1
|
Marino-Merlo F, Grelli S, Mastino A, Lai M, Ferrari P, Nicolini A, Pistello M, Macchi B. Human T-Cell Leukemia Virus Type 1 Oncogenesis between Active Expression and Latency: A Possible Source for the Development of Therapeutic Targets. Int J Mol Sci 2023; 24:14807. [PMID: 37834255 PMCID: PMC10572738 DOI: 10.3390/ijms241914807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is the only known human oncogenic retrovirus. HTLV-1 can cause a type of cancer called adult T-cell leukemia/lymphoma (ATL). The virus is transmitted through the body fluids of infected individuals, primarily breast milk, blood, and semen. At least 5-10 million people in the world are infected with HTLV-1. In addition to ATL, HTLV-1 infection can also cause HTLV-I-associated myelopathy (HAM/TSP). ATL is characterized by a low viral expression and poor prognosis. The oncogenic mechanism triggered by HTLV-1 is extremely complex and the molecular pathways are not fully understood. However, viral regulatory proteins Tax and HTLV-1 bZIP factor (HBZ) have been shown to play key roles in the transformation of HTLV-1-infected T cells. Moreover, several studies have shown that the final fate of HTLV-1-infected transformed Tcell clones is the result of a complex interplay of HTLV-1 oncogenic protein expression with cellular transcription factors that subvert the cell cycle and disrupt regulated cell death, thereby exerting their transforming effects. This review provides updated information on the mechanisms underlying the transforming action of HTLV-1 and highlights potential therapeutic targets to combat ATL.
Collapse
Affiliation(s)
- Francesca Marino-Merlo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Antonio Mastino
- The Institute of Translational Pharmacology, CNR, 00133 Rome, Italy;
| | - Michele Lai
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, 56100 Pisa, Italy; (M.L.); (M.P.)
| | - Paola Ferrari
- Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera—Universitaria Pisana, 56125 Pisa, Italy;
| | - Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, 56100 Pisa, Italy; (M.L.); (M.P.)
| | - Beatrice Macchi
- Department of Chemical Science and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| |
Collapse
|
2
|
Letafati A, Soheili R, Norouzi M, Soleimani P, Mozhgani SH. Therapeutic approaches for HTLV-1-associated adult T-cell leukemia/lymphoma: a comprehensive review. Med Oncol 2023; 40:295. [PMID: 37689806 DOI: 10.1007/s12032-023-02166-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATLL), an infrequent malignancy resultant from human T-cell lymphotropic virus type I (HTLV-1), exhibits a spectrum of phenotypes, encompassing acute, smoldering, lymphomatous, and chronic variants, each bearing distinct clinical presentations. The preponderant acute manifestation is characterized by hypercalcemia, systemic manifestations, organomegaly, and dermatological eruptions. Conversely, the chronic phenotype is typified by lymphocytosis and/or cutaneous eruptions, while smoldering ATLL assumes an asymptomatic course. Immunocompromise afflicts ATLL patients, heightening their vulnerability to opportunistic infections that frequently intricately intertwine with disease progression. Therefore, an early diagnosis is crucial to manage the disease appropriately. While conventional chemotherapeutic regimens have shown limited success, especially in acute and lymphoma types, recent studies suggest that allogeneic stem cell transplantation might enhance treatment results because it has shown promising outcomes in some patients. Novel therapeutics, such as interferon and monoclonal antibodies, have also shown promise, but more research is needed to confirm their efficacy. Moreover, the identification of biomarkers for ATLL and genetic changes in HTLV-1 infected cells has led to the development of targeted therapies that have shown remarkable success in clinical trials. These targeted therapies have the potential to offer a more personalized approach to the treatment of ATLL. The aim of our review is to elaborate on conventional and novel therapies and the efficiency of mentioned treatments.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Roben Soheili
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Norouzi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Parastoo Soleimani
- Advanced Science Faculty, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
3
|
El Hajj H, Bazarbachi A. Interplay between innate immunity and the viral oncoproteins Tax and HBZ in the pathogenesis and therapeutic response of HTLV-1 associated adult T cell leukemia. Front Immunol 2022; 13:957535. [PMID: 35935975 PMCID: PMC9352851 DOI: 10.3389/fimmu.2022.957535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
The Human T-cell Leukemia virus type 1 (HTLV-1) causes an array of pathologies, the most aggressive of which is adult T-cell leukemia (ATL), a fatal blood malignancy with dismal prognosis. The progression of these diseases is partly ascribed to the failure of the immune system in controlling the spread of virally infected cells. HTLV-1 infected subjects, whether asymptomatic carriers or symptomatic patients are prone to opportunistic infections. An increasing body of literature emphasizes the interplay between HTLV-1, its associated pathologies, and the pivotal role of the host innate and adoptive immune system, in shaping the progression of HTLV-1 associated diseases and their response to therapy. In this review, we will describe the modalities adopted by the malignant ATL cells to subvert the host innate immune response with emphasis on the role of the two viral oncoproteins Tax and HBZ in this process. We will also provide a comprehensive overview on the function of innate immunity in the therapeutic response to chemotherapy, anti-viral or targeted therapies in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- *Correspondence: Ali Bazarbachi,
| |
Collapse
|
4
|
Papakonstantinou E, Io Diakou K, Mitsis T, Dragoumani K, Bacopoulou F, Megalooikonomou V, Kossida S, Chrousos GP, Vlachakis D. Molecular fusion events in carcinogenic organisms: a bioinformatics study for the detection of fused proteins between viruses, bacteria and eukaryotes. EMBNET.JOURNAL 2022; 27:e1004. [PMID: 35464257 PMCID: PMC9029568 DOI: 10.14806/ej.27.0.1004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Molecular fusion events have a prominent role in the initial steps of carcinogenesis. In this study, a bioinformatics analysis was performed between four organisms that are known to induce cancer development in humans: two viruses, Human Herpesvirus 4, and Human T-cell leukaemia virus, one bacterium, Helicobacter Pylori, and one trematode, Schistosoma mansoni. The annotated proteomes from these organisms were analysed using the SAFE software to identify protein fusion events, which may provide insight into protein function similarities and possible merging events during the course of evolution. Based on the results, five fused proteins with very similar functions were detected, whereas proteins with different functions that might act in the same molecular complex or biochemical pathway were not found. Thus, this study analysed the above four well-known cancer-related organisms with de novo bioinformatics programs and provided useful information on protein fusion events, hopefully leading to deeper understanding of carcinogenenesis.
Collapse
Affiliation(s)
- Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Kalliopi Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Vasilis Megalooikonomou
- Computer Engineering and Informatics Department, School of Engineering, University of Patras, Patras. Greece
| | - Sophia Kossida
- IMGT, The International ImMunoGeneTics Information System, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire and Institut de Génétique Humaine, University of Montpellier, Montpellier, France
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
5
|
Adult T-Cell Leukemia: a Comprehensive Overview on Current and Promising Treatment Modalities. Curr Oncol Rep 2021; 23:141. [PMID: 34735653 DOI: 10.1007/s11912-021-01138-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE OF THE REVIEW Adult T-cell leukemia (ATL) is an aggressive chemo-resistant malignancy secondary to HTLV-1 retrovirus. Prognosis of ATL remains dismal. Herein, we emphasized on the current ATL treatment modalities and their drawbacks, and opened up on promising targeted therapies with special focus on the HTLV-1 regulatory proteins Tax and HBZ. RECENT FINDINGS Indolent ATL and a fraction of acute ATL exhibit long-term survival following antiviral treatment with zidovudine and interferon-alpha. Monoclonal antibodies such as mogamulizumab improved response rates, but with little effect on survival. Allogeneic hematopoietic cell transplantation results in long-term survival in one third of transplanted patients, alas only few patients are transplanted. Salvage therapy with lenalidomide in relapsed/refractory patients leads to prolonged survival in some of them. ATL remains an unmet medical need. Targeted therapies focusing on the HTLV-1 viral replication and/or viral regulatory proteins, as well as on the host antiviral immunity, represent a promising approach for the treatment of ATL.
Collapse
|
6
|
Akkouche A, Moodad S, Hleihel R, Skayneh H, Chambeyron S, El Hajj H, Bazarbachi A. In vivo antagonistic role of the Human T-Cell Leukemia Virus Type 1 regulatory proteins Tax and HBZ. PLoS Pathog 2021; 17:e1009219. [PMID: 33471856 PMCID: PMC7817025 DOI: 10.1371/journal.ppat.1009219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022] Open
Abstract
Adult T cell leukemia (ATL) is an aggressive malignancy secondary to chronic infection by the human T-cell leukemia virus type 1 (HTLV-1) infection. Two viral proteins, Tax and HBZ, play central roles in ATL leukemogenesis. Tax expression transforms T cells in vitro and induces ATL-like disease in mice. Tax also induces a rough eye phenotype and increases hemocyte count in Drosophila melanogaster, indicative of transformation. Among multiple functions, Tax modulates the expression of the enhancer of zeste homolog 2 (EZH2), a methyltransferase of the Polycomb Repressive Complex 2 (PRC2), leading to H3K27me3-dependent reprogramming of around half of cellular genes. HBZ is a negative regulator of Tax-mediated viral transcription. HBZ effects on epigenetic signatures are underexplored. Here, we established an hbz transgenic fly model, and demonstrated that, unlike Tax, which induces NF-κB activation and enhanced PRC2 activity creating an activation loop, HBZ neither induces transformation nor NF-κB activation in vivo. However, overexpression of Tax or HBZ increases the PRC2 activity and both proteins directly interact with PRC2 complex core components. Importantly, overexpression of HBZ in tax transgenic flies prevents Tax-induced NF-κB or PRC2 activation and totally rescues Tax-induced transformation and senescence. Our results establish the in vivo antagonistic effect of HBZ on Tax-induced transformation and cellular effects. This study helps understanding long-term HTLV-1 persistence and cellular transformation and opens perspectives for new therapeutic strategies targeting the epigenetic machinery in ATL. Adult T cell leukemia-lymphoma is an aggressive hematological malignancy, caused by the retroviral infection with HTLV-1. Tax and HBZ play critical roles in leukemia development. Tax activates the NF-κB pathway and modulates the epigenetic machinery to induce cellular proliferation and malignant transformation. We generated hbz or tax/hbz transgenic fly models and explored the phenotypes and epigenetic changes in vivo. Unlike Tax, HBZ expression failed to activate NF-κB or to induce transformation or senescence in vivo, yet activated PRC2 core components resulting in subsequent epigenetic changes. HBZ expression in tax Tg flies inhibits Tax-induced NF-κB or PRC2 activation, resulting in inhibition of malignant cellular proliferation and its consequent senescence. Our study proves the antagonistic effect of HBZ on Tax-induced transformation in vivo, providing further understanding on ATL pathogenesis.
Collapse
Affiliation(s)
- Abdou Akkouche
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Sara Moodad
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Rita Hleihel
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Hala Skayneh
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Séverine Chambeyron
- Institute of Human Genetics, CNRS, UMR 9002, Montpellier University, Montpellier, France
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- * E-mail: (HEH); (AB)
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
- * E-mail: (HEH); (AB)
| |
Collapse
|
7
|
Tsukasaki K, Marçais A, Nasr R, Kato K, Fukuda T, Hermine O, Bazarbachi A. Diagnostic Approaches and Established Treatments for Adult T Cell Leukemia Lymphoma. Front Microbiol 2020; 11:1207. [PMID: 32636814 PMCID: PMC7317092 DOI: 10.3389/fmicb.2020.01207] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
Adult T-cell leukemia-lymphoma (ATL) is a distinct mature T-cell malignancy caused by human T-cell leukemia/lymphotropic virus type I (HTLV-1) endemic in some areas in the world. HTLV-1 transmits through mother-to-child infection via breastfeeding, sexual intercourses, and blood transfusions. Early HTLV-1 infection, presumably through mother’s milk, is crucial in developing ATL. The estimated cumulative risk of the development of ATL in HTLV-1 carriers is a few percent after transmission from their mothers. The median age of ATL onset is about 70 in Japan and is now rising, whereas an overall mean age in the mid-forties is reported in other parts of the world. ATL is classified into four clinical subtypes (acute, lymphoma, chronic, and smoldering) defined by organ lesions and LDH/calcium values. In aggressive ATL (acute, lymphoma or unfavorable chronic types) and indolent ATL (favorable chronic or smoldering types), intensive chemotherapy followed by allogeneic hematopoietic stem cell transplantation and watchful waiting until disease progression has been recommended, respectively, in Japan. Based on a worldwide meta-analysis and multiple other retrospective studies, the antiviral combination of interferon alpha (IFN) and zidovudine (AZT) is recommended in many parts of the world in acute, chronic, and smoldering ATL whereas patients with the lymphoma subtype are treated with chemotherapy, either alone or combined with AZT/IFN. Several new agents have been approved for ATL by the Pharmaceutical and Medical Devices Agency (PMDA) after clinical trials, including an anti-CC chemokine receptor 4 monoclonal antibody, mogamulizumab; an immunomodulatory agent, lenalidomide; and an anti-CD30 antibody/drug conjugate, brentuximab vedotin.
Collapse
Affiliation(s)
- Kunihiro Tsukasaki
- Department of Hematology, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Ambroise Marçais
- Institut Imagine - INSERM U1163, Necker Hospital, University of Paris, Paris, France.,Department of Hematology, Necker Hospital, University of Paris, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Koji Kato
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Olivier Hermine
- Institut Imagine - INSERM U1163, Necker Hospital, University of Paris, Paris, France.,Department of Hematology, Necker Hospital, University of Paris, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Ali Bazarbachi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
8
|
Marino-Merlo F, Balestrieri E, Matteucci C, Mastino A, Grelli S, Macchi B. Antiretroviral Therapy in HTLV-1 Infection: An Updated Overview. Pathogens 2020; 9:E342. [PMID: 32369988 PMCID: PMC7281255 DOI: 10.3390/pathogens9050342] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 12/30/2022] Open
Abstract
The human T cell leukemic/lymphotropic virus type 1 (HTLV-1), discovered several years ago, is the causative agent for a rapid progressive haematological malignancy, adult T cell leukemia (ATL), for debilitating neurological diseases and for a number of inflammatory based diseases. Although the heterogeneous features of the diseases caused by HTLV-1, a common topic concerning related therapeutic treatments relies on the use of antiretrovirals. This review will compare the different approaches and opinions in this matter, giving a concise overview of preclinical as well as clinical studies covering all the aspects of antiretrovirals in HTLV-1 infection. Studies will be grouped on the basis of the class of antiretroviral, putting together both pre-clinical and clinical results and generally following a chronological order. Analysis of the existing literature highlights that a number of preclinical studies clearly demonstrate that different classes of antiretrovirals, already utilized as anti-HIV agents, are actually capable to efficiently contrast HTLV-1 infection. Nevertheless, the results of most of the clinical studies are generally discouraging on the same point. In conclusion, the design of new antiretrovirals more specifically focused on HTLV-1 targets, and/or the establishment of early treatments with antiretrovirals could hopefully change the perspectives of diseases caused by HTLV-1.
Collapse
Affiliation(s)
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (E.B.); (C.M.); (S.G.)
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (E.B.); (C.M.); (S.G.)
| | - Antonio Mastino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
- The Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), 00133 Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (E.B.); (C.M.); (S.G.)
| | - Beatrice Macchi
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
9
|
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is a horizontally transmitted virus infection of CD4+ lymphocytes which causes adult T cell leukemia-lymphoma (ATLL) and HTLV-associated myelopathy (HAM). The viral genome encodes two oncoproteins, transactivator protein (Tax) and helix basic zipper protein (HBZ), which are considered tumor initiator and maintenance factors, respectively. Tax is the primary inducer of clonal infected T cell expansion, and genetic instability. The immune response to Tax results in the selection of cells with little or no Tax expression, which have undergone genetic and epigenetic alterations that promote T cell activation, proliferation, and resistance to apoptosis. This selection of malignant cells occurs over several decades in 5% of infected individuals. Novel insights into the molecular details of each of these events has led to targeted therapies for ATLL.
Collapse
Affiliation(s)
- Lee Ratner
- Division of Oncology, Washington University School of Medicine, Box 8069, 660 S Euclid Ave, St Louis, MO 63110, United States.
| |
Collapse
|
10
|
Cook LB, Fuji S, Hermine O, Bazarbachi A, Ramos JC, Ratner L, Horwitz S, Fields P, Tanase A, Bumbea H, Cwynarski K, Taylor G, Waldmann TA, Bittencourt A, Marcais A, Suarez F, Sibon D, Phillips A, Lunning M, Farid R, Imaizumi Y, Choi I, Ishida T, Ishitsuka K, Fukushima T, Uchimaru K, Takaori-Kondo A, Tokura Y, Utsunomiya A, Matsuoka M, Tsukasaki K, Watanabe T. Revised Adult T-Cell Leukemia-Lymphoma International Consensus Meeting Report. J Clin Oncol 2019; 37:677-687. [PMID: 30657736 PMCID: PMC6494249 DOI: 10.1200/jco.18.00501] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Adult T-cell leukemia-lymphoma (ATL) is a distinct mature T-cell malignancy caused by chronic infection with human T-lymphotropic virus type 1 with diverse clinical features and prognosis. ATL remains a challenging disease as a result of its diverse clinical features, multidrug resistance of malignant cells, frequent large tumor burden, hypercalcemia, and/or frequent opportunistic infection. In 2009, we published a consensus report to define prognostic factors, clinical subclassifications, treatment strategies, and response criteria. The 2009 consensus report has become the standard reference for clinical trials in ATL and a guide for clinical management. Since the last consensus there has been progress in the understanding of the molecular pathophysiology of ATL and risk-adapted treatment approaches. METHODS Reflecting these advances, ATL researchers and clinicians joined together at the 18th International Conference on Human Retrovirology-Human T-Lymphotropic Virus and Related Retroviruses-in Tokyo, Japan, March, 2017, to review evidence for current clinical practice and to update the consensus with a new focus on the subtype classification of cutaneous ATL, CNS lesions in aggressive ATL, management of elderly or transplantation-ineligible patients, and treatment strategies that incorporate up-front allogeneic hematopoietic stem-cell transplantation and novel agents. RESULTS As a result of lower-quality clinical evidence, a best practice approach was adopted and consensus statements agreed on by coauthors (> 90% agreement). CONCLUSION This expert consensus highlights the need for additional clinical trials to develop novel standard therapies for the treatment of ATL.
Collapse
Affiliation(s)
- Lucy B Cook
- 1 Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom.,2 Imperial College London, London, United Kingdom
| | - Shigeo Fuji
- 3 Osaka International Cancer Institute, Osaka, Japan
| | | | | | | | - Lee Ratner
- 7 Washington University School of Medicine, St Louis, MO
| | - Steve Horwitz
- 8 Memorial Sloan Kettering Cancer Center, New York, NY
| | - Paul Fields
- 9 Guys and St Thomas Hospital, Kings Health Partners, London, United Kingdom
| | - Alina Tanase
- 10 Fundeni Clinical Institute, Bucharest, Romania
| | - Horia Bumbea
- 11 Emergency University Hospital, Bucharest, Romania
| | - Kate Cwynarski
- 12 University College London Hospitals NHS Trust, London, United Kingdom
| | | | | | | | | | | | | | | | | | - Reza Farid
- 17 Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ilseung Choi
- 19 National Kyushu Cancer Center, Fukuoka, Japan
| | | | | | | | | | | | - Yoshiki Tokura
- 25 Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | |
Collapse
|
11
|
Molecular targeting for treatment of human T-lymphotropic virus type 1 infection. Biomed Pharmacother 2019; 109:770-778. [DOI: 10.1016/j.biopha.2018.10.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
|
12
|
Pasquier A, Alais S, Roux L, Thoulouze MI, Alvarez K, Journo C, Dutartre H, Mahieux R. How to Control HTLV-1-Associated Diseases: Preventing de Novo Cellular Infection Using Antiviral Therapy. Front Microbiol 2018; 9:278. [PMID: 29593659 PMCID: PMC5859376 DOI: 10.3389/fmicb.2018.00278] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
Five to ten million individuals are infected by Human T-cell Leukemia Virus type 1 (HTLV-1). HTLV-1 is transmitted through prolonged breast-feeding, by sexual contacts and by transmission of infected T lymphocytes through blood transfusion. One to ten percent of infected carriers will develop a severe HTLV-1-associated disease: Adult-T-cell leukemia/lymphoma (ATLL), or a neurological disorder named Tropical Spastic Paraparesis/HTLV-1 Associated Myelopathy (TSP/HAM). In vivo, HTLV-1 is mostly detected in CD4+ T-cells, and to a lesser extent in CD8+ T cells and dendritic cells. There is a strong correlation between HTLV-1 proviral load (PVL) and clinical status of infected individuals. Thus, reducing PVL could be part of a strategy to prevent or treat HTLV-1-associated diseases among carriers. Treatment of ATLL patients using conventional chemotherapy has very limited benefit. Some chronic and acute ATLL patients are, however, efficiently treated with a combination of interferon α and zidovudine (IFN-α/AZT), to which arsenic trioxide is added in some cases. On the other hand, no efficient treatment for TSP/HAM patients has been described yet. It is therefore crucial to develop therapies that could either prevent the occurrence of HTLV-1-associated diseases or at least block the evolution of the disease in the early stages. In vivo, reverse transcriptase (RT) activity is low in infected cells, which is correlated with a clonal mode of viral replication. This renders infected cells resistant to nucleoside RT inhibitors such as AZT. However, histone deacetylase inhibitors (HDACi) associated to AZT efficiently induces viral expression and prevent de novo cellular infection. In asymptomatic STLV-1 infected non-human primates, HDACi/AZT combination allows a strong decrease in the PVL. Unfortunately, rebound in the PVL occurs when the treatment is stopped, highlighting the need for better antiviral compounds. Here, we review previously used strategies targeting HTLV-1 replication. We also tested a series of HIV-1 RT inhibitors in an in vitro anti-HTLV-1 screen, and report that bis-POM-PMEA (adefovir dipivoxil) and bis-POC-PMPA (tenofovir disoproxil) are much more efficient compared to AZT to decrease HTLV-1 cell-to-cell transmission in vitro. Our results suggest that revisiting already established antiviral drugs is an interesting approach to discover new anti-HTLV-1 drugs.
Collapse
Affiliation(s)
- Amandine Pasquier
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France.,Ecole Pratique des Hautes Etudes, Paris, France
| | - Sandrine Alais
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Loic Roux
- CNRS UMR 7257, Architecture et Fonction des Macromolecules Biologiques, Aix-Marseille Université, Marseille, France
| | - Maria-Isabel Thoulouze
- "Biofilm and Viral Transmission" Team, Structural Virology Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Karine Alvarez
- CNRS UMR 7257, Architecture et Fonction des Macromolecules Biologiques, Aix-Marseille Université, Marseille, France
| | - Chloé Journo
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
13
|
Quantification of HTLV-1 reverse transcriptase activity in ATL patients treated with zidovudine and interferon-α. Blood Adv 2017; 1:748-752. [PMID: 29296718 DOI: 10.1182/bloodadvances.2016001370] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 01/30/2017] [Indexed: 11/20/2022] Open
Abstract
The therapeutic efficacy of the AZT and IFN combination in ATL presumably reflects the inhibition of RT-related functions.HTLV-1-RT activity from short-term cultured PBMCs may represent a predictive correlate of clinical response to AZT/IFN in ATL patients.
Collapse
|
14
|
Nasr R, Marçais A, Hermine O, Bazarbachi A. Overview of Targeted Therapies for Adult T-Cell Leukemia/Lymphoma. Methods Mol Biol 2017; 1582:197-216. [PMID: 28357672 DOI: 10.1007/978-1-4939-6872-5_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Adult T-Cell Leukemia/lymphoma (ATL) is the first human malignancy associated with a chronic infection by a retrovirus, the human T-cell lymphotropic virus type I (HTLV-I). ATL occurs, after a long latency period, only in about 5% of 10-20 millions infected individuals. ATL has a dismal prognosis with a median survival of less than 1 year, mainly due to its resistance to chemotherapy and to a profound immunosuppression. The viral oncoprotein, Tax, plays a major role in ATL oncogenic transformation by interfering with cell proliferation, cell cycle, apoptosis, and DNA repair. The diversity in ATL clinical features and prognosis led to Shimoyama classification of ATL into four clinical subtypes (acute, lymphoma, chronic, and smoldering) requiring different therapeutic strategies. Clinical trials, mainly conducted in Japan, demonstrated that combination of chemotherapy could induce acceptable response rate in the lymphoma subtype but not in acute ATL. However, long-term prognosis remains poor for both subtypes, due to a high relapse rate. Similarly, whether managed by a watchful waiting or treated with chemotherapy, the indolent forms (smoldering and chronic) have a poor long-term outcome. An international meta-analysis showed improved survival in the leukemic subtypes of ATL (chronic, smoldering as well as a subset of the acute subtype) with the use of two antiviral agents, zidovudine and interferon-alpha, and accordingly, this combination should be considered the standard first-line treatment in this context. ATL patients with lymphoma subtype benefit from induction chemotherapy, given simultaneously or sequentially with an antiviral combination of zidovudine and interferon-alpha. Allogeneic hematopoietic stem cells transplantation remains a promising and potentially curative approach but is limited to a small number of patients. Novel drugs such as arsenic trioxide in combination with interferon-alpha or monoclonal antibodies such as anti-CXCR4 have shown promising results and warrant further investigation.
Collapse
Affiliation(s)
- Rihab Nasr
- Faculty of Medicine, Department of Anatomy, Cell Biology and Physiology, Americain University of Beirut, 113-6044, Beirut, Lebanon
| | - Ambroise Marçais
- Department of Hematology, Necker Hospital, University of Paris Descartes, 149, rue de Sèvres, Paris, France
| | - Olivier Hermine
- Department of Hematology, Necker Hospital, University of Paris Descartes, 149, rue de Sèvres, Paris, France
| | - Ali Bazarbachi
- Faculty of Medicine, Department of Anatomy, Cell Biology and Physiology, Americain University of Beirut, 113-6044, Beirut, Lebanon. .,Faculty of Medicine, Department of Internal Medicine, American University of Beirut, 113-6044, Beirut, Lebanon.
| |
Collapse
|
15
|
Whole body clonality analysis in an aggressive STLV-1 associated leukemia (ATLL) reveals an unexpected clonal complexity. Cancer Lett 2016; 389:78-85. [PMID: 28034804 DOI: 10.1016/j.canlet.2016.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022]
Abstract
HTLV-1 causes Adult T cell Leukemia/Lymphoma (ATLL) in humans. We describe an ATL-like disease in a 9 year-old female baboon naturally infected with STLV-1 (the simian counterpart of HTLV-1), with a lymphocyte count over 1010/L, lymphocytes with abnormal nuclear morphology, and pulmonary and skin lesions. The animal was treated with a combination of AZT and alpha interferon. Proviral load (PVL) was measured every week. Because the disease continued to progress, the animal was euthanized. Abnormal infiltrates of CD3+CD25+ lymphocytes and Tax-positive cells were found by histological analyses in both lymphoid and non-lymphoid organs. PVL was measured and clonal diversity was assessed by LM-PCR (Ligation-Mediated Polymerase Chain Reaction) and high throughput sequencing, in blood during treatment and in 14 different organs. The highest PVL was found in lymph nodes, spleen and lungs. One major clone and a number of intermediate abundance clones were present in blood throughout the course of treatment, and in organs. These results represent the first multi-organ clonality study in ATLL. We demonstrate a previously undescribed clonal complexity in ATLL. Our data reinforce the usefulness of natural STLV-1 infection as a model of ATLL.
Collapse
|
16
|
Murphy J, Hall WW, Ratner L, Sheehy N. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles. Virology 2016; 494:129-42. [PMID: 27110706 DOI: 10.1016/j.virol.2016.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/17/2023]
Abstract
The human T-cell leukaemia virus type 1 and type 2 (HTLV-1/HTLV-2) antisense proteins HBZ and APH-2 play key roles in the HTLV lifecycles and persistence in the host. Nuclear Factors Associated with double-stranded RNA (NFAR) proteins NF90/110 function in the lifecycles of several viruses and participate in host innate immunity against infection and oncogenesis. Using GST pulldown and co-immunoprecipitation assays we demonstrate specific novel interactions between HBZ/APH-2 and NF90/110 and characterised the protein domains involved. Moreover we show that NF90/110 significantly enhance Tax mediated LTR activation, an effect that was abolished by HBZ but enhanced by APH-2. Additionally we found that HBZ and APH-2 modulate the promoter activity of survivin and are capable of antagonising NF110-mediated survivin activation. Thus interactions between HTLV antisense proteins and the NFAR protein family have an overall positive impact on HTLV infection. Hence NFARs may represent potential therapeutic targets in HTLV infected cells.
Collapse
Affiliation(s)
- Jane Murphy
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - William W Hall
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lee Ratner
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Noreen Sheehy
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
17
|
Roles of HTLV-1 basic Zip Factor (HBZ) in Viral Chronicity and Leukemic Transformation. Potential New Therapeutic Approaches to Prevent and Treat HTLV-1-Related Diseases. Viruses 2015; 7:6490-505. [PMID: 26690203 PMCID: PMC4690875 DOI: 10.3390/v7122952] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 12/16/2022] Open
Abstract
More than thirty years have passed since human T-cell leukemia virus type 1 (HTLV-1) was described as the first retrovirus to be the causative agent of a human cancer, adult T-cell leukemia (ATL), but the precise mechanism behind HTLV-1 pathogenesis still remains elusive. For more than two decades, the transforming ability of HTLV-1 has been exclusively associated to the viral transactivator Tax. Thirteen year ago, we first reported that the minus strand of HTLV-1 encoded for a basic Zip factor factor (HBZ), and since then several teams have underscored the importance of this antisense viral protein for the maintenance of a chronic infection and the proliferation of infected cells. More recently, we as well as others have demonstrated that HBZ has the potential to transform cells both in vitro and in vivo. In this review, we focus on the latest progress in our understanding of HBZ functions in chronicity and cellular transformation. We will discuss the involvement of this paradigm shift of HTLV-1 research on new therapeutic approaches to treat HTLV-1-related human diseases.
Collapse
|
18
|
ATL response to arsenic/interferon therapy is triggered by SUMO/PML/RNF4-dependent Tax degradation. Blood 2015; 125:474-82. [DOI: 10.1182/blood-2014-04-572750] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key Points
Survival of ATL cells depends on continuous Tax expression. Arsenic/interferon combination induces SUMO/PML/RNF4-mediated Tax degradation.
Collapse
|
19
|
Alibek K, Irving S, Sautbayeva Z, Kakpenova A, Bekmurzayeva A, Baiken Y, Imangali N, Shaimerdenova M, Mektepbayeva D, Balabiyev A, Chinybayeva A. Disruption of Bcl-2 and Bcl-xL by viral proteins as a possible cause of cancer. Infect Agent Cancer 2014; 9:44. [PMID: 25699089 PMCID: PMC4333878 DOI: 10.1186/1750-9378-9-44] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/25/2014] [Indexed: 01/01/2023] Open
Abstract
The Bcl proteins play a critical role in apoptosis, as mutations in family members interfere with normal programmed cell death. Such events can cause cell transformation, potentially leading to cancer. Recent discoveries indicate that some viral proteins interfere with Bcl proteins either directly or indirectly; however, these data have not been systematically described. Some viruses encode proteins that reprogramme host cellular signalling pathways controlling cell differentiation, proliferation, genomic integrity, cell death, and immune system recognition. This review analyses and summarises the existing data and discusses how viral proteins interfere with normal pro- and anti-apoptotic functions of Bcl-2 and Bcl-xL. Particularly, this article focuses on how viral proteins, such as Herpesviruses, HTLV-1, HPV and HCV, block apoptosis and how accumulation of such interference predisposes cancer development. Finally, we discuss possible ways to prevent and treat cancers using a combination of traditional therapies and antiviral preparations that are effective against these viruses.
Collapse
Affiliation(s)
- Kenneth Alibek
- Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan ; National Medical Holding, 2 Syganak Street, Astana, 010000 Kazakhstan
| | - Stephanie Irving
- Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| | - Zarina Sautbayeva
- Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| | - Ainur Kakpenova
- Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| | - Aliya Bekmurzayeva
- Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| | - Yeldar Baiken
- Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| | - Nurgul Imangali
- School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| | - Madina Shaimerdenova
- School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| | - Damel Mektepbayeva
- Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| | - Arnat Balabiyev
- Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| | - Aizada Chinybayeva
- Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| |
Collapse
|
20
|
Miyatake Y, Sheehy N, Ikeshita S, Hall WW, Kasahara M. Anchorage-dependent multicellular aggregate formation induces CD44 high cancer stem cell-like ATL cells in an NF-κB- and vimentin-dependent manner. Cancer Lett 2014; 357:355-363. [PMID: 25448402 DOI: 10.1016/j.canlet.2014.11.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/12/2014] [Accepted: 11/20/2014] [Indexed: 01/13/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an intractable T-cell malignancy accompanied by massive invasion of lymphoma cells into various tissues. We demonstrate here that ATL cells cultured on a layer of epithelial-like feeder cells form anchorage-dependent multicellular aggregates (Ad-MCAs) and that a fraction of MCA-forming ATL cells acquire CD44 high cancer stem cell-like phenotypes. ATL cells forming Ad-MCAs displayed extracellular microvesicles with enhanced expression of CD44v9 at cell synapses, augmented expression of multidrug resistance protein 1, and increased NF-κB activity. Blockade of the NF-κB pathway dramatically reduced Ad-MCA formation by ATL cells and the emergence of CD44 high ATL cells, but left a considerable number of ATL cells adhering to the feeder layer. Disruption of vimentin cytoskeleton by treatment with withaferin A, a natural steroidal lactone, suppressed not only the adhesion of ATL cells to the feeder layer but also subsequent Ad-MCA formation by ATL cells, suggesting the involvement of vimentin in anchoring ATL cells to the feeder layer. Ad-MCA formation by ATL cells on a layer of epithelial-like feeder cells may mimic critical events that occur in metastatic colonization.
Collapse
Affiliation(s)
- Yukiko Miyatake
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan; Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland.
| | - Noreen Sheehy
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Shunji Ikeshita
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - William W Hall
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Masanori Kasahara
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
21
|
Harakeh S, Diab-Assaf M, Azar R, Hassan HMA, Tayeb S, Abou-El-Ardat K, Damanhouri GA, Qadri I, Abuzenadah A, Chaudhary A, Kumosani T, Niedzwiecki A, Rath M, Yacoub H, Azhar E, Barbour E. Epigallocatechin-3-gallate inhibits tax-dependent activation of nuclear factor kappa B and of matrix metalloproteinase 9 in human T-cell lymphotropic virus-1 positive leukemia cells. Asian Pac J Cancer Prev 2014; 15:1219-25. [PMID: 24606444 DOI: 10.7314/apjcp.2014.15.3.1219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol molecule from green tea and is known to exhibit antioxidative as well as tumor suppressing activity. In order to examine EGCG tumor invasion and suppressing activity against adult T-cell leukemia (ATL), two HTLV-1 positive leukemia cells (HuT-102 and C91- PL) were treated with non-cytotoxic concentrations of EGCG for 2 and 4 days. Proliferation was significantly inhibited by 100 μM at 4 days, with low cell lysis or cytotoxicity. HTLV-1 oncoprotein (Tax) expression in HuT- 102 and C91-PL cells was inhibited by 25 μM and 125 μM respectively. The same concentrations of EGCG inhibited NF-kB nuclearization and stimulation of matrix metalloproteinase-9 (MMP-9) expression in both cell lines. These results indicate that EGCG can inhibit proliferation and reduce the invasive potential of HTLV-1- positive leukemia cells. It apparently exerted its effects by suppressing Tax expression, manifested by inhibiting the activation of NF-kB pathway and induction of MMP-9 transcription in HTLV-1 positive cells.
Collapse
Affiliation(s)
- Steve Harakeh
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Kingdom of Saudi Arabia E-mail :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Advances in siRNA delivery to T-cells: potential clinical applications for inflammatory disease, cancer and infection. Biochem J 2013; 455:133-47. [DOI: 10.1042/bj20130950] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The specificity of RNAi and its ability to silence ‘undruggable’ targets has made inhibition of gene expression in T-cells with siRNAs an attractive potential therapeutic strategy for the treatment of inflammatory disease, cancer and infection. However, delivery of siRNAs into primary T-cells represents a major hurdle to their use as potential therapeutic agents. Recent advances in siRNA delivery through the use of electroporation/nucleofection, viral vectors, peptides/proteins, nanoparticles, aptamers and other agents have now enabled efficient gene silencing in primary T-cells both in vitro and in vivo. Overcoming such barriers in siRNA delivery offers exciting new prospects for directly targeting T-cells systemically with siRNAs, or adoptively transferring T-cells back into patients following ex vivo manipulation with siRNAs. In the present review, we outline the challenges in delivering siRNAs into primary T-cells and discuss the mechanism and therapeutic opportunities of each delivery method. We emphasize studies that have exploited RNAi-mediated gene silencing in T-cells for the treatment of inflammatory disease, cancer and infection using mouse models. We also discuss the potential therapeutic benefits of manipulating T-cells using siRNAs for the treatment of human diseases.
Collapse
|
23
|
Kchour G, Rezaee SAR, Farid R, Ghantous A, Rafatpanah H, Tarhini M, Kooshyar MM, El Hajj H, Berry F, Mortada M, Nasser R, Shirdel A, Dassouki Z, Ezzedine M, Rahimi H, Ghavamzadeh A, de Thé H, Hermine O, Mahmoudi M, Bazarbachi A. The combination of arsenic, interferon-alpha, and zidovudine restores an "immunocompetent-like" cytokine expression profile in patients with adult T-cell leukemia lymphoma. Retrovirology 2013; 10:91. [PMID: 23962110 PMCID: PMC3751834 DOI: 10.1186/1742-4690-10-91] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/22/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND HTLV-I associated adult T-cell leukemia/lymphoma (ATL) carries a dismal prognosis due to chemo-resistance and immuno-compromised micro-environment. The combination of zidovudine and interferon-alpha (IFN) significantly improved survival in ATL. Promising results were reported by adding arsenic trioxide to zidovudine and IFN. RESULTS Here we assessed Th1/Th2/T(reg) cytokine gene expression profiles in 16 ATL patients before and 30 days after treatment with arsenic/IFN/zidovudine, in comparison with HTLV-I healthy carriers and sero-negative blood donors. ATL patients at diagnosis displayed a T(reg)/Th2 cytokine profile with significantly elevated transcript levels of Foxp3, interleukin-10 (IL-10), and IL-4 and had a reduced Th1 profile evidenced by decreased transcript levels of interferon-γ (IFN-γ) and IL-2. Most patients (15/16) responded, with CD4⁺CD25⁺ cells significantly decreasing after therapy, paralleled by decreases in Foxp3 transcript. Importantly, arsenic/IFN/zidovudine therapy sharply diminished IL-10 transcript and serum levels concomittant with decrease in IL-4 and increases in IFN-γ and IL-2 mRNA, whether or not values were adjusted to the percentage of CD4⁺CD25⁺ cells. Finally, IL-10 transcript level negatively correlated with clinical response at Day 30. CONCLUSIONS The observed shift from a T(reg)/Th2 phenotype before treatment toward a Th1 phenotype after treatment with arsenic/IFN/zidovudine may play an important role in restoring an immuno-competent micro-environment, which enhances the eradication of ATL cells and the prevention of opportunistic infections.
Collapse
Affiliation(s)
- Ghada Kchour
- Department of Biology, Faculty of Sciences, Lebanese University, Hadath, Lebanon
| | - SA Rahim Rezaee
- Microbiology and Virology Research Center, Bu-Ali Research institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Farid
- Immunology Research Centre Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akram Ghantous
- Lebanese American University, School of Arts and Sciences, Beirut, Lebanon
| | - Houshang Rafatpanah
- Immunology Research Centre Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Tarhini
- Faculty of Nursing Sciences, Islamic University, Beirut, Lebanon
| | | | - Hiba El Hajj
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Fadwa Berry
- Department of Biology, Faculty of Sciences, Lebanese University, Hadath, Lebanon
| | - Mohamad Mortada
- Department of Biology, Faculty of Sciences, Lebanese University, Hadath, Lebanon
| | - Roudaina Nasser
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Abbas Shirdel
- Department of Internal Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeina Dassouki
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohamad Ezzedine
- Department of Biology, Faculty of Sciences, Lebanese University, Hadath, Lebanon
| | - Hossein Rahimi
- Department of Internal Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hugues de Thé
- INSERM UMR 944 and CNRS UMR 7212, Hôpital Saint Louis, Paris, France
| | | | - Mahmoud Mahmoudi
- Immunology Research Centre Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Bazarbachi
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
24
|
|
25
|
Miyatake Y, Oliveira ALA, Jarboui MA, Ota S, Tomaru U, Teshima T, Hall WW, Kasahara M. Protective roles of epithelial cells in the survival of adult T-cell leukemia/lymphoma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1832-42. [PMID: 23474084 DOI: 10.1016/j.ajpath.2013.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/14/2012] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a highly invasive and intractable T-cell malignancy caused by human T-cell leukemia virus-1 infection. We demonstrate herein that normal tissue-derived epithelial cells (NECs) exert protective effects on the survival of leukemic cells, which may partially account for high resistance to antileukemic therapies in patients with ATL. Viral gene-silenced, ATL-derived cell lines (ATL cells) dramatically escaped from histone deacetylase inhibitor-induced apoptosis by direct co-culture with NECs. Adhesions to NECs suppressed p21(Cip1) expression and increased a proportion of resting G0/G1 phase cells in trichostatin A (TSA)-treated ATL cells. ATL cells adhering to NECs down-regulated CD25 expression and enhanced vimentin expression, suggesting that most ATL cells acquired a quiescent state by cell-cell interactions with NECs. ATL cells adhering to NECs displayed highly elevated expression of the cancer stem cell marker CD44. Blockade of CD44 signaling diminished the NEC-conferred resistance of ATL cells to TSA-induced apoptosis. Co-culture with NECs also suppressed the expression of NKG2D ligands on TSA-treated ATL cells, resulting in decreased natural killer cell-mediated cytotoxicity. Combined evidence suggests that interactions with normal epithelial cells augment the resistance of ATL cells to TSA-induced apoptosis and facilitate immune evasion by ATL cells.
Collapse
Affiliation(s)
- Yukiko Miyatake
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Comparison of HTLV-I Proviral Load in Adult T Cell Leukemia/Lymphoma (ATL), HTLV-I-Associated Myelopathy (HAM-TSP) and Healthy Carriers. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2013; 16:208-12. [PMID: 24470863 PMCID: PMC3881246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 02/18/2013] [Indexed: 11/05/2022]
Abstract
OBJECTIVE(S) Human T Lymphocyte Virus Type one (HTLV-I) is a retrovirus that infects about 10-20 million people worldwide. Khorasan province in Iran is an endemic area. The majority of HTLV-I-infected individuals sustain healthy carriers but small proportion of infected population developed two progressive diseases: HAM/TSP and ATL. The proviral load could be a virological marker for disease monitoring, therefore in the present study HTLV-I proviral load has been evaluated in ATL and compared to HAM/TSP and healthy carriers. MATERIALS AND METHODS In this case series study, 47 HTLV-I infected individuals including 13 ATL, 23 HAM/TSP and 11 asymptomatic subjects were studied. Peripheral blood mononuclear cells (PBMCs) were investigated for presence of HTLV-I DNA provirus by PCR using LTR and Tax fragments. Then in infected subjects, HTLV-I proviral load was measured using real time PCR TaqMan method. RESULTS The average age of patients in ATL was 52±8, in HAM/TSP 45.52±15.17 and in carrier's 38.65±14.9 years which differences were not statistically significant. The analysis of data showed a significant difference in mean WBC among study groups (ATL vs HAM/TSP and carriers P=0.0001). Moreover, mean HTLV-I proviral load was 11967.2 ± 5078, 409 ± 71.3 and 373.6 ± 143.3 in ATL, HAM/TSP and Healthy Carriers, respectively. The highest HTLV-I proviral load was measured in ATL group that had a significant correlation with WBC count (R=0.495, P=0.001). The proviral load variations between study groups was strongly significant (ATL vs carrier P=0.0001; ATL vs HAM/TSP P= 0.0001 and HAM/TSP vs carriers P< 0.05). Conclusion : The present study demonstrated that HTLV-I proviral load was higher in ATL group in comparison with HAM/TSP and healthy carriers. Therefore, HTLV-I proviral load is a prognostic factor for development of HTLV-I associated diseases and can be used as a monitoring marker for the efficiency of therapeutic regime.
Collapse
|
27
|
Currer R, Van Duyne R, Jaworski E, Guendel I, Sampey G, Das R, Narayanan A, Kashanchi F. HTLV tax: a fascinating multifunctional co-regulator of viral and cellular pathways. Front Microbiol 2012; 3:406. [PMID: 23226145 PMCID: PMC3510432 DOI: 10.3389/fmicb.2012.00406] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/12/2012] [Indexed: 12/18/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) has been identified as the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The virus infects between 15 and 20 million people worldwide of which approximately 2-5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator, and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications (PTMs) of Tax and subcellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK) complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis.
Collapse
Affiliation(s)
- Robert Currer
- National Center for Biodefense and Infectious Diseases, George Mason University Manassas, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gillet N, Vandermeers F, de Brogniez A, Florins A, Nigro A, François C, Bouzar AB, Verlaeten O, Stern E, Lambert DM, Wouters J, Willems L. Chemoresistance to Valproate Treatment of Bovine Leukemia Virus-Infected Sheep; Identification of Improved HDAC Inhibitors. Pathogens 2012; 1:65-82. [PMID: 25436765 PMCID: PMC4235689 DOI: 10.3390/pathogens1020065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 09/24/2012] [Accepted: 10/02/2012] [Indexed: 12/30/2022] Open
Abstract
We previously proved that a histone deacetylase inhibitor (valproate, VPA) decreases the number of leukemic cells in bovine leukemia virus (BLV)-infected sheep. Here, we characterize the mechanisms initiated upon interruption of treatment. We observed that VPA treatment is followed by a decrease of the B cell counts and proviral loads (copies per blood volume). However, all sheep eventually relapsed after different periods of time and became refractory to further VPA treatment. Sheep remained persistently infected with BLV. B lymphocytes isolated throughout treatment and relapse were responsive to VPA-induced apoptosis in cell culture. B cell proliferation is only marginally affected by VPA ex vivo. Interestingly, in four out of five sheep, ex vivo viral expression was nearly undetectable at the time of relapse. In two sheep, a new tumoral clone arose, most likely revealing a selection process exerted by VPA in vivo. We conclude that the interruption of VPA treatment leads to the resurgence of the leukemia in BLV-infected sheep and hypothesize that resistance to further treatment might be due to the failure of viral expression induction. The development of more potent HDAC inhibitors and/or the combination with other compounds can overcome chemoresistance. These observations in the BLV model may be important for therapies against the related Human T-lymphotropic virus type 1.
Collapse
Affiliation(s)
- Nicolas Gillet
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Fabian Vandermeers
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Alix de Brogniez
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Arnaud Florins
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Annamaria Nigro
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Carole François
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Amel-Baya Bouzar
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Olivier Verlaeten
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Eric Stern
- Pharmaceutic Chemistry and Radiopharmacy Unit, Louvain Drug Research Institute, University of Louvain, Brussels 1000, Belgium.
| | - Didier M Lambert
- Pharmaceutic Chemistry and Radiopharmacy Unit, Louvain Drug Research Institute, University of Louvain, Brussels 1000, Belgium.
| | - Johan Wouters
- Biological Chemistry, Facultés Universitaires Notre-Dame de la Paix, Namur 5000, Belgium.
| | - Luc Willems
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| |
Collapse
|
29
|
Guimaraes-Correa AB, Crawford LB, Figueiredo CR, Gimenes KP, Pinto LA, Rios Grassi MF, Feuer G, Travassos LR, Caires AC, Rodrigues EG, Marriott SJ. C7a, a biphosphinic cyclopalladated compound, efficiently controls the development of a patient-derived xenograft model of adult T cell leukemia/lymphoma. Viruses 2011; 3:1041-1058. [PMID: 21994769 PMCID: PMC3185797 DOI: 10.3390/v3071041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 02/02/2023] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a highly aggressive disease that occurs in individuals infected with the human T lymphotropic virus type 1 (HTLV-1). Patients with aggressive ATLL have a poor prognosis because the leukemic cells are resistant to conventional chemotherapy. We have investigated the therapeutic efficacy of a biphosphinic cyclopalladated complex {Pd2 [S(−)C2, N-dmpa]2 (μ-dppe)Cl2}, termed C7a, in a patient-derived xenograft model of ATLL, and investigated the mechanism of C7a action in HTLV-1-positive and negative transformed T cell lines in vitro. In vivo survival studies in immunocompromised mice inoculated with human RV-ATL cells and intraperitoneally treated with C7a led to significantly increased survival of the treated mice. We investigated the mechanism of C7a activity in vitro and found that it induced mitochondrial release of cytochrome c, caspase activation, nuclear condensation and DNA degradation. These results suggest that C7a triggers apoptotic cell death in both HTLV-1 infected and uninfected human transformed T-cell lines. Significantly, C7a was not cytotoxic to peripheral blood mononuclear cells (PBMC) from healthy donors and HTLV-1-infected individuals. C7a inhibited more than 60% of the ex vivo spontaneous proliferation of PBMC from HTLV-1-infected individuals. These results support a potential therapeutic role for C7a in both ATLL and HTLV-1-negative T-cell lymphomas.
Collapse
Affiliation(s)
- Ana B. Guimaraes-Correa
- Unidade de Oncologia Experimental, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP-EPM), São Paulo 04023-062, Brazil; E-Mails: (A.B.G.-C.); (C.R.F.); (K.P.G.); (L.R.T.); (E.G.R.)
| | - Lindsey B. Crawford
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; E-Mail: (L.B.C.)
| | - Carlos R. Figueiredo
- Unidade de Oncologia Experimental, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP-EPM), São Paulo 04023-062, Brazil; E-Mails: (A.B.G.-C.); (C.R.F.); (K.P.G.); (L.R.T.); (E.G.R.)
| | - Karina P. Gimenes
- Unidade de Oncologia Experimental, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP-EPM), São Paulo 04023-062, Brazil; E-Mails: (A.B.G.-C.); (C.R.F.); (K.P.G.); (L.R.T.); (E.G.R.)
| | - Lorena A. Pinto
- Laboratorio Avançado de Saúde Pública, CPQGM, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia 40296-700, Brazil; E-Mails: (L.A.P.); (M.F.R.G.)
| | - Maria Fernanda Rios Grassi
- Laboratorio Avançado de Saúde Pública, CPQGM, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia 40296-700, Brazil; E-Mails: (L.A.P.); (M.F.R.G.)
| | - Gerold Feuer
- Humurine Technologies, Inc., 640 Arrow Highway, La Verne, CA 91750, USA; E-Mail: (G.F.)
| | - Luiz R. Travassos
- Unidade de Oncologia Experimental, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP-EPM), São Paulo 04023-062, Brazil; E-Mails: (A.B.G.-C.); (C.R.F.); (K.P.G.); (L.R.T.); (E.G.R.)
| | - Antonio C.F. Caires
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi de Cruzes, Mogi das Cruzes, São Paulo 08780-911, Brazil; E-Mail: (A.C.F.C.)
| | - Elaine G. Rodrigues
- Unidade de Oncologia Experimental, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP-EPM), São Paulo 04023-062, Brazil; E-Mails: (A.B.G.-C.); (C.R.F.); (K.P.G.); (L.R.T.); (E.G.R.)
| | - Susan J. Marriott
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, TX 77030, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-713-798-4440; Fax: +1-713-798-4435
| |
Collapse
|