RNases as Antiviral Agents against Enveloped Single Stranded RNA Viruses. Virulence 2021; 12:444-469. [PMID: 33660566 PMCID: PMC7939569 DOI: 10.1080/21505594.2021.1871823] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Owing to the recent outbreak of Coronavirus Disease of 2019 (COVID-19), it is urgent to develop effective and safe drugs to treat the present pandemic and prevent other viral infections that might come in the future. Proteins from our own innate immune system can serve as ideal sources of novel drug candidates thanks to their safety and immune regulation versatility. Some host defense RNases equipped with antiviral activity have been reported over time. Here, we try to summarize the currently available information on human RNases that can target viral pathogens, with special focus on enveloped single-stranded RNA (ssRNA) viruses. Overall, host RNases can fight viruses by a combined multifaceted strategy, including the enzymatic target of the viral genome, recognition of virus unique patterns, immune modulation, control of stress granule formation, and induction of autophagy/apoptosis pathways. The review also includes a detailed description of representative enveloped ssRNA viruses and their strategies to interact with the host and evade immune recognition. For comparative purposes, we also provide an exhaustive revision of the currently approved or experimental antiviral drugs. Finally, we sum up the current perspectives of drug development to achieve successful eradication of viral infections.
Collapse
Affiliation(s)
- Jiarui Li
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| | - Ester Boix
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| |
Collapse
|
11
|
Wang SJ, Huang CF, Yu ML. Elbasvir and grazoprevir for the treatment of hepatitis C. Expert Rev Anti Infect Ther 2021; 19:1071-1081. [PMID: 33428488 DOI: 10.1080/14787210.2021.1874351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Introduction: Hepatitis C is one of the leading causes of chronic liver disease. The direct-acting-antivirals has revolutionized the chronic hepatitis C treatment. DAAs can achieve a sustained virological response rate >95% in different populations.Area covered: This review summarizes the pharmacokinetics, pharmacodynamics, efficacy, and safety of Elbasvir/Grazoprevir (EBR/GZR).Expert opinion: EBR/GZR is a combination of NS5A and NS3/4A inhibitors. The performance in the EBR/GZR combination's safety and tolerability is appreciated in clinical treatment. EBR/GZR also has a higher barrier to resistance-associated substitutions. Based on clinical trials and real-world experience, elbasvir/grazoprevir is effective in the HCV GT1, 4 infections.
Collapse
Affiliation(s)
- Szu-Jen Wang
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Yuan's General Hospital, Kaohsiung, Taiwan
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Baesi K, Velayati AA, Ashtiani MF, Fakhredini K, Banifazl M, Larijani MS, Basimi P, Ramezani A. Prevalence of Naturally Occurring Resistance Associated Substitutions in NS3/4A Protease Inhibitors in Iranian HCV/HIV Infected Patients. Curr HIV Res 2021; 19:391-397. [PMID: 34238162 DOI: 10.2174/1566523221666210707142838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) acts in host as a complicated mixture of related variants with the potency to genetically escape host immune responses. Direct acting antivirals (DAAs) have been approved for HCV treatment with shorter duration, better cure rates and lower side effects. However, naturally occurring resistance associated substitutions(RASs) make some obstacles to this antiviral therapy success. OBJECTIVE In this study, we aimed at determination of the naturally occurring NS3/4A RASs in HCV/human immunodeficiency virus (HIV)infected patients. METHODS A total of 120 DAA-naïve HCV-HIV co-infected patients were included. HCV NS3/4Agenome region was amplified with PCR and mutation analysis was performed by Sanger sequencing technique. The amino acid sequence diversity of the region wasanalyzed using geno2pheno HCV. RESULTS Phylogenetic analysis showed that 73 cases were infected by 3a and 47 subjects by subtype1a. The overall RASs among studied subjects wereobserved in 6 (5%) individuals from 120 studied cases who were infected with HCV 1a. V36M/L,Q80L,S122G/L,R155T/G,A156S,D168Y/N and S174A/N/T mutations were detected in this study. CONCLUSION Although the prevalence of RASs was totally low in this study, the presence of several cases of double and triple mutants among this population suggests prior evaluation of protease inhibitors related mutations before initiation of standard treatment and also investigation on a large population could be of high value.
Collapse
Affiliation(s)
- Kazem Baesi
- Hepatitis & AIDS Dept., Pasteur Institute of Iran, Tehran, Iran
| | - Ali Akbar Velayati
- Masih Daneshvari Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Kamal Fakhredini
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Banifazl
- Iranian Society for Support of Patients with Infectious Disease, Tehran, Iran
| | | | - Parya Basimi
- Hepatitis & AIDS Dept., Pasteur Institute of Iran, Tehran, Iran
| | - Amitis Ramezani
- Clinical Research Dept., Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Dabrowska A, Milewska A, Ner-Kluza J, Suder P, Pyrc K. Mass Spectrometry versus Conventional Techniques of Protein Detection: Zika Virus NS3 Protease Activity towards Cellular Proteins. Molecules 2021; 26:molecules26123732. [PMID: 34207340 PMCID: PMC8234618 DOI: 10.3390/molecules26123732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
Mass spectrometry (MS) used in proteomic approaches is able to detect hundreds of proteins in a single assay. Although undeniable high analytical power of MS, data acquired sometimes lead to confusing results, especially during a search of very selective, unique interactions in complex biological matrices. Here, we would like to show an example of such confusing data, providing an extensive discussion on the observed phenomenon. Our investigations focus on the interaction between the Zika virus NS3 protease, which is essential for virus replication. This enzyme is known for helping to remodel the microenvironment of the infected cells. Several reports show that this protease can process cellular substrates and thereby modify cellular pathways that are important for the virus. Herein, we explored some of the targets of NS3, clearly shown by proteomic techniques, as processed during infection. Unfortunately, we could not confirm the biological relevance of protein targets for viral infections detected by MS. Thus, although mass spectrometry is highly sensitive and useful in many instances, also being able to show directions where cell/virus interaction occurs, we believe that deep recognition of their biological role is essential to receive complete insight into the investigated process.
Collapse
Affiliation(s)
- Agnieszka Dabrowska
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; (A.D.); (A.M.)
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Aleksandra Milewska
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; (A.D.); (A.M.)
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Joanna Ner-Kluza
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland;
| | - Piotr Suder
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland;
- Correspondence: (P.S.); (K.P.); Tel.: +48-12-617-50-83 (P.S.); +48-12-664-61-21 (K.P.)
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; (A.D.); (A.M.)
- Correspondence: (P.S.); (K.P.); Tel.: +48-12-617-50-83 (P.S.); +48-12-664-61-21 (K.P.)
| |
Collapse
|
14
|
J A, Francis D, C S S, K G A, C S, Variyar EJ. Repurposing simeprevir, calpain inhibitor IV and a cathepsin F inhibitor against SARS-CoV-2 and insights into their interactions with M pro. J Biomol Struct Dyn 2020; 40:325-336. [PMID: 32873185 DOI: 10.1080/07391102.2020.1813200] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The world has come to a sudden halt due to the incessant spread of a viral pneumonia dubbed COVID-19 caused by the beta-coronavirus, SARS-CoV-2. The main protease of SARS-CoV-2 plays a key role in the replication and propagation of the virus in the host cells. Inhibiting the protease blocks the replication of the virus; therefore it is considered as an attractive therapeutic target. Here we describe the screening of the DrugBank database, a public repository for small molecule therapeutics, to identify approved or experimental phase drugs that can be repurposed against the main protease of SARS-CoV-2. The initial screening was performed on more than 13,000 drug entries in the target database using an energy optimised pharmacophore hypothesis AARRR. A sub-set of the molecules selected based on the fitness score was further screened using molecular docking by sequentially filtering the molecules through the high throughput virtual screening, extra precision and standard precision docking modalities. The best hits were subjected to binding free energy estimation using the MM-GBSA method. Approved drugs viz, Cobicistat, Larotrectinib and Simeprevir were identified as potential candidates for repurposing. Drugs in the discovery phase identified as inhibitors include the known cysteine protease inhibitors, Calpain inhibitor IV and an experimental cathepsin F inhibitor. In order to analyse the stability of the binding interactions, the known cysteine protease inhibitors viz, Simeprevir, calpain inhibitor IV and the cathepsin F inhibitor in complex Mpro were subjected to molecular dynamics simulations at 100 ns. Based on the results Simeprevir was found to be a strong inhibitor of SARS-CoV-2 Mpro.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhithaj J
- Department of Biotechnology and Microbiology, Kannur University, Kannur, India
| | - Dileep Francis
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India
| | - Sharanya C S
- Department of Biotechnology and Microbiology, Kannur University, Kannur, India
| | - Arun K G
- Department of Biotechnology and Microbiology, Kannur University, Kannur, India
| | - Sadasivan C
- Department of Biotechnology and Microbiology, Kannur University, Kannur, India
| | - E Jayadevi Variyar
- Department of Biotechnology and Microbiology, Kannur University, Kannur, India
| |
Collapse
|
15
|
Yu ML, Chen PJ, Dai CY, Hu TH, Huang CF, Huang YH, Hung CH, Lin CY, Liu CH, Liu CJ, Peng CY, Lin HC, Kao JH, Chuang WL. 2020 Taiwan consensus statement on the management of hepatitis C: part (I) general population. J Formos Med Assoc 2020; 119:1019-1040. [PMID: 32359879 DOI: 10.1016/j.jfma.2020.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/19/2020] [Accepted: 04/05/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) infection remains a major public health issue with high prevalence in Taiwan. Recently, the advent of direct-acting antiviral (DAA) agents, with higher efficacy, excellent safety profile, and truncated treatment duration, has revolutionized the paradigm of hepatitis C treatment and made HCV elimination possible. To provide timely guidance for optimal hepatitis C management, the Taiwan Association for the Study of the Liver (TASL) established an expert panel to publish a 2-part consensus statement on the management of hepatitis C in the DAA era. After comprehensive literature review and a consensus meeting, patient-oriented, genotype-guided recommendations on hepatitis C treatment for the general and special populations have been provided based on the latest indications and scientific evidence. In the first part of this consensus, we present the epidemiology and treatment situation of hepatitis C in Taiwan, the development of DAA, pre-treatment evaluation, post sustained virologic response (SVR) monitoring, and most importantly the treatment recommendations for the general population with compensated liver disease. The second part will focus on the treatment recommendations for the special populations.
Collapse
Affiliation(s)
- Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine and Hepatitis Research Center, College of Medicine, Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine and Hepatitis Research Center, College of Medicine, Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Hui Hu
- Division of Hepato-Gastroenterology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine and Hepatitis Research Center, College of Medicine, Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chao-Hung Hung
- Division of Hepato-Gastroenterology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-Yen Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Hua Liu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Jen Liu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Yuan Peng
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine and Hepatitis Research Center, College of Medicine, Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
16
|
B UR, Tandon H, Pradhan MK, Adhikesavan H, Srinivasan N, Das S, Jayaraman N. Potent HCV NS3 Protease Inhibition by a Water-Soluble Phyllanthin Congener. ACS OMEGA 2020; 5:11553-11562. [PMID: 32478245 PMCID: PMC7254805 DOI: 10.1021/acsomega.0c00786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/30/2020] [Indexed: 05/04/2023]
Abstract
NS3/4A protease of hepatitis C virus (HCV) plays an important role in viral RNA replication. A 1,4-diphenylbutanedicarboxylic acid derivative, namely, phyllanthin, extracted from the leaf of a herbal plant, Phyllanthus amarus, inhibits HCV NS3/4A protease and replication activities. However, the reduced aqueous solubility, high toxicity, and poor oral bioavailability are major impediments with phyllanthin. We herein present a design approach to generate phyllanthin congeners in order to potentiate inhibition activity against protease. The phyllanthin congeners were synthesized by chemical methods and subjected to systematic biological studies. One of the congeners, annotated as D8, is identified as a novel and potent inhibitor of the HCV-NS3/4Aprotease activity in vitro and the viral RNA replication in cell culture. Structural analysis using the computational-based docking approach demonstrated important noncovalent interactions between D8 and the catalytic residues of the viral protease. Furthermore, D8 was found to be significantly nontoxic in cell culture. More importantly, oral administration of D8 in BALB/c mice proved its better tolerability and bioavailability, as compared to native phyllanthin. Taken together, this study reveals a promising candidate for developing anti-HCV therapeutics to control HCV-induced liver diseases.
Collapse
Affiliation(s)
- Uma Reddy B
- Microbiology and
Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - Himani Tandon
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Manoj K. Pradhan
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore 560 012, India
| | | | | | - Saumitra Das
- Microbiology and
Cell Biology, Indian Institute of Science, Bangalore 560 012, India
- National Institute
of Biomedical Genomics, Kalyani 741 251, India
| | | |
Collapse
|
17
|
Ahmed M. Era of direct acting anti-viral agents for the treatment of hepatitis C. World J Hepatol 2018; 10:670-684. [PMID: 30386460 PMCID: PMC6206157 DOI: 10.4254/wjh.v10.i10.670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C infection is universal and the most common indication of liver transplantation in the United States. The period of less effective interferon therapy with intolerable side effects has gone. Now we have stepped into the era of direct acting anti-viral agents (DAAs) against hepatitis C virus. Treatment of hepatitis C is now extremely effective, tolerable and requires a short duration of intake of oral agents. Less monitoring is required with the current therapy and drug-drug interactions are less than the previous regimen. The current treatment options of chronic hepatitis C with various DAAs are discussed in this article.
Collapse
Affiliation(s)
- Monjur Ahmed
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| |
Collapse
|
18
|
Rehman S, Ashfaq UA, Ijaz B, Riazuddin S. Anti-hepatitis C virus activity and synergistic effect of Nymphaea alba extracts and bioactive constituents in liver infected cells. Microb Pathog 2018; 121:198-209. [PMID: 29775725 DOI: 10.1016/j.micpath.2018.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 10/21/2022]
Abstract
BACKGROUND Without an effective vaccine, hepatitis C virus (HCV) remains a global threat, inflicting 170-300 million carriers worldwide at risk of cirrhosis and hepatocellular carcinoma (HCC). Though various direct acting antivirals have been redeemed the hepatitis C treatment, a few restraints persist including possible side effects, viral resistance emergence, excessive cost which restricts its availability to a common person. HYPOTHESIS There is no preventive HCV vaccine available today so the discovery of potent antiviral natural flora and their bioactive constituents may help to develop preventive cures against HCV infection. STUDY DESIGN In current study, we aim to clarify anti-HCV activity of methanol and acetone extracts along with the purified fractions of Pakistani local plant, Nymphaea alba L (N. alba) using Huh-7 cell line as transfection model. Synergistic study of purified fractions with interferon was performed using MDBK cell line (expressing interferon receptors) as transfection model. MATERIALS AND METHODS Recent study by our research group has observed potent anti-HCV NS3 protease activity of methanol and acetone extracts of N. alba. Effect of N. alba extracts, its fractions precisely, the N1 and N8 fractions on HCV replication was demonstrated by analyzing viral gene expression using in vitro transfection model. Considering NS3 protease as a dynamic drug target, fourteen phytochemicals of N. alba were selected as ligands for interaction with NS3 protein using Molecular Operating Environment (MOE) software. Boceprevir, FDA approved NS3 protease inhibitor, was used as standard for comparative study in docking screening. RESULTS Herein we report 84% and 94% reduction of 3a genotype of HCV NS3/4A gene expression at mRNA level at non-toxic concentration. Specifically, two fractions 'N1' & 'N8' isolated from acetone extract suppressed HCV NS3 gene expression in transfected target cells with an EC50 value of 37 ± 0.03 μg/ml and 20 ± 0.02 μg/ml respectively. Similarly, viral genotype 1a replication is strongly suppressed in target cells by N. alba flower extracts and purified fractions. Moreover, combination of fractions with standard antiviral drug displayed synergistic effects for inhibition of HCV replication. Phytochemicals including Isoquercetin, Hyperoside, Quercetin, Reynoutrin, Apigenin and Isokaempferide displayed minimum binding energies as compared to standard protease inhibitor. CONCLUSION N. alba and its purified phytochemicals with new scaffolds might significantly serve as valuable and alternative regimen against HCV either alone or in combination with other potential anti-HCV agents.
Collapse
Affiliation(s)
- Sidra Rehman
- Translational Genomics Lab, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan; Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Sheikh Riazuddin
- Dean Post Graduate Study, Allama Iqbal Medical College, Lahore, Pakistan.
| |
Collapse
|
19
|
Schwartz N, Pellach M, Glick Y, Gil R, Levy G, Avrahami D, Barbiro-Michaely E, Nahmias Y, Gerber D. Neuregulin 1 discovered as a cleavage target for the HCV NS3/4A protease by a microfluidic membrane protein array. N Biotechnol 2018; 45:113-122. [PMID: 29438748 DOI: 10.1016/j.nbt.2018.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/22/2018] [Accepted: 02/07/2018] [Indexed: 12/26/2022]
Abstract
The hepatitis C virus (HCV) non-structural protein 3 (NS3) is essential for HCV maturation. The NS3/4A protease is a target for several HCV treatments and is a well-known target for HCV drug discovery. The protein is membrane associated and thus probably interacts with other membrane proteins. However, the vast majority of known NS3 host partners are soluble proteins rather than membrane proteins, most likely due to lack of appropriate platforms for their discovery. Utilization of an integrated microfluidics platform enables analysis of membrane proteins in their native form. We screened over 2800 membrane proteins for interaction with NS3 and 90 previously unknown interactions were identified. Of these, several proteins were selected for validation by co-immunoprecipitation and for NS3 proteolytic activity. Bearing in mind the considerable number of interactions formed, together with the popularity of NS3/4A protease as a drug target, it was striking to note its lack of proteolytic activity. Only a single protein, Neuregulin1, was observed to be cleaved, adding to the 3 known NS3/4A cleavage targets. Neuregulin1 participates in neural proliferation. Recent studies have shown its involvement in HCV infection and hepatocellular carcinoma. We showed that NS3/4A triggers an increase in neuregulin1 mRNA levels in HCV infected cells. Despite this increase, its protein concentration is decreased due to proteolytic cleavage. Additionally, its EGF-like domain levels were increased, possibly explaining the ErbB2 and EGFR upregulation in HCV infected cells. The newly discovered protein interactions may provide insights into HCV infection mechanisms and potentially provide new therapeutic targets against HCV.
Collapse
Affiliation(s)
- Nika Schwartz
- Mina and Everard Goodman Faculty of Life Sciences and Bar Ilan Institute for Nanotechnology and Advanced Materials, Anna Web Nanotechnology bld. (206), Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Michal Pellach
- Mina and Everard Goodman Faculty of Life Sciences and Bar Ilan Institute for Nanotechnology and Advanced Materials, Anna Web Nanotechnology bld. (206), Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Yair Glick
- Mina and Everard Goodman Faculty of Life Sciences and Bar Ilan Institute for Nanotechnology and Advanced Materials, Anna Web Nanotechnology bld. (206), Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Reuven Gil
- Mina and Everard Goodman Faculty of Life Sciences and Bar Ilan Institute for Nanotechnology and Advanced Materials, Anna Web Nanotechnology bld. (206), Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Gahl Levy
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel; Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dorit Avrahami
- Mina and Everard Goodman Faculty of Life Sciences and Bar Ilan Institute for Nanotechnology and Advanced Materials, Anna Web Nanotechnology bld. (206), Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Efrat Barbiro-Michaely
- Mina and Everard Goodman Faculty of Life Sciences and Bar Ilan Institute for Nanotechnology and Advanced Materials, Anna Web Nanotechnology bld. (206), Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel; Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Doron Gerber
- Mina and Everard Goodman Faculty of Life Sciences and Bar Ilan Institute for Nanotechnology and Advanced Materials, Anna Web Nanotechnology bld. (206), Bar Ilan University, Ramat Gan, 5290002, Israel.
| |
Collapse
|
20
|
Ikram A, Obaid A, Awan FM, Hanif R, Naz A, Paracha RZ, Ali A, Janjua HA. Identification of drug resistance and immune-driven variations in hepatitis C virus (HCV) NS3/4A, NS5A and NS5B regions reveals a new approach toward personalized medicine. Antiviral Res 2017; 137:112-124. [PMID: 27984060 DOI: 10.1016/j.antiviral.2016.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 10/06/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023]
Abstract
Cellular immune responses (T cell responses) during hepatitis C virus (HCV) infection are significant factors for determining the outcome of infection. HCV adapts to host immune responses by inducing mutations in its genome at specific sites that are important for HLA processing/presentation. Moreover, HCV also adapts to resist potential drugs that are used to restrict its replication, such as direct-acting antivirals (DAAs). Although DAAs have significantly reduced disease burden, resistance to these drugs is still a challenge for the treatment of HCV infection. Recently, drug resistance mutations (DRMs) observed in HCV proteins (NS3/4A, NS5A and NS5B) have heightened concern that the emergence of drug resistance may compromise the effectiveness of DAAs. Therefore, the NS3/4A, NS5A and NS5B drug resistance variations were investigated in this study, and their prevalence was examined in a large number of protein sequences from all HCV genotypes. Furthermore, potential CD4+ and CD8+ T cell epitopes were predicted and their overlap with genetic variations was explored. The findings revealed that many reported DRMs within NS3/4A, NS5A and NS5B are not drug-induced; rather, they are already present in HCV strains, as they were also detected in HCV-naïve patients. This study highlights several hot spots in which HLA and drug selective pressure overlap. Interestingly, these overlapping mutations were frequently observed among many HCV genotypes. This study implicates that knowledge of the host HLA type and HCV subtype/genotype can provide important information in defining personalized therapy.
Collapse
Affiliation(s)
- Aqsa Ikram
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Ayesha Obaid
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Faryal Mehwish Awan
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Rumeza Hanif
- Department of Healtcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Anam Naz
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Rehan Zafar Paracha
- Department of Computer Sciences, RCMS, National University of Sciences and Technology (NUST), Pakistan
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Hussnain Ahmed Janjua
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan.
| |
Collapse
|
21
|
Hamad HA, Thurston J, Teague T, Ackad E, Yousef MS. The NS4A Cofactor Dependent Enhancement of HCV NS3 Protease Activity Correlates with a 4D Geometrical Measure of the Catalytic Triad Region. PLoS One 2016; 11:e0168002. [PMID: 27936126 PMCID: PMC5148068 DOI: 10.1371/journal.pone.0168002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/24/2016] [Indexed: 12/22/2022] Open
Abstract
We are developing a 4D computational methodology, based on 3D structure modeling and molecular dynamics simulation, to analyze the active site of HCV NS3 proteases, in relation to their catalytic activity. In our previous work, the 4D analyses of the interactions between the catalytic triad residues (His57, Asp81, and Ser139) yielded divergent, gradual and genotype-dependent, 4D conformational instability measures, which strongly correlate with the known disparate catalytic activities among genotypes. Here, the correlation of our 4D geometrical measure is extended to intra-genotypic alterations in NS3 protease activity, due to sequence variations in the NS4A activating cofactor. The correlation between the 4D measure and the enzymatic activity is qualitatively evident, which further validates our methodology, leading to the development of an accurate quantitative metric to predict protease activity in silico. The results suggest plausible “communication” pathways for conformational propagation from the activation subunit (the NS4A cofactor binding site) to the catalytic subunit (the catalytic triad). The results also strongly suggest that the well-sampled (via convergence quantification) structural dynamics are more connected to the divergent catalytic activity observed in HCV NS3 proteases than to rigid structures. The method could also be applicable to predict patients’ responses to interferon therapy and better understand the innate interferon activation pathway.
Collapse
Affiliation(s)
- Hamzah A. Hamad
- Department of Physics, College of Arts and Sciences, Southern Illinois University Edwardsville, Illinois, United States of America
| | - Jeremy Thurston
- Department of Physics, College of Arts and Sciences, Southern Illinois University Edwardsville, Illinois, United States of America
| | - Thomas Teague
- Department of Physics, College of Arts and Sciences, Southern Illinois University Edwardsville, Illinois, United States of America
| | - Edward Ackad
- Department of Physics, College of Arts and Sciences, Southern Illinois University Edwardsville, Illinois, United States of America
| | - Mohammad S. Yousef
- Department of Physics, College of Arts and Sciences, Southern Illinois University Edwardsville, Illinois, United States of America
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
- * E-mail:
| |
Collapse
|
22
|
Gonnella NC, Busacca CA, Zhang L, Saha A, Wu JP, Li G, Davis M, Offerdahl T, Jones PJ, Herfurth L, Reddig T, Wagner K, Niemann M, Werthmann U, Grupe J, Roos H, Reckzügel G, Ding A. Structure Elucidation of Poly-Faldaprevir: Polymer Backbone Solved Using Solid-State and Solution Nuclear Magnetic Resonance Spectroscopy. J Pharm Sci 2016; 105:1881-1890. [PMID: 27238486 DOI: 10.1016/j.xphs.2016.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/06/2016] [Accepted: 03/15/2016] [Indexed: 10/21/2022]
Abstract
A large-scale synthesis of the hepatitis C virus drug Faldaprevir revealed precipitation of an unknown insoluble solid from methanol solutions of the drug substance. The unknown impurity was determined to be a polymer of Faldaprevir based on analytical methods that included size exclusion chromatography in combination with electrospray ionization mass spectrometry, solution nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization-time of flight, ultracentrifugation, elemental analysis, and sodium quantitation by atom absorption spectroscopy. Structure elucidation of the polymeric backbone was achieved using solid-state NMR cross-polarization/magic angle spinning (CP/MAS), cross polarization-polarization inversion, and heteronuclear correlation (HETCOR) experiments. The polymerization was found to occur at the vinyl cyclopropane via a likely free radical initiation mechanism. Full proton and carbon chemical shift assignments of the polymer were obtained using solution NMR spectroscopy. The polymer structure was corroborated with chemical synthesis of the polymer and solution NMR analysis.
Collapse
Affiliation(s)
- Nina C Gonnella
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877.
| | - Carl A Busacca
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Li Zhang
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Anjan Saha
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Jiang-Ping Wu
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Guisheng Li
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Mark Davis
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Thomas Offerdahl
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Paul-James Jones
- Information Technology, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | | | - Tim Reddig
- Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| | - Klaus Wagner
- Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| | | | | | - Julia Grupe
- Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| | - Helmut Roos
- Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| | | | - Andreas Ding
- Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| |
Collapse
|
23
|
Papp M, Szabó P, Srankó D, Skoda-Földes R. Solvent-free aminocarbonylation of iodobenzene in the presence of SILP-palladium catalysts. RSC Adv 2016. [DOI: 10.1039/c6ra03916b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The recyclable palladium catalysts were used for selective mono- or double carbonylation under solvent-free conditions and in DMF, respectively.
Collapse
Affiliation(s)
- M. Papp
- University of Pannonia
- Institute of Chemistry
- Department of Organic Chemistry
- H-8201 Veszprém
- Hungary
| | - P. Szabó
- University of Pannonia
- Institute of Chemistry
- Department of Analytical Chemistry
- H-8201 Veszprém
- Hungary
| | - D. Srankó
- Hungarian Academy of Sciences
- Centre for Energy Research
- Department of Surface Chemistry and Catalysis
- H-1525 Budapest 114
- Hungary
| | - R. Skoda-Földes
- University of Pannonia
- Institute of Chemistry
- Department of Organic Chemistry
- H-8201 Veszprém
- Hungary
| |
Collapse
|
24
|
Govea-Salas M, Rivas-Estilla AM, Rodríguez-Herrera R, Lozano-Sepúlveda SA, Aguilar-Gonzalez CN, Zugasti-Cruz A, Salas-Villalobos TB, Morlett-Chávez JA. Gallic acid decreases hepatitis C virus expression through its antioxidant capacity. Exp Ther Med 2015; 11:619-624. [PMID: 26893656 DOI: 10.3892/etm.2015.2923] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/25/2015] [Indexed: 01/16/2023] Open
Abstract
Gallic acid (GA) is a natural phenolic compound that possesses various biological effects, including antioxidant, anti-inflammatory, antibiotic, anticancer, antiviral and cardiovascular protection activities. In addition, numerous studies have reported that antioxidants possess antiviral activities. Hepatitis C virus (HCV) is one of the most important causes of chronic liver diseases worldwide, but until recently, only a small number of antiviral agents had been developed against HCV. Therefore, the present study investigated whether GA exhibits an anti-HCV activity. The effects of GA on HCV expression were examined using a subgenomic HCV replicon cell culture system that expressed HCV nonstructural proteins (NSs). In addition, GA cytotoxicity was evaluated at concentrations between 100-600 mg/ml using an MTT assay. Huh-7 replicon cells were incubated with 300 mg/ml GA for different times, and the HCV-RNA and protein levels were measured by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Pyrrolidine dithiocarbamate (PDTC) was used as an antioxidant control and reactive oxygen species (ROS) production was measured during the exposure. The results indicated that GA did not produce a statistically significant cytotoxicity in parental and HCV replicon cells. Furthermore, GA downregulated the expression levels of NS5A-HCV protein (~55%) and HCV-RNA (~50%) in a time-dependent manner compared with the levels in untreated cells. Notably, GA treatment decreased ROS production at the early time points of exposure in cells expressing HCV proteins. Similar results were obtained upon PDTC exposure. These findings suggest that the antioxidant capacity of GA may be involved in the downregulation of HCV replication in hepatoma cells.
Collapse
Affiliation(s)
- Mayela Govea-Salas
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Unit, Saltillo, Coahuila 25260, México; Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 66450, México
| | - Ana Maria Rivas-Estilla
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 66450, México
| | - Raul Rodríguez-Herrera
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Unit, Saltillo, Coahuila 25260, México
| | - Sonia A Lozano-Sepúlveda
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 66450, México
| | - Cristobal N Aguilar-Gonzalez
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Unit, Saltillo, Coahuila 25260, México
| | - Alejandro Zugasti-Cruz
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Unit, Saltillo, Coahuila 25260, México
| | - Tanya B Salas-Villalobos
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 66450, México
| | - Jesus Antonio Morlett-Chávez
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Unit, Saltillo, Coahuila 25260, México; Clinical Laboratory Department, General Hospital Zone No. 2, Mexican Social Security Institute, Saltillo, Coahuila 25017, México
| |
Collapse
|
25
|
Han B, Dvory-Sobol H, Greenstein A, McCarville JF, Hung M, Liu X, Miller MD, Mo H. Development and application of a fast, reproducible assay to measure HCV NS3 protease activity using Escherichia coli lysate. J Virol Methods 2015; 225:76-86. [PMID: 26391876 DOI: 10.1016/j.jviromet.2015.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/01/2015] [Accepted: 09/06/2015] [Indexed: 02/06/2023]
Abstract
The hepatitis C virus (HCV) NS3/4A protease is a key target of efforts to develop direct-acting antiviral inhibitors for treatment of chronic HCV infection. In vitro analyses of the effects of NS3/4A mutations and polymorphisms on protease inhibitor (PI) susceptibility are essential to nonclinical and clinical compound characterization, but can be hampered by time and technical limitations of current in vitro methods using replicon or purified protein systems. We have developed a fast and simple method utilizing full-length NS3/4A protease inducibly expressed in Escherichia coli cells. Minimally processed E. coli whole cell lysate was used for analyzing NS3/4A protease activity and inhibition by antiviral compounds. Assay conditions were optimized to develop a reproducible assay that can be used for efficient analysis of NS3 protease mutants with poor replication capacity in the replicon system. IC50 fold-changes for NS3 mutants relative to their wild-types generated by this NS3 assay are comparable to those observed in the replicon system, with an R(2) of 0.82 for the values obtained by the two methods. In addition, we demonstrate that this assay can be successfully used for population and clonal phenotyping of patient samples and characterization of PIs against the NS3/4A protease from HCV genotypes 1-6.
Collapse
Affiliation(s)
- Bin Han
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| | | | | | | | - Magdeleine Hung
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Xiaohong Liu
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA
| | | | - Hongmei Mo
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA
| |
Collapse
|
26
|
Cuypers L, Li G, Libin P, Piampongsant S, Vandamme AM, Theys K. Genetic Diversity and Selective Pressure in Hepatitis C Virus Genotypes 1-6: Significance for Direct-Acting Antiviral Treatment and Drug Resistance. Viruses 2015; 7:5018-39. [PMID: 26389941 PMCID: PMC4584301 DOI: 10.3390/v7092857] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/22/2015] [Accepted: 09/01/2015] [Indexed: 12/20/2022] Open
Abstract
Treatment with pan-genotypic direct-acting antivirals, targeting different viral proteins, is the best option for clearing hepatitis C virus (HCV) infection in chronically infected patients. However, the diversity of the HCV genome is a major obstacle for the development of antiviral drugs, vaccines, and genotyping assays. In this large-scale analysis, genome-wide diversity and selective pressure was mapped, focusing on positions important for treatment, drug resistance, and resistance testing. A dataset of 1415 full-genome sequences, including genotypes 1-6 from the Los Alamos database, was analyzed. In 44% of all full-genome positions, the consensus amino acid was different for at least one genotype. Focusing on positions sharing the same consensus amino acid in all genotypes revealed that only 15% was defined as pan-genotypic highly conserved (≥99% amino acid identity) and an additional 24% as pan-genotypic conserved (≥95%). Despite its large genetic diversity, across all genotypes, codon positions were rarely identified to be positively selected (0.23%-0.46%) and predominantly found to be under negative selective pressure, suggesting mainly neutral evolution. For NS3, NS5A, and NS5B, respectively, 40% (6/15), 33% (3/9), and 14% (2/14) of the resistance-related positions harbored as consensus the amino acid variant related to resistance, potentially impeding treatment. For example, the NS3 variant 80K, conferring resistance to simeprevir used for treatment of HCV1 infected patients, was present in 39.3% of the HCV1a strains and 0.25% of HCV1b strains. Both NS5A variants 28M and 30S, known to be associated with resistance to the pan-genotypic drug daclatasvir, were found in a significant proportion of HCV4 strains (10.7%). NS5B variant 556G, known to confer resistance to non-nucleoside inhibitor dasabuvir, was observed in 8.4% of the HCV1b strains. Given the large HCV genetic diversity, sequencing efforts for resistance testing purposes may need to be genotype-specific or geographically tailored.
Collapse
Affiliation(s)
- Lize Cuypers
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
| | - Guangdi Li
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
- Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Pieter Libin
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium.
| | - Supinya Piampongsant
- Department of Electrical Engineering ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, University of Leuven, Kasteelpark Arenberg 10, Heverlee 3001, Belgium.
| | - Anne-Mieke Vandamme
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
- Center for Global Health and Tropical Medicine, Microbiology Unit, Institute for Hygiene and Tropical Medicine, University Nova of Lisboa, Rua da Junqueira 100, Lisbon 1349-008, Portugal.
| | - Kristof Theys
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
| |
Collapse
|
27
|
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic hepatitis and infects approximately three to four million people per year, about 170 million infected people in total, making it one of the major global health problems. In a minority of cases HCV is cleared spontaneously, but in most of the infected individuals infection progresses to a chronic state associated with high risk to develop liver cirrhosis, hepatocellular cancer, or liver failure. The treatment of HCV infection has evolved over the years. Interferon (IFN)-α in combination with ribavirin has been used for decades as standard therapy. More recently, a new standard-of-care treatment has been approved based on a triple combination with either HCV protease inhibitor telaprevir or boceprevir. In addition, various options for all-oral, IFN-free regimens are currently being evaluated. Despite substantial improvement of sustained virological response rates, some intrinsic limitations of these new direct-acting antivirals, including serious side effects, the risk of resistance development and high cost, urge the development of alternative or additional therapeutic strategies. Gene therapy represents a feasible alternative treatment. Small RNA technology, including RNA interference (RNAi) techniques and antisense approaches, is one of the potentially promising ways to investigate viral and host cell factors that are involved in HCV infection and replication. With this, newly developed gene therapy regimens will be provided to treat HCV. In this chapter, a comprehensive overview guides you through the current developments and applications of RNAi and microRNA-based gene therapy strategies in HCV treatment.
Collapse
|
28
|
Obaid A, Ahmad J, Naz A, Awan FM, Paracha RZ, Tareen SHK, Anjum S, Raza A, Baumbach J, Ali A. Modeling and analysis of innate immune responses induced by the host cells against hepatitis C virus infection. Integr Biol (Camb) 2015; 7:544-559. [PMID: 25848650 DOI: 10.1039/c4ib00285g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An in-depth understanding of complex systems such as hepatitis C virus (HCV) infection and host immunomodulatory response is an open challenge for biologists. In order to understand the mechanisms involved in immune evasion by HCV, we present a simplified formalization of the highly dynamic system consisting of HCV, its replication cycle and host immune responses at the cellular level using hybrid Petri net (HPN). The approach followed in this study comprises of step wise simulation, model validation and analysis of host immune response. This study was performed with an objective of making correlations among viral RNA levels, interferon (IFN) production and interferon stimulated genes (ISGs) induction. The results correlate with the biological data verifying that the model is very useful in predicting the dynamic behavior of the signaling proteins in response to a stimulus. This study implicates that HCV infection is dependent upon several key factors of the host immune response. The effect of host proteins on limiting viral infection is effectively overruled by the viral pathogen. This study also analyzes activity levels of RNase L, miR-122, IFN, ISGs and PKR induction and inhibition of TLR3/RIG1 mediated pathways in response to targeted manipulation in the presence of HCV. The results are in complete agreement at the time of writing with the published expression studies and western blot experiments. Our model also provides some biological insights regarding the role of PKR in the acute infection of HCV. It might help to explain why many patients fail to clear acute HCV infection while others, with low ISG basal levels, clear HCV spontaneously. The described methodology can easily be reproduced, which suitably supports the study of other viral infections in a formal, automated and expressive manner. The Petri net-based modeling approach applied here may provide valuable insights for study design and analyses to evaluate other disease associated integrated pathways in biological systems.
Collapse
Affiliation(s)
- Ayesha Obaid
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000 Pakistan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kramer M, Halleran D, Rahman M, Iqbal M, Anwar MI, Sabet S, Ackad E, Yousef M. Comparative molecular dynamics simulation of Hepatitis C Virus NS3/4A protease (Genotypes 1b, 3a and 4b) predicts conformational instability of the catalytic triad in drug resistant strains. PLoS One 2014; 9:e104425. [PMID: 25111232 PMCID: PMC4128671 DOI: 10.1371/journal.pone.0104425] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/08/2014] [Indexed: 02/06/2023] Open
Abstract
The protease domain of the Hepatitis C Virus (HCV) nonstructural protein 3 (NS3) has been targeted for inhibition by several direct-acting antiviral drugs. This approach has had marked success to treat infections caused by HCV genotype 1 predominant in the USA, Europe, and Japan. However, genotypes 3 and 4, dominant in developing countries, are resistant to a number of these drugs and little progress has been made towards understanding the structural basis of their drug resistivity. We have previously developed a 4D computational methodology, based on 3D structure modeling and molecular dynamics simulation, to analyze the active sites of the NS3 proteases of HCV-1b and 4a in relation to their catalytic activity and drug susceptibility. Here, we improved the methodology, extended the analysis to include genotype 3a (predominant in South Asia including Pakistan), and compared the results of the three genotypes (1b, 3a and 4a). The 4D analyses of the interactions between the catalytic triad residues (His57, Asp81, and Ser139) indicate conformational instability of the catalytic site in HCV-3a and 4a compared to that of HCV-1b NS3 protease. The divergence is gradual and genotype-dependent, with HCV-1b being the most stable, HCV-4a being the most unstable and HCV-3a representing an intermediate state. These results suggest that the structural dynamics behavior, more than the rigid structure, could be related to the altered catalytic activity and drug susceptibility seen in NS3 proteases of HCV-3a and 4a.
Collapse
Affiliation(s)
- Mitchell Kramer
- Department of Physics, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Daniel Halleran
- Department of Physics, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Moazur Rahman
- Drug Discovery and Structural Biology group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Mazhar Iqbal
- Drug Discovery and Structural Biology group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muhammad Ikram Anwar
- Drug Discovery and Structural Biology group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Salwa Sabet
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Edward Ackad
- Department of Physics, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Mohammad Yousef
- Department of Physics, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
- * E-mail:
| |
Collapse
|
30
|
Lampa AK, Bergman SM, Gustafsson SS, Alogheli H, Åkerblom EB, Lindeberg GG, Svensson RM, Artursson P, Danielson UH, Karlén A, Sandström A. Novel Peptidomimetic Hepatitis C Virus NS3/4A Protease Inhibitors Spanning the P2-P1' Region. ACS Med Chem Lett 2014; 5:249-54. [PMID: 24900813 DOI: 10.1021/ml400217r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/02/2013] [Indexed: 02/06/2023] Open
Abstract
Herein, novel hepatitis C virus NS3/4A protease inhibitors based on a P2 pyrimidinyloxyphenylglycine in combination with various regioisomers of an aryl acyl sulfonamide functionality in P1 are presented. The P1' 4-(trifluoromethyl)phenyl side chain was shown to be particularly beneficial in terms of inhibitory potency. Several inhibitors with K i-values in the nanomolar range were developed and included identification of promising P3-truncated inhibitors spanning from P2-P1'. Of several different P2 capping groups that were evaluated, a preference for the sterically congested Boc group was revealed. The inhibitors were found to retain inhibitory potencies for A156T, D168V, and R155K variants of the protease. Furthermore, in vitro pharmacokinetic profiling showed several beneficial effects on metabolic stability as well as on apparent intestinal permeability from both P3 truncation and the use of the P1' 4-(trifluoromethyl)phenyl side chain.
Collapse
Affiliation(s)
- Anna K. Lampa
- Department of Medicinal Chemistry,
Organic Pharmaceutical Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Sara M. Bergman
- Department of Medicinal Chemistry,
Organic Pharmaceutical Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Sofia S. Gustafsson
- Department of Chemistry−BMC, Uppsala University, BMC, Box 576, SE-751 23 Uppsala,
Sweden
| | - Hiba Alogheli
- Department of Medicinal Chemistry,
Organic Pharmaceutical Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Eva B. Åkerblom
- Department of Medicinal Chemistry,
Organic Pharmaceutical Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Gunnar G. Lindeberg
- Department of Medicinal Chemistry,
Organic Pharmaceutical Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Richard M. Svensson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- The Uppsala University Drug
Optimization and Pharmaceutical Profiling Platform, Uppsala University, a Node of the Chemical Biology Consortium
Sweden (CBCS), Box 580, SE-751 23 Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- The Uppsala University Drug
Optimization and Pharmaceutical Profiling Platform, Uppsala University, a Node of the Chemical Biology Consortium
Sweden (CBCS), Box 580, SE-751 23 Uppsala, Sweden
| | - U. Helena Danielson
- Department of Chemistry−BMC, Uppsala University, BMC, Box 576, SE-751 23 Uppsala,
Sweden
| | - Anders Karlén
- Department of Medicinal Chemistry,
Organic Pharmaceutical Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Anja Sandström
- Department of Medicinal Chemistry,
Organic Pharmaceutical Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
31
|
Giroux S, Xu J, Reddy TJ, Morris M, Cottrell KM, Cadilhac C, Henderson JA, Nicolas O, Bilimoria D, Denis F, Mani N, Ewing N, Shawgo R, L’Heureux L, Selliah S, Chan L, Chauret N, Berlioz-Seux F, Namchuk MN, Grillot AL, Bennani YL, Das SK, Maxwell JP. Discovery of Thienoimidazole-Based HCV NS5A Genotype 1a and 1b Inhibitors. ACS Med Chem Lett 2014; 5:240-3. [PMID: 24900811 DOI: 10.1021/ml300461f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/27/2013] [Indexed: 12/17/2022] Open
Abstract
The discovery of potent thienoimidazole-based HCV NS5A inhibitors is herein reported. A novel method to access the thienoimidazole [5,5]-bicyclic system is disclosed. This method gave access to a common key intermediate (6) that was engaged in Suzuki or Sonogashira reactions with coupling partners bearing different linkers. A detailed study of the structure-activity relationship (SAR) of the linkers revealed that aromatic linkers with linear topologies are required to achieve high potency for both 1a and 1b HCV genotypes. Compound 20, with a para-phenyl linker, was identified as a potential lead displaying potencies of 17 and 8 pM against genotype 1a and 1b replicons, respectively.
Collapse
Affiliation(s)
- Simon Giroux
- Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, Massachusetts
02139, United States
| | - Jinwang Xu
- Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, Massachusetts
02139, United States
| | - T. Jagadeeswar Reddy
- Vertex Pharmaceuticals Canada Incorporated, 275 Boul. Armand-Frappier, Laval,
QC, H7V 4A7, Canada
| | - Mark Morris
- Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, Massachusetts
02139, United States
| | - Kevin M. Cottrell
- Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, Massachusetts
02139, United States
| | - Caroline Cadilhac
- Vertex Pharmaceuticals Canada Incorporated, 275 Boul. Armand-Frappier, Laval,
QC, H7V 4A7, Canada
| | - James A. Henderson
- Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, Massachusetts
02139, United States
| | - Oliver Nicolas
- Vertex Pharmaceuticals Canada Incorporated, 275 Boul. Armand-Frappier, Laval,
QC, H7V 4A7, Canada
| | - Darius Bilimoria
- Vertex Pharmaceuticals Canada Incorporated, 275 Boul. Armand-Frappier, Laval,
QC, H7V 4A7, Canada
| | - Francois Denis
- Vertex Pharmaceuticals Canada Incorporated, 275 Boul. Armand-Frappier, Laval,
QC, H7V 4A7, Canada
| | - Nagraj Mani
- Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, Massachusetts
02139, United States
| | - Nigel Ewing
- Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, Massachusetts
02139, United States
| | - Rebecca Shawgo
- Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, Massachusetts
02139, United States
| | - Lucille L’Heureux
- Vertex Pharmaceuticals Canada Incorporated, 275 Boul. Armand-Frappier, Laval,
QC, H7V 4A7, Canada
| | - Subajini Selliah
- Vertex Pharmaceuticals Canada Incorporated, 275 Boul. Armand-Frappier, Laval,
QC, H7V 4A7, Canada
| | - Laval Chan
- Vertex Pharmaceuticals Canada Incorporated, 275 Boul. Armand-Frappier, Laval,
QC, H7V 4A7, Canada
| | - Nathalie Chauret
- Vertex Pharmaceuticals Canada Incorporated, 275 Boul. Armand-Frappier, Laval,
QC, H7V 4A7, Canada
| | - Francoise Berlioz-Seux
- Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, Massachusetts
02139, United States
| | - Mark N. Namchuk
- Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, Massachusetts
02139, United States
| | - Anne-Laure Grillot
- Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, Massachusetts
02139, United States
| | - Youssef L. Bennani
- Vertex Pharmaceuticals Canada Incorporated, 275 Boul. Armand-Frappier, Laval,
QC, H7V 4A7, Canada
| | - Sanjoy K. Das
- Vertex Pharmaceuticals Canada Incorporated, 275 Boul. Armand-Frappier, Laval,
QC, H7V 4A7, Canada
| | - John P. Maxwell
- Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, Massachusetts
02139, United States
| |
Collapse
|
32
|
Chaplin DA, Fox ME, Kroll SHB. Dynamic kinetic resolution of dehydrocoronamic acid. Chem Commun (Camb) 2014; 50:5858-60. [DOI: 10.1039/c4cc01125b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A dynamic kinetic resolution is described employing enzymatic reaction of a readily racemised azlactone with an alcohol which can provide either enantiomer of dehydrocoronamic acid.
Collapse
Affiliation(s)
- David A. Chaplin
- Chirotech Technology Centre
- Dr Reddy’s Laboratories EU Ltd
- Cambridge, UK
| | - Martin E. Fox
- Chirotech Technology Centre
- Dr Reddy’s Laboratories EU Ltd
- Cambridge, UK
| | | |
Collapse
|
33
|
Anwar MI, Iqbal M, Yousef MS, Rahman M. Over-expression and characterization of NS3 and NS5A of Hepatitis C virus genotype 3a. Microb Cell Fact 2013; 12:111. [PMID: 24238670 PMCID: PMC3842787 DOI: 10.1186/1475-2859-12-111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/12/2013] [Indexed: 02/08/2023] Open
Abstract
Background Hepatitis C virus (HCV) is a common and leading cause for liver cirrhosis and hepatocellular carcinoma. Current therapies to treat HCV infection are shown to be partially effective and poorly tolerated. Therefore, ample efforts are underway to rationally design therapies targeting the HCV non-structural proteins. Most of the work carried out in this direction has been focusing mainly on HCV genotype 1. Two direct-acting antiviral agents (DAAs) Telaprevir and Boceprevir are being used against genotype 1a infection in combination therapy with interferon and ribavirin. Unfortunately these DAAs are not effective against genotype 3a. Considering the wide spread infection by HCV genotype 3a in developing countries especially South Asia, we have focused on the recombinant production of antiviral drug targets NS3 and NS5A from HCV genotype 3a. These protein targets are to be used for screening of inhibitors. Results High-level expression of NS3 and NS5A was achieved at 25°C, using ~1 and 0.5 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG), respectively. Yields of the purified NS3 and NS5A were 4 and 1 mg per liter culture volume, respectively. Although similar amounts of purified NS3 were obtained at 25 and 14°C, specificity constant (Kcat/Km) was somewhat higher at expression temperature of 25°C. Circular dichroism (CD) and Fourier-transform infrared (FT-IR) spectroscopy revealed that both NS3 and NS5A contain a mixture of alpha-helix and beta-sheet secondary structures. For NS3 protein, percentages of secondary structures were similar to the values predicted from homology modeling. Conclusions NS3 and NS5A were over-expressed and using Nickel-affinity method both proteins were purified to ~ 95% purity. Yield of the purified NS3 obtained is four fold higher than previous reports. CD spectroscopy revealed that difference in activity of NS3 expressed at various temperatures is not related to changes in global structural features of the protein. Moreover, CD and FT-IR analysis showed that NS3 and NS5A contain both alpha-helical and beta-sheet structures and for NS5A, the proportion is almost equal. The production of NS3 and NS5A in milligram quantities will allow their characterization by biophysical and biochemical means that will help in designing new strategies to fight against HCV infection.
Collapse
Affiliation(s)
| | - Mazhar Iqbal
- Drug Discovery and Structural Biology group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| | | | | |
Collapse
|
34
|
Papp M, Skoda-Földes R. Phosphine-free double carbonylation of iodobenzene in the presence of reusable supported palladium catalysts. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcata.2013.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Affiliation(s)
- Franco Dammacco
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy.
| | | |
Collapse
|
36
|
A host YB-1 ribonucleoprotein complex is hijacked by hepatitis C virus for the control of NS3-dependent particle production. J Virol 2013; 87:11704-20. [PMID: 23986595 DOI: 10.1128/jvi.01474-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) orchestrates the different stages of its life cycle in time and space through the sequential participation of HCV proteins and cellular machineries; hence, these represent tractable molecular host targets for HCV elimination by combination therapies. We recently identified multifunctional Y-box-binding protein 1 (YB-1 or YBX1) as an interacting partner of NS3/4A protein and HCV genomic RNA that negatively regulates the equilibrium between viral translation/replication and particle production. To identify novel host factors that regulate the production of infectious particles, we elucidated the YB-1 interactome in human hepatoma cells by a quantitative mass spectrometry approach. We identified 71 YB-1-associated proteins that included previously reported HCV regulators DDX3, heterogeneous nuclear RNP A1, and ILF2. Of the potential YB-1 interactors, 26 proteins significantly modulated HCV replication in a gene-silencing screening. Following extensive interaction and functional validation, we identified three YB-1 partners, C1QBP, LARP-1, and IGF2BP2, that redistribute to the surface of core-containing lipid droplets in HCV JFH-1-expressing cells, similarly to YB-1 and DDX6. Importantly, knockdown of these proteins stimulated the release and/or egress of HCV particles without affecting virus assembly, suggesting a functional YB-1 protein complex that negatively regulates virus production. Furthermore, a JFH-1 strain with the NS3 Q221L mutation, which promotes virus production, was less sensitive to this negative regulation, suggesting that this HCV-specific YB-1 protein complex modulates an NS3-dependent step in virus production. Overall, our data support a model in which HCV hijacks host cell machinery containing numerous RNA-binding proteins to control the equilibrium between viral RNA replication and NS3-dependent late steps in particle production.
Collapse
|
37
|
Imran M, Manzoor S, Khattak NM, Khalid M, Ahmed QL, Parvaiz F, Tariq M, Ashraf J, Ashraf W, Azam S, Ashraf M. Current and future therapies for hepatitis C virus infection: from viral proteins to host targets. Arch Virol 2013; 159:831-46. [DOI: 10.1007/s00705-013-1803-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/19/2013] [Indexed: 12/21/2022]
|
38
|
Bailey MD, Halmos T, Lemke CT. Discovery of novel P2 substituted 4-biaryl proline inhibitors of hepatitis C virus NS3 serine protease. Bioorg Med Chem Lett 2013; 23:4436-40. [DOI: 10.1016/j.bmcl.2013.05.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 11/29/2022]
|
39
|
Viral resistance in hepatitis C virus genotype 1-infected patients receiving the NS3 protease inhibitor Faldaprevir (BI 201335) in a phase 1b multiple-rising-dose study. Antimicrob Agents Chemother 2013; 57:4928-36. [PMID: 23877706 DOI: 10.1128/aac.00822-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Faldaprevir (BI 201335) is a selective NS3/4A protease inhibitor under development for the treatment of chronic hepatitis C virus (HCV) infection. NS3/4A genotyping and NS3 protease phenotyping analyses were performed to monitor the emergence of resistance in patients with HCV genotype 1 infection receiving faldaprevir alone or combined with pegylated interferon alfa 2a and ribavirin (PegIFN-RBV) during a phase 1b study. Among all baseline variants, a maximum 7-fold reduction in in vitro sensitivity to faldaprevir was observed for a rare NS3 (V/I)170T polymorphism. During faldaprevir monotherapy in treatment-naive patients, virologic breakthrough was common (77%, 20/26) and was associated with the emergence of resistance mutations predominantly carrying NS3 substitutions R155K in GT1a and D168V in GT1b. D168V conferred a greater reduction in faldaprevir sensitivity (1,800-fold) than R155K (330-fold); however, D168V was generally less fit than R155K in the absence of selective drug pressure. Treatment-experienced patients treated with faldaprevir-PegIFN-RBV triple therapy showed higher viral load reductions, lower rates of breakthrough (8%, 5/62), and less frequent emergence of resistance-associated variants compared with faldaprevir monotherapy. (This study has been registered at ClinicalTrials.gov under registration no. NCT00793793.).
Collapse
|
40
|
Rimmert B, Sabet S, Ackad E, Yousef MS. A 3D structural model and dynamics of hepatitis C virus NS3/4A protease (genotype 4a, strain ED43) suggest conformational instability of the catalytic triad: implications in catalysis and drug resistivity. J Biomol Struct Dyn 2013; 32:950-8. [PMID: 23768174 PMCID: PMC3956140 DOI: 10.1080/07391102.2013.800001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Egypt has the highest prevalence of hepatitis C virus (HCV) infection worldwide with a frequency of 15%. More than 90% of these infections are due to genotype 4, and the subtype 4a (HCV-4a) predominates. Moreover, due to the increased mobility of people, HCV-4a has recently spread to several European countries. The protease domain of the HCV nonstructural protein 3 (NS3) has been targeted for inhibition by several drugs. This approach has had marked success in inhibiting genotype 1 (HCV-1), the predominant genotype in the USA, Europe, and Japan. However, HCV-4a was found to resist inhibition by a number of these drugs, and little progress has been made to understand the structural basis of its drug resistivity. As a step forward, we sequenced the NS3 HCV-4a protease gene (strain ED43) and subsequently built a 3D structural model threaded through a template crystal structure of HCV-1b NS3 protease. The model protease, HCV-4a, shares 83% sequence identity with the template protease, HCV-1b, and has nearly identical rigid structural features. Molecular dynamics simulations predict similar overall dynamics of the two proteases. However, local dynamics and 4D analysis of the interactions between the catalytic triad residues (His57, Asp81, and Ser139) indicate conformational instability of the catalytic site in HCV-4a NS3 protease. These results suggest that the divergent dynamics behavior, more than the rigid structure, could be related to the altered catalytic activity and drug resistivity seen in HCV-4a.
Collapse
Affiliation(s)
- Bradley Rimmert
- a Department of Physics , College of Arts and Sciences, Southern Illinois University Edwardsville , Edwardsville , IL , 62026-1654 , USA
| | | | | | | |
Collapse
|
41
|
Lasheen DS, Ismail MA, Abou El Ella DA, Ismail NS, Eid S, Vleck S, Glenn JS, Watts AG, Abouzid KA. Analogs design, synthesis and biological evaluation of peptidomimetics with potential anti-HCV activity. Bioorg Med Chem 2013; 21:2742-55. [DOI: 10.1016/j.bmc.2013.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/23/2013] [Accepted: 03/03/2013] [Indexed: 02/01/2023]
|
42
|
van der Helm L. Expression and purification of hepatitis C virus protease from clinical samples. Methods Mol Biol 2013; 1030:119-127. [PMID: 23821264 DOI: 10.1007/978-1-62703-484-5_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This chapter describes the procedures for production of recombinant hepatitis C virus (HCV) NS3 protease from clinical samples, which can be used in the biochemical assays to assess the impact of different drug-resistant mutations in the NS3 protein from patients under therapy of protease inhibitors. It gives the details of expression and purification of NS3 protease using the pCold vectors that contains a promoter derived from the cold-shock genes to drive the expression of NS3 protein. This robust protocol enables a medium-throughput production of HCV NS3 proteins of all genotypes and sequences derived from patient specimen.
Collapse
Affiliation(s)
- Liesbet van der Helm
- Janssen Infectious Diseases-Diagnostics BVBA, Johnson & Johnson Corporation, Beerse, Belgium
| |
Collapse
|
43
|
Busacca CA, Wei X, Haddad N, Kapadia S, Lorenz JC, Saha AK, Varsolona RJ, Berkenbusch T, Campbell SC, Farina V, Feng X, Gonnella NC, Grinberg N, Jones PJ, Lee H, Li Z, Niemeier O, Samstag W, Sarvestani M, Schroeder J, Smoliga J, Spinelli EM, Vitous J, Senanayake CH. Practical Large-Scale Synthesis of the Hepatitis C Virus Protease Inhibitor BI 201335. ASIAN J ORG CHEM 2012. [DOI: 10.1002/ajoc.201200014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Contribution of a mutational bias in hepatitis C virus replication to the genetic barrier in the development of drug resistance. Proc Natl Acad Sci U S A 2011; 108:20509-13. [PMID: 22135458 DOI: 10.1073/pnas.1105797108] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of resistance to direct-acting antivirals (DAAs) targeting the hepatitis C virus (HCV) can compromise therapy. However, mechanisms that determine prevalence and frequency of resistance-conferring mutations remain elusive. Here, we studied the fidelity of the HCV RNA-dependent RNA polymerase NS5B in an attempt to link the efficiency of mismatch formation with genotypic changes observed in vivo. Enzyme kinetic measurements revealed unexpectedly high error rates (approximately 10(-3) per site) for G:U/U:G mismatches. The strong preference for G:U/U:G mismatches over all other mistakes correlates with a mutational bias in favor of transitions over transversions. Deep sequencing of HCV RNA samples isolated from 20 treatment-naïve patients revealed an approximately 75-fold difference in frequencies of the two classes of mutations. A stochastic model based on these results suggests that the bias toward transitions can also affect the selection of resistance-conferring mutations. Collectively, the data provide strong evidence to suggest that the nature of the nucleotide change can contribute to the genetic barrier in the development of resistance to DAAs.
Collapse
|