1
|
Shu J, Xie W, Chen Z, Offringa R, Hu Y, Mei H. The enchanting canvas of CAR technology: Unveiling its wonders in non-neoplastic diseases. MED 2024; 5:495-529. [PMID: 38608709 DOI: 10.1016/j.medj.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/08/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have made a groundbreaking advancement in personalized immunotherapy and achieved widespread success in hematological malignancies. As CAR technology continues to evolve, numerous studies have unveiled its potential far beyond the realm of oncology. This review focuses on the current applications of CAR-based cellular platforms in non-neoplastic indications, such as autoimmune, infectious, fibrotic, and cellular senescence-associated diseases. Furthermore, we delve into the utilization of CARs in non-T cell populations such as natural killer (NK) cells and macrophages, highlighting their therapeutic potential in non-neoplastic conditions and offering the potential for targeted, personalized therapies to improve patient outcomes and enhanced quality of life.
Collapse
Affiliation(s)
- Jinhui Shu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Wei Xie
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Rienk Offringa
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| |
Collapse
|
2
|
Painuli S, Semwal P, Sharma R, Akash S. Superbugs or multidrug resistant microbes: A new threat to the society. Health Sci Rep 2023; 6:e1480. [PMID: 37547359 PMCID: PMC10397562 DOI: 10.1002/hsr2.1480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023] Open
Affiliation(s)
- Sakshi Painuli
- Natural Products Research LaboratoryUttarakhand Council for BiotechnologyDehradunIndia
| | - Prabhakar Semwal
- Department of BiotechnologyGraphic Era (Deemed to be University)DehradunIndia
- Research and Development CellGraphic Era Hill UniversityDehradunIndia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya KalpanaFaculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu UniversityUttar PradeshVaranasiIndia
| | - Shopnil Akash
- Faculty of Allied Health ScienceDepartment of Pharmacy, Daffodil International UniversityDhakaBangladesh
| |
Collapse
|
3
|
Khan T, Raza S. Exploration of Computational Aids for Effective Drug Designing and Management of Viral Diseases: A Comprehensive Review. Curr Top Med Chem 2023; 23:1640-1663. [PMID: 36725827 DOI: 10.2174/1568026623666230201144522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Microbial diseases, specifically originating from viruses are the major cause of human mortality all over the world. The current COVID-19 pandemic is a case in point, where the dynamics of the viral-human interactions are still not completely understood, making its treatment a case of trial and error. Scientists are struggling to devise a strategy to contain the pandemic for over a year and this brings to light the lack of understanding of how the virus grows and multiplies in the human body. METHODS This paper presents the perspective of the authors on the applicability of computational tools for deep learning and understanding of host-microbe interaction, disease progression and management, drug resistance and immune modulation through in silico methodologies which can aid in effective and selective drug development. The paper has summarized advances in the last five years. The studies published and indexed in leading databases have been included in the review. RESULTS Computational systems biology works on an interface of biology and mathematics and intends to unravel the complex mechanisms between the biological systems and the inter and intra species dynamics using computational tools, and high-throughput technologies developed on algorithms, networks and complex connections to simulate cellular biological processes. CONCLUSION Computational strategies and modelling integrate and prioritize microbial-host interactions and may predict the conditions in which the fine-tuning attenuates. These microbial-host interactions and working mechanisms are important from the aspect of effective drug designing and fine- tuning the therapeutic interventions.
Collapse
Affiliation(s)
- Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| | - Saman Raza
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| |
Collapse
|
4
|
Lipid Nanocarriers for Anti-HIV Therapeutics: A Focus on Physicochemical Properties and Biotechnological Advances. Pharmaceutics 2021; 13:pharmaceutics13081294. [PMID: 34452255 PMCID: PMC8398060 DOI: 10.3390/pharmaceutics13081294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Since HIV was first identified, and in a relatively short period of time, AIDS has become one of the most devastating infectious diseases of the 21st century. Classical antiretroviral therapies were a major step forward in disease treatment options, significantly improving the survival rates of HIV-infected individuals. Even though these therapies have greatly improved HIV clinical outcomes, antiretrovirals (ARV) feature biopharmaceutic and pharmacokinetic problems such as poor aqueous solubility, short half-life, and poor penetration into HIV reservoir sites, which contribute to the suboptimal efficacy of these regimens. To overcome some of these issues, novel nanotechnology-based strategies for ARV delivery towards HIV viral reservoirs have been proposed. The current review is focused on the benefits of using lipid-based nanocarriers for tuning the physicochemical properties of ARV to overcome biological barriers upon administration. Furthermore, a correlation between these properties and the potential therapeutic outcomes has been established. Biotechnological advancements using lipid nanocarriers for RNA interference (RNAi) delivery for the treatment of HIV infections were also discussed.
Collapse
|
5
|
Quasispecies dynamics in disease prevention and control. VIRUS AS POPULATIONS 2020. [PMCID: PMC7153035 DOI: 10.1016/b978-0-12-816331-3.00008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Medical interventions to prevent and treat viral disease constitute evolutionary forces that may modify the genetic composition of viral populations that replicate in an infected host and influence the genomic composition of those viruses that are transmitted and progress at the epidemiological level. Given the adaptive potential of viruses in general and the RNA viruses in particular, the selection of viral mutants that display some degree of resistance to inhibitors or vaccines is a tangible challenge. Mutant selection may jeopardize control of the viral disease. Strategies intended to minimize vaccination and treatment failures are proposed and justified based on fundamental features of viral dynamics explained in the preceding chapters. The recommended use of complex, multiepitopic vaccines, and combination therapies as early as possible after initiation of infection falls under the general concept that complexity cannot be combated with simplicity. It also follows that sociopolitical action to interrupt virus replication and spread as soon as possible is as important as scientifically sound treatment designs to control viral disease on a global scale.
Collapse
|
6
|
Seif M, Einsele H, Löffler J. CAR T Cells Beyond Cancer: Hope for Immunomodulatory Therapy of Infectious Diseases. Front Immunol 2019; 10:2711. [PMID: 31824500 PMCID: PMC6881243 DOI: 10.3389/fimmu.2019.02711] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/05/2019] [Indexed: 12/27/2022] Open
Abstract
Infectious diseases are still a significant cause of morbidity and mortality worldwide. Despite the progress in drug development, the occurrence of microbial resistance is still a significant concern. Alternative therapeutic strategies are required for non-responding or relapsing patients. Chimeric antigen receptor (CAR) T cells has revolutionized cancer immunotherapy, providing a potential therapeutic option for patients who are unresponsive to standard treatments. Recently two CAR T cell therapies, Yescarta® (Kite Pharma/Gilead) and Kymriah® (Novartis) were approved by the FDA for the treatments of certain types of non-Hodgkin lymphoma and B-cell precursor acute lymphoblastic leukemia, respectively. The success of adoptive CAR T cell therapy for cancer has inspired researchers to develop CARs for the treatment of infectious diseases. Here, we review the main achievements in CAR T cell therapy targeting viral infections, including Human Immunodeficiency Virus, Hepatitis C Virus, Hepatitis B Virus, Human Cytomegalovirus, and opportunistic fungal infections such as invasive aspergillosis.
Collapse
Affiliation(s)
| | | | - Jürgen Löffler
- Department of Internal Medicine II, University Hospital Wuerzburg, Würzburg, Germany
| |
Collapse
|
7
|
Jensen SB, Fahnøe U, Pham LV, Serre SBN, Tang Q, Ghanem L, Pedersen MS, Ramirez S, Humes D, Pihl AF, Filskov J, Sølund CS, Dietz J, Fourati S, Pawlotsky J, Sarrazin C, Weis N, Schønning K, Krarup H, Bukh J, Gottwein JM. Evolutionary Pathways to Persistence of Highly Fit and Resistant Hepatitis C Virus Protease Inhibitor Escape Variants. Hepatology 2019; 70:771-787. [PMID: 30964552 PMCID: PMC6772116 DOI: 10.1002/hep.30647] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 04/03/2019] [Indexed: 12/26/2022]
Abstract
Protease inhibitors (PIs) are important components of treatment regimens for patients with chronic hepatitis C virus (HCV) infection. However, emergence and persistence of antiviral resistance could reduce their efficacy. Thus, defining resistance determinants is highly relevant for efforts to control HCV. Here, we investigated patterns of PI resistance-associated substitutions (RASs) for the major HCV genotypes and viral determinants for persistence of key RASs. We identified protease position 156 as a RAS hotspot for genotype 1-4, but not 5 and 6, escape variants by resistance profiling using PIs grazoprevir and paritaprevir in infectious cell culture systems. However, except for genotype 3, engineered 156-RASs were not maintained. For genotypes 1 and 2, persistence of 156-RASs depended on genome-wide substitution networks, co-selected under continued PI treatment and identified by next-generation sequencing with substitution linkage and haplotype reconstruction. Persistence of A156T for genotype 1 relied on compensatory substitutions increasing replication and assembly. For genotype 2, initial selection of A156V facilitated transition to 156L, persisting without compensatory substitutions. The developed genotype 1, 2, and 3 variants with persistent 156-RASs had exceptionally high fitness and resistance to grazoprevir, paritaprevir, glecaprevir, and voxilaprevir. A156T dominated in genotype 1 glecaprevir and voxilaprevir escape variants, and pre-existing A156T facilitated genotype 1 escape from clinically relevant combination treatments with grazoprevir/elbasvir and glecaprevir/pibrentasvir. In genotype 1 infected patients with treatment failure and 156-RASs, we observed genome-wide selection of substitutions under treatment. Conclusion: Comprehensive PI resistance profiling for HCV genotypes 1-6 revealed 156-RASs as key determinants of high-level resistance across clinically relevant PIs. We obtained in vitro proof of concept for persistence of highly fit genotype 1-3 156-variants, which might pose a threat to clinically relevant combination treatments.
Collapse
Affiliation(s)
- Sanne Brun Jensen
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Long V. Pham
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Stéphanie Brigitte Nelly Serre
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Qi Tang
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Lubna Ghanem
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Martin Schou Pedersen
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical MicrobiologyCopenhagen University HospitalHvidovreDenmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Daryl Humes
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Anne Finne Pihl
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jonathan Filskov
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Christina Søhoel Sølund
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Infectious DiseasesCopenhagen University HospitalHvidovreDenmark
| | - Julia Dietz
- Department of Internal Medicine 1University Hospital Frankfurt, and German Center for Infection Research, External Partner SiteFrankfurtGermany
| | - Slim Fourati
- National Reference Center for Viral Hepatitis B, C and D, Department of VirologyHenri Mondor Hospital, University of Paris‐Est, and INSERM U955CréteilFrance
| | - Jean‐Michel Pawlotsky
- National Reference Center for Viral Hepatitis B, C and D, Department of VirologyHenri Mondor Hospital, University of Paris‐Est, and INSERM U955CréteilFrance
| | - Christoph Sarrazin
- Department of Internal Medicine 1University Hospital Frankfurt, and German Center for Infection Research, External Partner SiteFrankfurtGermany
- Medizinische Klinik II, St. Josefs‐HospitalWiesbadenGermany
| | - Nina Weis
- Department of Infectious DiseasesCopenhagen University HospitalHvidovreDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Kristian Schønning
- Department of Clinical MicrobiologyCopenhagen University HospitalHvidovreDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Henrik Krarup
- Department of Molecular DiagnosticsAalborg University HospitalAalborgDenmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
8
|
De Silva Feelixge HS, Stone D, Roychoudhury P, Aubert M, Jerome KR. CRISPR/Cas9 and Genome Editing for Viral Disease-Is Resistance Futile? ACS Infect Dis 2018; 4:871-880. [PMID: 29522311 PMCID: PMC5993632 DOI: 10.1021/acsinfecdis.7b00273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic viral infections remain a major public health issue affecting millions of people worldwide. Highly active antiviral treatments have significantly improved prognosis and infection-related morbidity and mortality but have failed to eliminate persistent viral forms. Therefore, new strategies to either eradicate or control these viral reservoirs are paramount to allow patients to stop antiretroviral therapy and realize a cure. Viral genome disruption based on gene editing by programmable endonucleases is one promising curative gene therapy approach. Recent findings on RNA-guided human immunodeficiency virus 1 (HIV-1) genome cleavage by Cas9 and other gene-editing enzymes in latently infected cells have shown high levels of site-specific genome disruption and potent inhibition of virus replication. However, HIV-1 can readily develop resistance to genome editing at a single antiviral target site. Current data suggest that cellular repair associated with DNA double-strand breaks can accelerate the emergence of resistance. On the other hand, a combination antiviral target strategy can exploit the same repair mechanism to functionally cure HIV-1 infection in vitro while avoiding the development of resistance. This perspective summarizes recent findings on the biology of resistance to genome editing and discusses the significance of viral genetic diversity on the application of gene editing strategies toward cure.
Collapse
Affiliation(s)
- Harshana S De Silva Feelixge
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle 98109, WA, USA
| | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle 98109, WA, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine, University of Washington, 1959 NE Pacific St, Seattle 98195, WA, USA
| | - Martine Aubert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle 98109, WA, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle 98109, WA, USA
- Department of Laboratory Medicine, University of Washington, 1959 NE Pacific St, Seattle 98195, WA, USA
- Department of Microbiology, University of Washington, 1959 NE Pacific St, Seattle 98195, WA, USA
| |
Collapse
|
9
|
Kim J, Biondi MJ, Feld JJ, Chan WCW. Clinical Validation of Quantum Dot Barcode Diagnostic Technology. ACS NANO 2016; 10:4742-4753. [PMID: 27035744 DOI: 10.1021/acsnano.6b01254] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There has been a major focus on the clinical translation of emerging technologies for diagnosing patients with infectious diseases, cancer, heart disease, and diabetes. However, most developments still remain at the academic stage where researchers use spiked target molecules to demonstrate the utility of a technology and assess the analytical performance. This approach does not account for the biological complexities and variabilities of human patient samples. As a technology matures and potentially becomes clinically viable, one important intermediate step in the translation process is to conduct a full clinical validation of the technology using a large number of patient samples. Here, we present a full detailed clinical validation of Quantum Dot (QD) barcode technology for diagnosing patients infected with Hepatitis B Virus (HBV). We further demonstrate that the detection of multiple regions of the viral genome using multiplexed QD barcodes improved clinical sensitivity from 54.9-66.7% to 80.4-90.5%, and describe how to use QD barcodes for optimal clinical diagnosis of patients. The use of QDs in biology and medicine was first introduced in 1998 but has not reached clinical care. This study describes our long-term systematic development strategy to advance QD technology to a clinically feasible product for diagnosing patients. Our "blueprint" for translating the QD barcode research concept could be adapted for other nanotechnologies, to efficiently advance diagnostic techniques discovered in the academic laboratory to patient care.
Collapse
Affiliation(s)
- Jisung Kim
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto , Toronto, Ontario M5S 3E1, Canada
| | - Mia J Biondi
- Sandra Rotman Centre for Global Health, University Health Network , Toronto, Ontario M5G 1L7, Canada
| | - Jordan J Feld
- Sandra Rotman Centre for Global Health, University Health Network , Toronto, Ontario M5G 1L7, Canada
| | - Warren C W Chan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto , Toronto, Ontario M5S 3E1, Canada
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering, University of Toronto , Toronto, Ontario M5S 3E5, Canada
- Department of Materials Science and Engineering, University of Toronto , Toronto, Ontario M5S 3E4, Canada
| |
Collapse
|
10
|
|
11
|
Cuypers L, Li G, Libin P, Piampongsant S, Vandamme AM, Theys K. Genetic Diversity and Selective Pressure in Hepatitis C Virus Genotypes 1-6: Significance for Direct-Acting Antiviral Treatment and Drug Resistance. Viruses 2015; 7:5018-39. [PMID: 26389941 PMCID: PMC4584301 DOI: 10.3390/v7092857] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/22/2015] [Accepted: 09/01/2015] [Indexed: 12/20/2022] Open
Abstract
Treatment with pan-genotypic direct-acting antivirals, targeting different viral proteins, is the best option for clearing hepatitis C virus (HCV) infection in chronically infected patients. However, the diversity of the HCV genome is a major obstacle for the development of antiviral drugs, vaccines, and genotyping assays. In this large-scale analysis, genome-wide diversity and selective pressure was mapped, focusing on positions important for treatment, drug resistance, and resistance testing. A dataset of 1415 full-genome sequences, including genotypes 1-6 from the Los Alamos database, was analyzed. In 44% of all full-genome positions, the consensus amino acid was different for at least one genotype. Focusing on positions sharing the same consensus amino acid in all genotypes revealed that only 15% was defined as pan-genotypic highly conserved (≥99% amino acid identity) and an additional 24% as pan-genotypic conserved (≥95%). Despite its large genetic diversity, across all genotypes, codon positions were rarely identified to be positively selected (0.23%-0.46%) and predominantly found to be under negative selective pressure, suggesting mainly neutral evolution. For NS3, NS5A, and NS5B, respectively, 40% (6/15), 33% (3/9), and 14% (2/14) of the resistance-related positions harbored as consensus the amino acid variant related to resistance, potentially impeding treatment. For example, the NS3 variant 80K, conferring resistance to simeprevir used for treatment of HCV1 infected patients, was present in 39.3% of the HCV1a strains and 0.25% of HCV1b strains. Both NS5A variants 28M and 30S, known to be associated with resistance to the pan-genotypic drug daclatasvir, were found in a significant proportion of HCV4 strains (10.7%). NS5B variant 556G, known to confer resistance to non-nucleoside inhibitor dasabuvir, was observed in 8.4% of the HCV1b strains. Given the large HCV genetic diversity, sequencing efforts for resistance testing purposes may need to be genotype-specific or geographically tailored.
Collapse
Affiliation(s)
- Lize Cuypers
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
| | - Guangdi Li
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
- Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Pieter Libin
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium.
| | - Supinya Piampongsant
- Department of Electrical Engineering ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, University of Leuven, Kasteelpark Arenberg 10, Heverlee 3001, Belgium.
| | - Anne-Mieke Vandamme
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
- Center for Global Health and Tropical Medicine, Microbiology Unit, Institute for Hygiene and Tropical Medicine, University Nova of Lisboa, Rua da Junqueira 100, Lisbon 1349-008, Portugal.
| | - Kristof Theys
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
| |
Collapse
|
12
|
Parvez MK. HBV and HIV co-infection: Impact on liver pathobiology and therapeutic approaches. World J Hepatol 2015; 7:121-126. [PMID: 25625003 PMCID: PMC4295189 DOI: 10.4254/wjh.v7.i1.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023] Open
Abstract
The consequences of hepatitis B virus (HBV) and human immunodeficiency virus (HIV) co-infection on progression of severe liver diseases is a serious public health issue, worldwide. In the co-infection cases, about 90% of HIV-infected population is seropositive for HBV where approximately 5%-40% individuals are chronically infected. In HIV co-infected individuals, liver-related mortality is estimated over 17 times higher than those with HBV mono-infection. The spectrum of HIV-induced liver diseases includes hepatitis, steatohepatitis, endothelialitis, necrosis, granulomatosis, cirrhosis and carcinoma. Moreover, HIV co-infection significantly alters the natural history of hepatitis B, and therefore complicates the disease management. Though several studies have demonstrated impact of HIV proteins on hepatocyte biology, only a few data is available on interactions between HBV and HIV proteins. Thus, the clinical spectrum as well as the complexity of the co-infection offers challenging fronts to study the underlying molecular mechanisms, and to design effective therapeutic strategies.
Collapse
|
13
|
Multidrug resistance: an emerging crisis. Interdiscip Perspect Infect Dis 2014; 2014:541340. [PMID: 25140175 PMCID: PMC4124702 DOI: 10.1155/2014/541340] [Citation(s) in RCA: 308] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/03/2014] [Indexed: 01/15/2023] Open
Abstract
The resistance among various microbial species (infectious agents) to different antimicrobial drugs has emerged as a cause of public health threat all over the world at a terrifying rate. Due to the pacing advent of new resistance mechanisms and decrease in efficiency of treating common infectious diseases, it results in failure of microbial response to standard treatment, leading to prolonged illness, higher expenditures for health care, and an immense risk of death. Almost all the capable infecting agents (e.g., bacteria, fungi, virus, and parasite) have employed high levels of multidrug resistance (MDR) with enhanced morbidity and mortality; thus, they are referred to as “super bugs.” Although the development of MDR is a natural phenomenon, the inappropriate use of antimicrobial drugs, inadequate sanitary conditions, inappropriate food-handling, and poor infection prevention and control practices contribute to emergence of and encourage the further spread of MDR. Considering the significance of MDR, this paper, emphasizes the problems associated with MDR and the need to understand its significance and mechanisms to combat microbial infections.
Collapse
|
14
|
Ortega-Prieto AM, Sheldon J, Grande-Pérez A, Tejero H, Gregori J, Quer J, Esteban JI, Domingo E, Perales C. Extinction of hepatitis C virus by ribavirin in hepatoma cells involves lethal mutagenesis. PLoS One 2013; 8:e71039. [PMID: 23976977 PMCID: PMC3745404 DOI: 10.1371/journal.pone.0071039] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/26/2013] [Indexed: 12/14/2022] Open
Abstract
Lethal mutagenesis, or virus extinction produced by enhanced mutation rates, is under investigation as an antiviral strategy that aims at counteracting the adaptive capacity of viral quasispecies, and avoiding selection of antiviral-escape mutants. To explore lethal mutagenesis of hepatitis C virus (HCV), it is important to establish whether ribavirin, the purine nucleoside analogue used in anti-HCV therapy, acts as a mutagenic agent during virus replication in cell culture. Here we report the effect of ribavirin during serial passages of HCV in human hepatoma Huh-7.5 cells, regarding viral progeny production and complexity of mutant spectra. Ribavirin produced an increase of mutant spectrum complexity and of the transition types associated with ribavirin mutagenesis, resulting in HCV extinction. Ribavirin-mediated depletion of intracellular GTP was not the major contributory factor to mutagenesis since mycophenolic acid evoked a similar decrease in GTP without an increase in mutant spectrum complexity. The intracellular concentration of the other nucleoside-triphosphates was elevated as a result of ribavirin treatment. Mycophenolic acid extinguished HCV without an intervening mutagenic activity. Ribavirin-mediated, but not mycophenolic acid-mediated, extinction of HCV occurred via a decrease of specific infectivity, a feature typical of lethal mutagenesis. We discuss some possibilities to explain disparate results on ribavirin mutagenesis of HCV.
Collapse
Affiliation(s)
- Ana M Ortega-Prieto
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ma J, Zhang Y, Chen X, Jin Y, Chen D, Wu Y, Cui J, Wang H, Liu J, Li N, Gao F. Association of preexisting drug-resistance mutations and treatment failure in hepatitis B patients. PLoS One 2013; 8:e67606. [PMID: 23935839 PMCID: PMC3728369 DOI: 10.1371/journal.pone.0067606] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/19/2013] [Indexed: 12/18/2022] Open
Abstract
The role of preexisting minority drug-resistance mutations in treatment failure has not been fully understood in chronic hepatitis B patients. To understand mechanisms of drug resistance, we analyzed drug-resistance mutations in 46 treatment-failure patients and in 29 treatment-naïve patients and determined linkage patterns of the drug-resistance mutations in individual viral genomes using a highly sensitive parallel allele-specific sequencing (PASS) method. Lamivudine resistance (LAMr) mutations were predominant in treatment-failure patients, irrespective of the inclusion of LAM in the regimen. The primary LAMr mutations M204V and M204I were detected in 100% and 30% of the treatment-failure patients, respectively. Two secondary LAMr mutations (L180M and V173L) were also found in most treatment-failure patients (87% and 78%, respectively). The linkages containing these three mutations dominated the resistant viruses. Importantly, minority LAMr mutations present in <2% of the viral population were detected in 83% of the treatment-naïve patients. Moreover, the low-frequency same linked LAMr mutations (<0.15%) were detected in 24% of the treatment-naïve patients. Our results demonstrate that the selection of preexisting minority linked LAMr mutations may be an important mechanism for the rapid development of LAM resistance, caution the continuous use of LAM to treat drug-experienced and -naïve hepatitis B patients, and underline the importance of the detection of minority single and linked drug-resistance mutations before initiating antiviral therapy.
Collapse
Affiliation(s)
- Jie Ma
- Beijing Institute of Liver Disease, Beijing, China
- Beijing Baihuirui Bio-Technologies Inc, Beijing, China
| | | | - Xinyue Chen
- Department of Medicine, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Yi Jin
- Department of Medicine, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Liver Disease, Beijing, China
| | - Yun Wu
- Beijing Baihuirui Bio-Technologies Inc, Beijing, China
| | - Jing Cui
- Beijing Baihuirui Bio-Technologies Inc, Beijing, China
| | - Haitao Wang
- Beijing Baihuirui Bio-Technologies Inc, Beijing, China
| | - Jia Liu
- Department of Microbiology, Peking University Health Science Center, Beijing, China
| | - Ning Li
- Beijing Institute of Liver Disease, Beijing, China
- Department of Medicine, Beijing You'an Hospital, Capital Medical University, Beijing, China
- Department of Surgery, Beijing You'an Hospital, Capital Medical University, Beijing, China
- * E-mail: (NL); (FG)
| | - Feng Gao
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (NL); (FG)
| |
Collapse
|
16
|
Tong J, Li QL, Huang AL, Guo JJ. Complexity and diversity of hepatitis B virus quasispecies: correlation with long-term entecavir antiviral efficacy. Antiviral Res 2013; 99:312-7. [PMID: 23832087 DOI: 10.1016/j.antiviral.2013.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/02/2013] [Accepted: 06/26/2013] [Indexed: 01/20/2023]
Abstract
This study was undertaken to determine the complexity and diversity of hepatitis B virus (HBV) quasispecies during long-term antiviral therapy and examine their impacts on therapeutic outcome. Six chronic hepatitis B patients receiving entecavir monotherapy (0.5mg/day) for 3 years were enrolled. The reverse transcriptase region of the HBV polymerase gene was sequenced and HBV quasispecies complexity and diversity were calculated. Sustained virological response (SVR) was defined as serum HBV DNA <57 IU/ml from 48 weeks after treatment to the end of follow up. Four patients achieved a SVR and the other two had a virological breakthrough at week 24. Despite comparable baseline levels, the complexity and diversity of HBV quasispecies were significantly (p<0.05) reduced in sustained responders versus the patients with a virological breakthrough 48 weeks after treatment. Thus, reduction in HBV quasispecies complexity and diversity may predict an SVR to long-term entecavir monotherapy.
Collapse
Affiliation(s)
- Jin Tong
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | |
Collapse
|
17
|
|
18
|
Ding B, Li N, Wang W. Characterizing Binding of Small Molecules. II. Evaluating the Potency of Small Molecules to Combat Resistance Based on Docking Structures. J Chem Inf Model 2013; 53:1213-22. [DOI: 10.1021/ci400011c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Bo Ding
- Department
of Chemistry and Biochemistry, ‡Department of Cellular and Molecular Medicine, UCSD, La Jolla, California 92093-0359,
United States
| | - Nan Li
- Department
of Chemistry and Biochemistry, ‡Department of Cellular and Molecular Medicine, UCSD, La Jolla, California 92093-0359,
United States
| | - Wei Wang
- Department
of Chemistry and Biochemistry, ‡Department of Cellular and Molecular Medicine, UCSD, La Jolla, California 92093-0359,
United States
| |
Collapse
|
19
|
Rusconi S, Vitiello P, Adorni F, Bruzzone B, De Luca A, Micheli V, Meraviglia P, Maserati R, Di Pietro M, Colao G, Penco G, Di Biagio A, Punzi G, Monno L, Zazzi M. Factors associated with virological success with raltegravir-containing regimens and prevalence of raltegravir-resistance-associated mutations at failure in the ARCA database. Clin Microbiol Infect 2013; 19:936-42. [PMID: 23289841 DOI: 10.1111/1469-0691.12100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/27/2012] [Accepted: 11/04/2012] [Indexed: 02/03/2023]
Abstract
Raltegravir (RAL) is the only licensed human immunodeficiency virus (HIV) integrase inhibitor. The factors associated with the virological response to RAL-containing regimens and the prevalence of integrase mutations associated with RAL failure deserve further investigation. From the Antiretroviral Resistance Cohort Analysis database, we selected triple-class-experienced subjects failing their current treatment with complete treatment history available. Selection criteria included HIV-RNA, CD4 count and HIV genotype within 3 months of RAL initiation. Factors associated with 24-week response were analysed; genotypic sensitivity scores (GSS) and weighted-GSS were evaluated. Virological response was achieved in 74.3% of 105 subjects. Mutations associated with RAL failure were detected in 12/24 subjects with an integrase genotype, with the prevalence of Q148H + G140S. Each extra unit of GSS (p 0.05, OR 2.62; 95% CI 1.00-6.87). was found to be a associated with response. Weighted-GSS had borderline statistical significance (p 0.063, OR 2.04; 95% CI 0.96-4.33) When stratifying for different cut-offs (<1 as reference, 1-1.49, ≥1.5), a borderline significant increase in the probability of response appeared for GSS ≥1.5 (p 0.053, OR 4.00; 95% CI 0.98-16.25). GSS ≥1 showed the highest sensitivity, 82.6%. Receiver operating characteristic curves depicted the widest area under the curve (0.663, p 0.054) of GSS ≥1. Unresponsiveness to RAL-containing regimens among triple-class-experienced subjects was low. The activity of the background regimen was strongly associated with response. Although few integrase genotypes were available at failure, half of these were without integrase resistance mutations. The substantial rate of RAL failure in the absence of known RAL-resistance mutations may be associated with adherence issues and this issue warrants further analysis in longer observations.
Collapse
Affiliation(s)
- S Rusconi
- Divisione Clinicizzata di Malattie Infettive, Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Universita' degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Leal É, Villanova FE, Lin W, Hu F, Liu Q, Liu Y, Cui S. Interclade recombination in porcine parvovirus strains. J Gen Virol 2012; 93:2692-2704. [DOI: 10.1099/vir.0.045765-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
A detailed analysis of the Ns1/Vp1Vp2 genome region of the porcine parvovirus (PPV) strains isolated from vaccinated animals was performed. We found many inconsistencies in the phylogenetic trees of these viral isolates, such as low statistical support and strains with long branches in the phylogenetic trees. Thus, we used distance-based and phylogenetic methods to distinguish de facto recombinants from spurious recombination signals. We found a mosaic virus in which the Ns1 gene was acquired from one PPV clade and the Vp1Vp2 gene was acquired from a distinct phylogenetic clade. We also described the interclade mosaic structure of the Vp1Vp2 gene of a reference strain. If recombination is an adaptive mechanism over the course of PPV evolution, we would likely observe increasing numbers of chimeric strains over time. However, when the PPV sequences isolated from 1964 to 2011 were analysed, only two chimeric strains were detected. Thus, PPV recombination is an independent event, resulting from close contact between animals housed in high-density conditions.
Collapse
Affiliation(s)
- Élcio Leal
- Federal University of Pará, Belém, Brazil
| | | | - Wencheng Lin
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of CAAS, Heilongjiang, PR China
| | - Feng Hu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of CAAS, Heilongjiang, PR China
| | - Qinfang Liu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of CAAS, Heilongjiang, PR China
| | - Yebing Liu
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Shangjin Cui
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of CAAS, Heilongjiang, PR China
| |
Collapse
|
21
|
Saenz RA, Bonhoeffer S. Nested model reveals potential amplification of an HIV epidemic due to drug resistance. Epidemics 2012; 5:34-43. [PMID: 23438429 DOI: 10.1016/j.epidem.2012.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 12/24/2022] Open
Abstract
The use of antiretroviral therapy (ART) is the most efficient measure in controlling the HIV epidemic. However, emergence of drug-resistant strains can reduce the potential benefits of ART. The viral dynamics of drug-sensitive and drug-resistant strains at the individual level may play a crucial role in the emergence and spread of drug resistance in a population. We investigate the effect of the viral dynamics within an infected individual on the epidemiological dynamics of HIV using a nested model that links both dynamical levels. A time-dependent between-host transmission rate that receives feedback from a model of two-strain virus dynamics within a host is incorporated into an epidemiological model of HIV. We analyze the resulting dynamics of the model and identify model parameters such as time when ART is initiated, fraction of cases treated, and the probability that a patient develops drug resistance, as having the greatest impact on total infection and prevalence of drug resistance. Importantly, for small values of the risk of a patient developing drug resistance, increasing the fraction of cases treated can increase the cumulative number of infected individuals. Such a pattern is the result of the balance between not treating a patient and having future cases still sensitive to treatment, and treating the patient and increasing the chances for future (untreatable) drug-resistant infections. The current modeling framework incorporates important aspects of virus dynamics within a host into an epidemic model. This approach provides useful insights on the drug resistance dynamics of an epidemic of HIV, which may assist in identifying an optimal use of ART.
Collapse
Affiliation(s)
- Roberto A Saenz
- Institute of Integrative Biology, ETH Zurich, ETH-Zentrum CHN, 8092 Zurich, Switzerland
| | | |
Collapse
|
22
|
Jaspe RC, Sulbarán YF, Sulbarán MZ, Loureiro CL, Rangel HR, Pujol FH. Prevalence of amino acid mutations in hepatitis C virus core and NS5B regions among Venezuelan viral isolates and comparison with worldwide isolates. Virol J 2012; 9:214. [PMID: 22995142 PMCID: PMC3511240 DOI: 10.1186/1743-422x-9-214] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/18/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Recent reports show that R70Q and L/C91M amino acid substitutions in the core from different hepatitis C virus (HCV) genotypes have been associated with variable responses to interferon (IFN) and ribavirin (RBV) therapy, as well to an increase of hepatocellular carcinoma (HCC) risk, liver steatosis and insulin resistance (IR). Mutations in NS5B have also been associated to IFN, RBV, nucleoside and non-nucleoside inhibitors drug resistance. The prevalence of these mutations was studied in HCV RNA samples from chronically HCV-infected drug-naïve patients. METHODS After amplification of core and NS5B region by nested-PCR, 12 substitutions were analyzed in 266 Venezuelan HCV isolates subtype 1a, 1b, 2a, 2c, 2b, 2j (a subtype frequently found in Venezuela) and 3a (n = 127 and n = 228 for core and NS5B respectively), and compared to isolates from other countries (n = 355 and n = 646 for core and NS5B respectively). RESULTS R70Q and L/C91M core substitutions were present exclusively in HCV G1b. Both substitutions were more frequent in American isolates compared to Asian ones (69% versus 26%, p < 0.001 and 75% versus 45%, p < 0.001 respectively). In Venezuelan isolates NS5B D310N substitution was detected mainly in G3a (100%) and G1a (13%), this later with a significantly higher prevalence than in Brazilian isolates (p = 0.03). The NS5B mutations related to IFN/RBV treatment D244N was mainly found in G3a, and Q309R was present in all genotypes, except G2. Resistance to new NS5B inhibitors (C316N) was only detected in 18% of G1b, with a significantly lower prevalence than in Asian isolates, where this polymorphism was surprisingly frequent (p < 0.001). CONCLUSIONS Genotypical, geographical and regional differences were found in the prevalence of substitutions in HCV core and NS5B proteins. The substitutions found in the Venezuelan G2j type were similar to that found in G2a and G2c isolates. Our results suggest a high prevalence of the R70Q and L/C91M mutations of core protein for G1b and D310N substitution of NS5B protein for the G3a. C316N polymorphism related with resistance to new NS5B inhibitors was only found in G1b. Some of these mutations could be associated with a worse prognosis of the disease in HCV infected patients.
Collapse
Affiliation(s)
- Rossana C Jaspe
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Apdo 20632, Caracas 1020-A, Venezuela
| | | | | | | | | | | |
Collapse
|
23
|
No influence of antiretroviral therapy on the mutation rate of the HCV NS5B polymerase in HIV/HCV-coinfected patients. Antiviral Res 2012; 95:67-71. [DOI: 10.1016/j.antiviral.2012.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/26/2012] [Accepted: 05/30/2012] [Indexed: 01/11/2023]
|
24
|
McEnaney PJ, Parker CG, Zhang AX, Spiegel DA. Antibody-recruiting molecules: an emerging paradigm for engaging immune function in treating human disease. ACS Chem Biol 2012; 7:1139-51. [PMID: 22758917 PMCID: PMC3401898 DOI: 10.1021/cb300119g] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Synthetic immunology, the development of synthetic systems capable of modulating and/or manipulating immunological functions, represents an emerging field of research with manifold possibilities. One focus of this area has been to create low molecular weight synthetic species, called antibody-recruiting molecules (ARMs), which are capable of enhancing antibody binding to disease-relevant cells or viruses, thus leading to their immune-mediated clearance. This article provides a thorough discussion of contributions in this area, beginning with the history of small-molecule-based technologies for modulating antibody recognition, followed by a systematic review of the various applications of ARM-based strategies. Thus, we describe ARMs capable of targeting cancer, bacteria, and viral pathogens, along with some of the scientific discoveries that have resulted from their development. Research in this area underscores the many exciting possibilities at the interface of organic chemistry and immunobiology and is positioned to advance both basic and clinical science in the years to come.
Collapse
Affiliation(s)
- Patrick J McEnaney
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | | | | |
Collapse
|
25
|
Shiryaev SA, Cheltsov AV, Strongin AY. Probing of exosites leads to novel inhibitor scaffolds of HCV NS3/4A proteinase. PLoS One 2012; 7:e40029. [PMID: 22768327 PMCID: PMC3388044 DOI: 10.1371/journal.pone.0040029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 06/01/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Hepatitis C is a treatment-resistant disease affecting millions of people worldwide. The hepatitis C virus (HCV) genome is a single-stranded RNA molecule. After infection of the host cell, viral RNA is translated into a polyprotein that is cleaved by host and viral proteinases into functional, structural and non-structural, viral proteins. Cleavage of the polyprotein involves the viral NS3/4A proteinase, a proven drug target. HCV mutates as it replicates and, as a result, multiple emerging quasispecies become rapidly resistant to anti-virals, including NS3/4A inhibitors. METHODOLOGY/PRINCIPAL FINDINGS To circumvent drug resistance and complement the existing anti-virals, NS3/4A inhibitors, which are additional and distinct from the FDA-approved telaprevir and boceprevir α-ketoamide inhibitors, are required. To test potential new avenues for inhibitor development, we have probed several distinct exosites of NS3/4A which are either outside of or partially overlapping with the active site groove of the proteinase. For this purpose, we employed virtual ligand screening using the 275,000 compound library of the Developmental Therapeutics Program (NCI/NIH) and the X-ray crystal structure of NS3/4A as a ligand source and a target, respectively. As a result, we identified several novel, previously uncharacterized, nanomolar range inhibitory scaffolds, which suppressed of the NS3/4A activity in vitro and replication of a sub-genomic HCV RNA replicon with a luciferase reporter in human hepatocarcinoma cells. The binding sites of these novel inhibitors do not significantly overlap with those of α-ketoamides. As a result, the most common resistant mutations, including V36M, R155K, A156T, D168A and V170A, did not considerably diminish the inhibitory potency of certain novel inhibitor scaffolds we identified. CONCLUSIONS/SIGNIFICANCE Overall, the further optimization of both the in silico strategy and software platform we developed and lead compounds we identified may lead to advances in novel anti-virals.
Collapse
Affiliation(s)
- Sergey A. Shiryaev
- Inflammatory and Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Anton V. Cheltsov
- R&D Department, Q-MOL L.L.C., San Diego, California, United States of America
- * E-mail: (AVC) (AC); (AYS) (AS)
| | - Alex Y. Strongin
- Inflammatory and Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (AVC) (AC); (AYS) (AS)
| |
Collapse
|
26
|
Goldberg DE, Siliciano RF, Jacobs WR. Outwitting evolution: fighting drug-resistant TB, malaria, and HIV. Cell 2012; 148:1271-83. [PMID: 22424234 PMCID: PMC3322542 DOI: 10.1016/j.cell.2012.02.021] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Indexed: 11/20/2022]
Abstract
Although caused by vastly different pathogens, the world's three most serious infectious diseases, tuberculosis, malaria, and HIV-1 infection, share the common problem of drug resistance. The pace of drug development has been very slow for tuberculosis and malaria and rapid for HIV-1. But for each disease, resistance to most drugs has appeared quickly after the introduction of the drug. Learning how to manage and prevent resistance is a major medical challenge that requires an understanding of the evolutionary dynamics of each pathogen. This Review summarizes the similarities and differences in the evolution of drug resistance for these three pathogens.
Collapse
Affiliation(s)
- Daniel E Goldberg
- Department of Medicine and Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
27
|
Shrestha B, Austin SK, Dowd KA, Prasad AN, Youn S, Pierson TC, Fremont DH, Ebel GD, Diamond MS. Complex phenotypes in mosquitoes and mice associated with neutralization escape of a Dengue virus type 1 monoclonal antibody. Virology 2012; 427:127-34. [PMID: 22406169 DOI: 10.1016/j.virol.2012.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 01/09/2012] [Accepted: 02/13/2012] [Indexed: 01/16/2023]
Abstract
DENV1-E106 is a monoclonal antibody (MAb) with strong neutralizing activity against all five DENV-1 genotypes and therapeutic activity in mice. Here, we evaluated the potential for DENV-1 to escape neutralization by DENV1-E106. A single mutation in domain III of the envelope protein (T329A) emerged, which conferred resistance to DENV1-E106. However, the T329A variant virus had differing phenotypes in vitro and in vivo with attenuation in cell culture yet increased infectivity in Aedes aegypti mosquitoes. Mice infected with this T329A variant still were protected against lethal infection by DENV1-E106 even though much of the neutralizing activity was lost. This study reveals the complex dynamics of neutralization escape of an inhibitory MAb against DENV, and suggests that evaluation of therapeutic MAbs requires detailed investigation in relevant hosts.
Collapse
Affiliation(s)
- Bimmi Shrestha
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hamdi A, Colas P. Yeast two-hybrid methods and their applications in drug discovery. Trends Pharmacol Sci 2012; 33:109-18. [DOI: 10.1016/j.tips.2011.10.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 01/08/2023]
|
29
|
Abstract
Diseases such as tuberculosis, hepatitis, and HIV/AIDS are caused by intracellular pathogens and are a major burden to the global medical community. Conventional treatments for these diseases typically consist of long-term therapy with a combination of drugs, which may lead to side effects and contribute to low patient compliance. The pathogens reside within intracellular compartments of the cell, which provide additional barriers to effective treatment. Therefore, there is a need for improved and more effective therapies for such intracellular diseases. This review will summarize, for the first time, the intracellular compartments in which pathogens can reside and discuss how nanomedicine has the potential to improve intracellular disease therapy by offering properties such as targeting, sustained drug release, and drug delivery to the pathogen’s intracellular location. The characteristics of nanomedicine may prove advantageous in developing improved or alternative therapies for intracellular diseases.
Collapse
Affiliation(s)
- Andrea L Armstead
- Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopedics, School of Medicine, West Virginia University, Morgantown, WV 26506-9196, USA
| | | |
Collapse
|
30
|
Plaza Z, Soriano V, Gonzalez MDM, Di Lello FA, Macias J, Labarga P, Pineda JA, Poveda E. Impact of antiretroviral therapy on the variability of the HCV NS5B polymerase in HIV/HCV co-infected patients. J Antimicrob Chemother 2011; 66:2838-42. [DOI: 10.1093/jac/dkr385] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|