1
|
Xu Y, Sun M, Wang Z, Li X, Du Y, Jiang P. The prevalence and shedding of porcine epidemic diarrhea virus in intensive swine farms of China from 2022 to 2023. Vet Microbiol 2024; 298:110273. [PMID: 39413506 DOI: 10.1016/j.vetmic.2024.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
Porcine epidemic diarrhea has emerged as a significant threat to the global swine industry. The shedding and exposure status of porcine epidemic diarrhea virus (PEDV) in intensive farms is not completely understood. In this study, a total of 56,598 clinical samples collected from 256 intensive pig farms in 20 provinces in China from 2022 to 2023, were evaluated for PEDV using quantitative real-time PCR. The overall PEDV prevalence was 11.78 % and 28.45 % at the sample and farm levels, respectively, which are relatively high in Northern China and the fourth and first quarter of the year. The PEDV-positive rates and viral loads in suckling piglet herds were higher than those in growing-finishing pigs and multiparous sows. Meanwhile, 15.61 % of pig pens, 9.51 % of corridors, 9.4 % of office areas, 9.23 % of production personnel, and 8.33 % of pig cart driver samples were positive for PEDV, indicating potential biosafety gaps in intensive pig farms. In addition, 93.41 % of inguinal lymph node tissue samples contained viral nucleic acids, revealing a possible persistent infection of PEDV in pig herds. Our study presents the first report of the large-scale detection of PEDV in intensive pig farms, which constitutes indirect evidence of virus circulation in pig herds. This study provides valuable data for preventing and controlling PEDV infection in the future.
Collapse
Affiliation(s)
- Yuetao Xu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Meng Sun
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhunxuan Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaowen Li
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Shandong New Hope Liuhe Co. Ltd., Qingdao, Shandong, China.
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China.
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Sun L, Li D, Yan C, Wu C, Han F, Bo Z, Shen M, Sun Y, Wang L, Zheng H, Wang M, Zhang Z. Phylogenetic and Genetic Variation Analysis of Porcine Epidemic Diarrhea Virus in East Central China during 2020-2023. Animals (Basel) 2024; 14:2185. [PMID: 39123710 PMCID: PMC11311003 DOI: 10.3390/ani14152185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a major causative pathogen of a highly contagious, acute enteric viral disease. This study evaluated the emergence of nine variants in Jiangsu and Anhui provinces of China from 2020 to 2023. S gene-based phylogenetic analysis indicated that three variants belong to the G1c subgroup, while the other six strains are clustered within the G2c subgroup. Recombination analyses supported that three variants of the G1c subgroup were likely derived from recombination of parental variants FR0012014 and a donor variant AJ1102. In addition, there are novel mutations on amino acid 141-148 and these likely resulted in changes in antigenicity in the three variants. These results illustrated that the study provides novel insights into the epidemiology, evolution, and transmission of PEDV in China.
Collapse
Affiliation(s)
- Liumei Sun
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Duo Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Caijie Yan
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Chengyue Wu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Feng Han
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zongyi Bo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Manman Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yiwei Sun
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Liyan Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Haoqin Zheng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Mengdong Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhendong Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Yu R, Dong S, Chen B, Si F, Li C. Developing Next-Generation Live Attenuated Vaccines for Porcine Epidemic Diarrhea Using Reverse Genetic Techniques. Vaccines (Basel) 2024; 12:557. [PMID: 38793808 PMCID: PMC11125984 DOI: 10.3390/vaccines12050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the etiology of porcine epidemic diarrhea (PED), a highly contagious digestive disease in pigs and especially in neonatal piglets, in which a mortality rate of up to 100% will be induced. Immunizing pregnant sows remains the most promising and effective strategy for protecting their neonatal offspring from PEDV. Although half a century has passed since its first report in Europe and several prophylactic vaccines (inactivated or live attenuated) have been developed, PED still poses a significant economic concern to the swine industry worldwide. Hence, there is an urgent need for novel vaccines in clinical practice, especially live attenuated vaccines (LAVs) that can induce a strong protective lactogenic immune response in pregnant sows. Reverse genetic techniques provide a robust tool for virological research from the function of viral proteins to the generation of rationally designed vaccines. In this review, after systematically summarizing the research progress on virulence-related viral proteins, we reviewed reverse genetics techniques for PEDV and their application in the development of PED LAVs. Then, we probed into the potential methods for generating safe, effective, and genetically stable PED LAV candidates, aiming to provide new ideas for the rational design of PED LAVs.
Collapse
Affiliation(s)
| | | | | | - Fusheng Si
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China; (R.Y.); (S.D.); (B.C.)
| | - Chunhua Li
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China; (R.Y.); (S.D.); (B.C.)
| |
Collapse
|
4
|
Chen H, Wan J, Wei M, Liu P, Kong L, Xin X. Expression and immunogenicity of non-structural protein 8 of porcine epidemic diarrhea virus. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:65-73. [PMID: 38465319 PMCID: PMC10924293 DOI: 10.30466/vrf.2023.2009322.3977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/05/2023] [Indexed: 03/12/2024]
Abstract
The non-structural protein (nsp) 8 of the porcine epidemic diarrhea virus (PEDV) is highly stable across different PEDV strains and plays an important role in PEDV virulence. In current study, nsp8 prokaryotic expression vectors were constructed based on parental vectors pMAL-c2x-maltose binding protein (MBP) and pET-28a (+). Subsequently, the optimization of expression conditions in Escherichia coli, including induced temperature, time and isopropyl β-D-thiogalactopyranoside concentration were performed to obtain a stable expression of MBP-nsp8 and nsp8. The nsp8 fused with MBP increased the water solubility of the expressed products. Target proteins were further purified from E. coli culture and their immunogenicities were evaluated in vivo by mice. The antibody titers of serum from nsp8 immunized mice were up to 1:7,750,000 when measured by indirect enzyme-linked immunosorbent assay; meanwhile, the mice immunized with MBP-nsp8 gave an antibody titer reaching 1:1,000,000. In all, the expression and purification system of PEDV nsp8 and MBP-nsp8 were successfully established in this work and a strong immune response was elicited in mice by both purified nsp8 and MBP-nsp8, providing a basis for the study of the structure and function of PEDV nsp8.
Collapse
Affiliation(s)
- Hong Chen
- Institute of Pathogenic Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China;
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| | - Jiawu Wan
- Institute of Pathogenic Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China;
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| | - Meihua Wei
- Institute of Pathogenic Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China;
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| | - Ping Liu
- Institute of Pathogenic Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China;
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| | - Lingbao Kong
- Institute of Pathogenic Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China;
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| | - Xiu Xin
- Institute of Pathogenic Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China;
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
5
|
Liu S, Yu Q, Li S, Li M, Yang L, Wang Q, Tu Z, Tao F, Yang P, Kong L, Xin X. Expression and immunogenicity of recombinant porcine epidemic diarrhea virus Nsp9. Virology 2023; 587:109861. [PMID: 37572518 DOI: 10.1016/j.virol.2023.109861] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration, and high mortality in newborn piglets, which leads to significant economic losses. Coronavirus nonstructural protein 9 (Nsp9) is an essential RNA binding protein for coronavirus replication, which renders it a promising candidate for developing antiviral drugs and diagnosis targeting PEDV. In this study, PEDV Nsp9 protein fused with MBP protein and His-tag were expressed and purified in Escherichia coli. Furthermore, immunization of MBP-Nsp9 enhances both humoral and cellular immunity responses as compared with that of His-Nsp9 protein. Finally, the swine immunization showed that Nsp9 protein could stimulate the swine immunity system to carry out humoral immunity, and the generated antibody could inhibit the proliferation of PEDV in Vero cells. Altogether, our data provide direct evidence for the immunogenicity of PEDV Nsp9, which sheds light on the future developments of anti-PEDV drugs and vaccines for PED prevention.
Collapse
Affiliation(s)
- Shiguo Liu
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qijia Yu
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Sha Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Mingzhi Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Li Yang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Quansheng Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zewen Tu
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Feifei Tao
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Pingping Yang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiu Xin
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
6
|
Resistance of Field-Isolated Porcine Epidemic Diarrhea Virus to Interferon and Neutralizing Antibody. Vet Sci 2022; 9:vetsci9120690. [PMID: 36548851 PMCID: PMC9783040 DOI: 10.3390/vetsci9120690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/27/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Variant porcine epidemic diarrhea virus (PEDV), belonging to the genogroup G2b, has higher pathogenicity and mortality than classical PEDV, belonging to the genogroup G1a. To understand the pathogenesis of the G2b PEDV, we examined the resistance of the G2b PEDV to interferon (IFN) and neutralizing antibodies, which are important for controlling PEDV infection. We found that the G2b PEDV showed higher resistance to IFN than G1a PEDV. The G1a PEDV could replicate in IFN-deficient Vero cells, but not in IFN-releasing porcine alveolar macrophages, whereas the G2b PEDV showed similar infectivity in both types of cells. We also found that G2b PEDV was not effectively blocked by neutralizing antibodies, unlike G1a PEDV, suggesting differences in the antigenicity of the two strains. These results provide an understanding of the occurrence of variant PEDV and its pathogenesis.
Collapse
|
7
|
Epidemic and Evolutionary Characteristics of Swine Enteric Viruses in South-Central China from 2018 to 2021. Viruses 2022; 14:v14071420. [PMID: 35891398 PMCID: PMC9323342 DOI: 10.3390/v14071420] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Swine enteric viruses are a major cause of piglet diarrhea, causing a devastating impact on the pork industry. To further understand the molecular epidemiology and evolutionary diversity of swine enteric viruses, we carried out a molecular epidemiological investigation of swine enteric viruses (PEDV, PDCoV, PoRVA, and TGEV) on 7107 samples collected from pig farms in south-central China. The results demonstrated that PEDV is the predominant pathogen causing piglet diarrhea, and its infection occurs mainly in relatively cold winter and spring in Hunan and Hubei provinces. The positive rate of PEDV showed an abnormal increase from 2020 to 2021, and that of PoRVA and PDCoV exhibited gradual increases from 2018 to 2021. PEDV-PoRVA and PEDV-PDCoV were the dominant co-infection modes. A genetic evolution analysis based on the PEDV S1 gene and ORF3 gene revealed that the PEDV GII-a is currently epidemic genotype, and the ORF3 gene of DY2020 belongs to a different clade relative to other GII-a strains isolated in this study. Overall, our results indicated that the variant PEDV GII-a is the main pathogen of piglet diarrhea with a trend of outbreak. G9 is the dominant PoRVA genotype and has the possibility of outbreak as well. It is therefore critical to strengthen the surveillance of PEDV and PoRVA, and to provide technical reserves for the prevention and control of piglet diarrhea.
Collapse
|
8
|
The tyrosine phosphatase PTPN14 inhibits the activation of STAT3 in PEDV infected Vero cells. Vet Microbiol 2022; 267:109391. [DOI: 10.1016/j.vetmic.2022.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/23/2022]
|
9
|
Sritun J, Inthong N, Jala S, Phatthanakunanan S, Satchasataporn K, Sirinarumitr K, Lertwatcharasarakul P, Sirinarumitr T. Expression of the recombinant C-terminal of the S1 domain and N-terminal of the S2 domain of the spike protein of porcine epidemic diarrhea virus. Vet World 2021; 14:2913-2918. [PMID: 35017838 PMCID: PMC8743769 DOI: 10.14202/vetworld.2021.2913-2918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea in suckling piglets, leading to severe economic losses in the swine industry. Commercial vaccines have limited effectiveness against different genogroups of PEDV and the shedding of virus. The C-terminal of the S1 domain and the N-terminal of the S2 domain (S1-2) protein of the spike (S) protein have four neutralizing epitopes. However, research on the expression of the S1-2 segment of the S gene has been limited. In this study, we expressed a recombinant S1-2 protein of the S protein of the PEDV Thai isolate and characterized the immunological properties of the recombinant S1-2 protein.
Materials and Methods: The S1-2 segment of the S gene of the PEDV Thai isolate (G2b) was amplified, cloned into the pBAD202/D-TOPO® vector (Invitrogen, Carlsbad, CA, USA), and expressed in Escherichia coli. The optimum concentration of arabinose and the optimum induction time for the expression of the recombinant S1-2 protein were determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The immunogenic reactivity of the recombinant S1-2 protein was determined using Western blot analysis with rabbit polyclonal antibodies against the SM98 strain of PEDV (G1a).
Results: The recombinant S1-2 segment of the S gene of the PEDV Thai isolate protein was cloned and the recombinant S1-2 protein was successfully expressed. The optimum concentration of arabinose and the optimum induction time for the induction of the recombinant S1-2 protein were 0.2% and 8 h, respectively. The recombinant S1-2 protein reacted specifically with both rabbit anti-histidine polyclonal antibodies and rabbit anti-PEDV polyclonal antibodies.
Conclusion: The recombinant S1-2 protein reacted with rabbit anti-PEDV polyclonal antibodies induced by the different PEDV genogroup. Therefore, the recombinant S1-2 protein may be a useful tool for the development of a diagnostic test for PEDV or for a vaccine against PEDV.
Collapse
Affiliation(s)
- Jiraporn Sritun
- Bio-Veterinary Sciences Program, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Natnaree Inthong
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Siriluk Jala
- Kamphaeng Saen Veterinary Diagnosis Center, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, 73140, Thailand
| | - Sakuna Phatthanakunanan
- Kamphaeng Saen Veterinary Diagnosis Center, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, 73140, Thailand
| | - Khomson Satchasataporn
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Kaitkanoke Sirinarumitr
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Preeda Lertwatcharasarakul
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Theerapol Sirinarumitr
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
10
|
Reduced activity of intestinal surface Na +/H + exchanger NHE3 is a key factor for induction of diarrhea after PEDV infection in neonatal piglets. Virology 2021; 563:64-73. [PMID: 34464882 DOI: 10.1016/j.virol.2021.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/26/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV; family Coronaviridae, genus Alphacoronavirus) causes acute diarrhea and vomiting, dehydration, and high mortality in neonatal piglets. Despite extensive research focusing on the pathogenesis of PEDV infection, the molecular pathogenesis of PEDV-induced diarrhea in piglets remains unclear. Na+/H+ exchanger 3 (NHE3), the main exchanger of electroneutral sodium in intestinal epithelial cells, is closely associated with the occurrence of diarrhea. To date, there is no study on whether diarrhea caused by PEDV infection is related to the activity of NHE3. In the present study, it was found that the expression level of cell membrane protein NHE3 significantly decreased after PEDV infection, whereas the total level of protein expression was not significantly changed. The Na+/H+ transport rate and the mRNA abundance of NHE3 decreased; the NHE3 activity decreased gradually with increasing infection time. In vivo, after PEDV infection of newborn piglets, rupture of intestinal villi and interstitial degeneration of intestinal epithelial cells in different intestinal segments were observed by hematoxylin-eosin staining. Immunohistochemical and immunofluorescence methods were used to observe the decreased expression of NHE3 protein on the membrane of intestinal epithelial cells in the jejunum and ileum. Taken together, these data indicate that PEDV infection reduces NHE3 activity in intestinal epithelial cells, hindering Na+ transport and thus causing diarrhea.
Collapse
|
11
|
Wen F, Yang J, Li A, Gong Z, Yang L, Cheng Q, Wang C, Zhao M, Yuan S, Chen Y, El-Ashram S, Li Y, Yu H, Guo J, Huang S. Genetic characterization and phylogenetic analysis of porcine epidemic diarrhea virus in Guangdong, China, between 2018 and 2019. PLoS One 2021; 16:e0253622. [PMID: 34166425 PMCID: PMC8224968 DOI: 10.1371/journal.pone.0253622] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a leading cause of piglet diarrhea outbreaks, poses a significant danger to the swine industry. The aim of this study was to investigate the epidemic characteristics of PEDV that was circulating in Guangdong province, one of China's major pig producing provinces. Clinical samples were collected from eight pig farms in Guangdong province between 2018 and 2019 and tested for the major porcine enteric pathogens, including PEDV, transmissible gastroenteritis virus (TGEV), Swine enteric coronavirus (SeCoV), Swine acute diarrhea syndrome coronavirus (SADS-CoV), porcine deltacoronavirus (PDCoV), and porcine rotavirus (RV). As a result, only PEDV and RV were detected at a rate of 47.0% (16/34) and 18.6% (8/34), respectively. Coinfectoin with PEDV and RV occurred at a rate of PEDV 12.5% (2/16). Subsequently, the full-length S gene sequences of 13 PEDV strains were obtained, and phylogenetic analysis suggested the presence of GII-c group PEDV strains in this region (non-S-INDEL). Two novel common amino acid insertions (55T/IG56 and 551L) and one novel glycosylation site (1199G+) were detected when the CV777 and ZJ08 vaccine strains were compared. Furthermore, intragroup recombination events in the S gene regions 51-548 and 2478-4208 were observed in the PEDV strains studied. In summary, the observations provide current information on the incidence of viral agents causing swine diarrhea in southern China and detailed the genetic characteristics and evolutionary history of the dominant PEDV field strains. Our findings will aid in the development of an updated vaccine for the prevention and control of PEDV variant strains.
Collapse
Affiliation(s)
- Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jing Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Anqi Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zhonggui Gong
- Center for Animal Disease Control and Prevention, Shaoguan, Guangdong, China
| | - Lulu Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Qing Cheng
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Congying Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Mengmeng Zhao
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Yao Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Yong Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- * E-mail: (JG); (SH)
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- * E-mail: (JG); (SH)
| |
Collapse
|
12
|
Huan C, Xu W, Ni B, Guo T, Pan H, Jiang L, Li L, Yao J, Gao S. Epigallocatechin-3-Gallate, the Main Polyphenol in Green Tea, Inhibits Porcine Epidemic Diarrhea Virus In Vitro. Front Pharmacol 2021; 12:628526. [PMID: 33692691 PMCID: PMC7937899 DOI: 10.3389/fphar.2021.628526] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
There are currently no licensed drugs against porcine epidemic diarrhea virus (PEDV), but vaccines are available. We identified a natural molecule, epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, which is effective against infection with PEDV. We used a variety of methods to test its effects on PEDV in Vero cells. Our experiments show that EGCG can effectively inhibit PEDV infections (with HLJBY and CV777 strains) at different time points in the infection using western blot analysis. We found that EGCG inhibited PEDV infection in a dose-dependent manner 24 h after the infection commenced using western blotting, plaque formation assays, immunofluorescence assays (IFAs), and quantitative reverse-transcriptase PCR (qRT-PCR). We discovered that EGCG treatment of Vero cells decreased PEDV attachment and entry into them by the same method analysis. Western blotting also showed that PEDV replication was inhibited by EGCG treatment. Whereas EGCG treatment was found to inhibit PEDV assembly, it had no effect on PEDV release. In summary, EGCG acts against PEDV infection by inhibiting PEDV attachment, entry, replication, and assembly.
Collapse
Affiliation(s)
- Changchao Huan
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Weiyin Xu
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Bo Ni
- China Animal Health And Epidemiology Center, Qingdao, China
| | - Tingting Guo
- College of Medicine, Yangzhou University, Yangzhou, China
| | - Haochun Pan
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Luyao Jiang
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Lin Li
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Jingting Yao
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Song Gao
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| |
Collapse
|
13
|
Novel Method for Isolation of Porcine Epidemic Diarrhea Virus with the Use of Suspension Vero Cells and Immunogenicity Analysis. J Clin Microbiol 2021; 59:JCM.02156-20. [PMID: 33177126 DOI: 10.1128/jcm.02156-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022] Open
Abstract
In February and December of 2019, two large-scale outbreaks of diarrhea were observed in the same swine farm with 3,000 sows in Shanghai, China. We successfully isolated two porcine epidemic diarrhea virus (PEDV) isolates (strains shxx1902 and shxx1912 in February and December, respectively) from clinical samples in this farm using suspension Vero cells. A third PEDV strain (SH1302) tested positive in another farm of Shanghai, China, in 2013 and was also isolated using suspension Vero cells. The three isolates were better adapted to growth in adherent Vero cells through serial passages in the suspension Vero cells. The three isolated strains were detected positive by an immunofluorescence assay (IFA) and observed through electron microscopy. Phylogenetic analysis of the complete genomic sequence demonstrated that shxx1902 (the 5th passage) and shxx1912 (the 5th passage) clustered with a new GII subgroup (GII-c), which consisted of SINDEL strains from America (e.g., OH851), and their S gene belonged to GII-a. Both strains(the 35th passage) have incurred dramatic changes in their genomes compared with the 5th passage. The 5th and 35th passages of SH1302 belonged to the GI-b genotype. The anti-N protein antibody titer of the strain shxx1902 was elevated to the same level as the vaccine strain (CV777) in mice. The use of the suspension Vero cells to isolate and propagate PEDV provides an effective approach for studies of the epidemiological characteristics and vaccine development of this virus.
Collapse
|
14
|
Yu L, Liu Y, Wang S, Zhang L, Liang P, Wang L, Dong J, Song C. Molecular Characteristics and Pathogenicity of Porcine Epidemic Diarrhea Virus Isolated in Some Areas of China in 2015-2018. Front Vet Sci 2020; 7:607662. [PMID: 33426027 PMCID: PMC7793843 DOI: 10.3389/fvets.2020.607662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/16/2020] [Indexed: 11/24/2022] Open
Abstract
Since 2010, Porcine epidemic diarrhea virus (PEDV) has caused severe diarrhea disease in piglets in China, resulting in large economic losses. To understand the genetic characteristics of the PEDV strains that circulated in some provinces of China between 2015 and 2018, 375 samples of feces and small intestine were collected from pigs and tested. One hundred seventy-seven samples tested positive and the PEDV-positive rate was 47.20%. A phylogenetic tree analysis based on the entire S gene showed that these strains clustered into four subgroups, GI-a, GI-b, GII-a, and GII-b, and that the GII-b strains have become dominant in recent years. Compared with previous strains, these strains have multiple variations in the SP and S1-NTD domains and in the neutralizing epitopes of the S protein. We also successfully isolated and identified a new virulent GII-b strain, GDgh16, which is well-adapted to Vero cells and caused a high mortality rate in piglets in challenge experiments. Our study clarifies the genetic characteristics of the prevalent PEDV strains in parts of China, and suggests that the development of effective novel vaccines is both necessary and urgent.
Collapse
Affiliation(s)
- Linyang Yu
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Yanling Liu
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Shuangyun Wang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Leyi Zhang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Pengshuai Liang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Lei Wang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Jianguo Dong
- School of Animal Husbandry and Medical Engineering, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Changxu Song
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| |
Collapse
|
15
|
Li F, Zeng Y, Zhang R, Peng K, Jiang C, Xu Z, Zhu L. Genetic variations in S gene of porcine epidemic diarrhoea virus from 2018 in Sichuan Province, China. Vet Med Sci 2020; 6:910-918. [PMID: 32885908 PMCID: PMC7738707 DOI: 10.1002/vms3.326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/28/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
Porcine epidemic diarrhoea virus (PEDV) belongs to the family Coronavirus, a genus of coronavirus, a highly contact-infectious intestinal disease pathogen. In this study, we downloaded 62 PEDV S gene sequences uploaded to GenBank, including 10 uploaded by our laboratory from 2018, and constructed a PEDV S gene evolution tree using MEGA V7.0 software. Phylogenetic tree analysis indicated that the genogroup of PEDV in Sichuan Province was divided into three coexisting genogroups (GII-a, GII-b and GI-a), of them, GII-a has become the main genogroup in the province due to its prevalence and range of spread. Amino acid sequence analysis showed that there were amino acid insertions and deletions in the S protein encoded by the amplified S gene, and there were amino acid mutations in the COE and SS6 of the epitope in the amplified S protein. These results provide a basic research theory for understanding the prevalence of PEDV variation and controlling PED in Sichuan.
Collapse
Affiliation(s)
- Fei Li
- College of Veterinary MedicineSichuan Agricultural University – Chengdu CampusChengduSichuanChina
| | - Yubing Zeng
- College of Veterinary MedicineSichuan Agricultural University – Chengdu CampusChengduSichuanChina
| | - Rubo Zhang
- College of Veterinary MedicineSichuan Agricultural University – Chengdu CampusChengduSichuanChina
| | - Kenan Peng
- College of Veterinary MedicineSichuan Agricultural University – Chengdu CampusChengduSichuanChina
| | - Chaoyuan Jiang
- College of Veterinary MedicineSichuan Agricultural University – Chengdu CampusChengduSichuanChina
| | - Zhiwen Xu
- College of Veterinary MedicineSichuan Agricultural University – Chengdu CampusChengduSichuanChina
| | - Ling Zhu
- College of Veterinary MedicineSichuan Agricultural University – Chengdu CampusChengduSichuanChina
| |
Collapse
|
16
|
Park JE, Jang H, Kim JH, Hyun BH, Shin HJ. Immunization with porcine epidemic diarrhea virus harbouring Fc domain of IgG enhances antibody production in pigs. Vet Q 2020; 40:183-189. [PMID: 32448096 PMCID: PMC7734062 DOI: 10.1080/01652176.2020.1773006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Outbreaks of porcine epidemic diarrhea virus (PEDV) infection have re-emerged and spread rapidly worldwide, resulting in significant economic losses. Vaccination is the best way to prevent PEDV infection in young piglets. Objective To enhance the efficacy of an inactivated vaccine against PEDV, we evaluated the adjuvant properties of Fc domain of IgG. Methods Fifteen crossbred gilts (180 ∼ 210 days old) were used. Five pigs in group 1 were intramuscularly vaccinated twice at 4 weeks and 2 weeks prior to farrowing with 106 TCID50 of inactivated PEDV. Five pigs in group 2 were intramuscularly vaccinated twice at 4 weeks and 2 weeks prior to farrowing with 106 TCID50 of inactivated PEDV-sFc. Five pigs in group 3 were not vaccinated and served as negative controls. Serum samples were collected at farrowing and subjected to ELISA, a serum neutralizing (SN) test, and a cytokine assay. Statistical analysis was performed by a two-tailed unpaired t-test. Results Vero cells expressing swine IgG Fc on its surface was established. When PEDV was propagated in the cells expressing the swine Fc, PEDV virion incorporated the Fc. Immunization of pigs with inactivated PEDV harbouring Fc induced significantly higher antibody production against PEDV, comparing to the immunization with normal inactivated PEDV. In addition, we observed significantly increased IFN-γ levels in sera. Conclusion Our results indicate that Fc molecule facilitate immune responses and PEDV harbouring Fc molecule could be a possible vaccine candidate. However, a challenge experiment would be needed to investigate the protective efficacy of PEDV harbouring Fc.
Collapse
Affiliation(s)
- Jung-Eun Park
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.,College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun Jang
- Komipharm Co. Ltd, Ansan, Republic of Korea
| | - Ju-Hun Kim
- Komipharm Co. Ltd, Ansan, Republic of Korea
| | - Bang-Hun Hyun
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hyun-Jin Shin
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.,College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
17
|
Porcine epidemic diarrhea virus infection blocks cell cycle and induces apoptosis in pig intestinal epithelial cells. Microb Pathog 2020; 147:104378. [PMID: 32653434 PMCID: PMC7347497 DOI: 10.1016/j.micpath.2020.104378] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/17/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is responsible for the acute infectious swine disease porcine epidemic diarrhea (PED). PED causes damage to the intestine, including villus atrophy and shedding, leading to serious economic losses to the pig industry worldwide. We carried out an in vitro study to investigate cell apoptosis and the cell cycle in a PEDV-infected host using transcriptomic shotgun sequencing (RNA-Seq) to study gene responses to PEDV infection. Results revealed that the PEDV infection reduced proliferation activity, blocked the cell cycle at S-phase and induced apoptosis in IPEC-J2 cells. The expression of gene levels related to ribosome proteins and oxidative phosphorylation were significantly up-regulated post-PEDV infection. Although the significantly down-regulated on PI3K/Akt signaling pathway post-PEDV infection, the regulator-related genes of mTOR signaling pathway exerted significantly up-regulated or down-regulated in IPEC-J2 cells. These results indicated that ribosome proteins and oxidative phosphorylation process were widely involved in the pathological changes and regulation of host cells caused by PEDV infection, and PI3K/AKT and mTOR signaling pathways played a vital role in antiviral regulation in IPEC-J2 cells. These data might provide new insights into the specific pathogenesis of PEDV infection and pave the way for the development of effective therapeutic strategies.
Collapse
|
18
|
Zhao P, Wang S, Chen Z, Yu J, Tang R, Qiu W, Zhao L, Liu Y, Guo X, He H, Xu G, Li J, Wu J. Successive Passage In Vitro Led to Lower Virulence and Higher Titer of A Variant Porcine Epidemic Diarrhea Virus. Viruses 2020; 12:E391. [PMID: 32244640 PMCID: PMC7232491 DOI: 10.3390/v12040391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
A highly virulent porcine epidemic diarrhea virus (PEDV) appeared in China and spread rapidly to neighbor countries, which have led to great economic losses to the pig industry. In the present study, we isolated a PEDV using Vero cells and serially propagated 100 passages. PEDV SDSX16 was characterized in vitro and in vivo. The viral titers increased to 107.6 TCID50/mL (100th) by serial passages. The spike (S) gene and the whole gene of the SDSX16 virus was fully sequenced to assess the genetic stability and relatedness to previously identified PEDV. Along with successive passage in vitro, there were 18 nucleotides (nt) deletion occurred in the spike (S) gene resulting in a deletion of six amino acids when the SDSX16 strain was passaged to the 64th generation, and this deletion was stable until the P100. However, the ORF1a/b, M, N, E, and ORF3 genes had only a few point mutations in amino acids and no deletions. According to growth kinetics experiments, the SDSX16 deletion strain significantly enhanced its replication in Vero cells since it was passaged to the 64th generation. The animal studies showed that PEDV SDSX16-P10 caused more severe diarrhea and vomiting, fecal shedding, and acute atrophic enteritis than SDSX16-P75, indicating that SDSX16-P10 is enteropathogenic in the natural host, and the pathogenicity of SDSX16 decreased with successive passage in vitro. However, SDSX16-P10 was found to cause lower levels of cytokine expression than SDSX16-P75 using real-time PCR and flow cytometry, such as IL1β, IL6, IFN-β, TNF-α, indicating that SDSX16-P10 might inhibit the expression of cytokines. Our data indicated that successive passage in vitro resulted in virulent attenuation in vivo of the PEDV variant strain SDSX16.
Collapse
Affiliation(s)
- Pengwei Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Song Wang
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhi Chen
- Shandong Provincial Key Laboratory of Animal Diseases Control and Breeding, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jiang Yu
- Shandong Provincial Key Laboratory of Animal Diseases Control and Breeding, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Rongzhi Tang
- Shandong Provincial Key Laboratory of Animal Diseases Control and Breeding, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenbin Qiu
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Shandong Provincial Key Laboratory of Animal Diseases Control and Breeding, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lu Zhao
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Shandong Academy of Agricultural Sciences, Jinan 250023, China
| | - Yueyue Liu
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Shandong Academy of Agricultural Sciences, Jinan 250023, China
| | - Xiaozhen Guo
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Shandong Academy of Agricultural Sciences, Jinan 250023, China
| | - Hongbin He
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guanlong Xu
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jinxiang Li
- National Agricultural Science and Technology Center, Chengdu 610000, China
| | - Jiaqiang Wu
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Shandong Provincial Key Laboratory of Animal Diseases Control and Breeding, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Shandong Academy of Agricultural Sciences, Jinan 250023, China
| |
Collapse
|
19
|
Than VT, Choe SE, Vu TTH, Do TD, Nguyen TL, Bui TTN, Mai TN, Cha RM, Song D, An DJ, Le VP. Genetic characterization of the spike gene of porcine epidemic diarrhea viruses (PEDVs) circulating in Vietnam from 2015 to 2016. Vet Med Sci 2020; 6:535-542. [PMID: 32159913 PMCID: PMC7397879 DOI: 10.1002/vms3.256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/02/2020] [Accepted: 02/13/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Porcine epidemic diarrhea (PED) is a highly contagious swine disease caused by the PED virus (PEDV), which is a member of the family Coronaviridae. Since the first outbreaks in Belgium and the United Kingdom were reported in 1971, PED has spread throughout many countries around the world and causing significant economic loss. This study was conducted to investigate the recent distribution of PEDV strains in Vietnam during the 2015-2016 seasons. METHODS A total of 30 PED-specific PCR-positive intestinal and faecal samples were collected from unvaccinated piglets in Vietnam during the 2015-2016 seasons. The full length of the spike (S) gene of these PEDV strains were analysed to determine their phylogeny and genetic relationship with other available PEDV strains globally. RESULTS Phylogenetic analysis of the complete S gene sequences revealed that the 28 Vietnamese PEDV strains collected in the northern and central regions clustered in the G2 group (both G2a and G2b sub-groups), while the other 2 PEDV strains (HUA-PED176 and HUA-PED254) collected in the southern region were clustered in the G1/G1b group/sub-group. The nucleotide (nt) and deduced amino acid (aa) analyses based on the complete S gene sequences showed that the Vietnamese PEDV strains were closely related to each other, sharing nt and aa homology of 93.2%-99.9% and 92.6%-99.9%, respectively. The N-glycosylation patterns and mutations in the antigenic region were observed in Vietnamese PEDV strains. CONCLUSIONS This study provides, for the first time, up-to-date information on viral circulation and genetic distribution, as well as evidence to assist in the development of effective PEDV vaccines in Vietnam.
Collapse
Affiliation(s)
- Van T Than
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Se-Eun Choe
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo, Republic of Korea
| | - Thi T H Vu
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Tien D Do
- Nong Lam University, Ho Chi Minh City, Vietnam
| | - Thi L Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Thi T N Bui
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Thi N Mai
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Ra M Cha
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Dong-Jun An
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo, Republic of Korea
| | - Van P Le
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| |
Collapse
|
20
|
Bao F, Wang L, Zhao X, Lu T, Na AM, Wang X, Cao J, Du Y. Preparation and characterization of a single-domain antibody specific for the porcine epidemic diarrhea virus spike protein. AMB Express 2019; 9:104. [PMID: 31300902 PMCID: PMC6626092 DOI: 10.1186/s13568-019-0834-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/05/2019] [Indexed: 11/10/2022] Open
Abstract
Porcine epidemic diarrhea (PED) is a diarrheal disease of swine caused by porcine epidemic diarrhea virus (PEDV). It is characterized by acute watery diarrhea, dehydration and vomiting in swine of all ages and is especially fatal for neonatal and postweaning piglets. The spike protein of PEDV plays an important role in mediating virus attachment and fusion to target cells, and recent studies also reported that the neutralizing epitopes of the spike protein were mainly located in the S1 subunit, which makes it a candidate for vaccine development and clinical diagnosis. In this study, we successfully constructed an immune phage display single-domain antibody library with a library size of 3.4 × 106. A single-domain antibody, named S7, specific for the spike protein of PEDV was identified from the phage display single-domain antibody library. S7 could be expressed in a soluble form in E. coli, bound to the spike protein of PEDV in ELISA and stained the PEDV virus in Vero cells, but it showed no neutralization activity on PEDV. These results indicated the potent application of the S7 antibody as an imaging probe or as a candidate for the development of a diagnostic assay.
Collapse
|
21
|
Sun YG, Li R, Jiang L, Qiao S, Zhi Y, Chen XX, Xie S, Wu J, Li X, Deng R, Zhang G. Characterization of the interaction between recombinant porcine aminopeptidase N and spike glycoprotein of porcine epidemic diarrhea virus. Int J Biol Macromol 2018; 117:704-712. [PMID: 29802920 PMCID: PMC7112428 DOI: 10.1016/j.ijbiomac.2018.05.167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/11/2018] [Accepted: 05/22/2018] [Indexed: 11/22/2022]
Abstract
Porcine epidemic diarrhea (PED) has caused huge economic losses to the global pork industry. Infection by its causative agent PED virus (PEDV), an Alpha-coronavirus, was previously proven to be mediated by its spike (S) glycoprotein and a cellular receptor porcine aminopeptidase N (pAPN). Interestingly, some recent studies have indicated that pAPN is not a functional receptor for PEDV. To date, there is a lack of a direct evidence for the interaction between pAPN and PEDV S protein in vitro. Here, we prepared pAPN ectodomain and the truncated variants of PEDV S protein in Drosophila S2 cells. These recombinant proteins were homogeneous after purification by metal-affinity and size-exclusion chromatography. We then assayed the purified target proteins through immunogenicity tests, PEDV binding interference assays, circular dichroism (CD) measurements, pAPN activity assay and structural determination, demonstrating that they were biologically functional. Finally, we characterized their interactions by gel filtration chromatography, native-polyacrylamide gel electrophoresis (PAGE) and surface plasmon resonance (SPR) analyses. The results showed that their affinities were too low to form complexes, which suggest that pAPN may be controversial as the genuine receptor for PEDV. Therefore, further research needs to be carried out to elucidate the interaction between PEDV and its genuine receptor.
Collapse
Affiliation(s)
- Yan-Gang Sun
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Yubao Zhi
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Sha Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Jiawei Wu
- GE Healthcare Life Sciences, Beijing 100176, China
| | - Xuewu Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shanxi, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
22
|
Porcine epidemic diarrhea vaccine evaluation using a newly isolated strain from Korea. Vet Microbiol 2018; 221:19-26. [PMID: 29981703 DOI: 10.1016/j.vetmic.2018.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 11/23/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) infects pigs and causes an enteric disease that is characterized by vomiting and watery diarrhea. PEDV outbreaks have a tremendous financial impact on the worldwide pork industry. In South Korea, the incidence of PEDV has continued despite nationwide use of attenuated and inactivated vaccines, raising questions regarding the current vaccines' efficacy and the need for new vaccine development. In the present study, we isolated a new Korean PEDV epidemic strain, PED-CUP-B2014, in Vero cells. Phylogenetic analysis of the spike gene demonstrated that the PED-CUP-B2014 belongs in genogroup G2b and is close to PEDVs currently circulating in many countries including the United States, and is distinct from many current vaccine strains. Upon serial passages into Vero cells, PED-CUP-B2014 adapted to Vero cells, which was evidenced as higher virus growth in Vero cells and confirmed lower virulence in suckling piglets. The administration of the inactivated 65-passaged PED-CUP-B2014 to sows greatly increased the survival rate of their offspring and significantly reduced diarrhea severity after PEDV challenge. Higher serum/colostrum PEDV-specific antibodies and higher neutralizing titers were shown in sows vaccinated with PED-CUP-B2014 compared to unvaccinated sows or sows administered commercial PEDV vaccine. Altogether, our data demonstrated that the newly isolated PEDV strain conferred critical passive immune protection to pigs against epidemic PEDV infection.
Collapse
|
23
|
Yu J, Chai X, Cheng Y, Xing G, Liao A, Du L, Wang Y, Lei J, Gu J, Zhou J. Molecular characteristics of the spike gene of porcine epidemic diarrhoea virus strains in Eastern China in 2016. Virus Res 2018; 247:47-54. [DOI: 10.1016/j.virusres.2018.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 10/18/2022]
|
24
|
Zhao X, Li Z, Zeng X, Zhang G, Niu J, Sun B, Ma J. Sequence analysis of the spike gene of Porcine epidemic diarrhea virus isolated from South China during 2011-2015. J Vet Sci 2018; 18:237-243. [PMID: 27515262 PMCID: PMC5489471 DOI: 10.4142/jvs.2017.18.2.237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 06/25/2016] [Accepted: 07/21/2016] [Indexed: 12/23/2022] Open
Abstract
The spike gene of porcine epidemic diarrhea virus (PEDV) was sequenced from 55 South China field strains isolated from pigs with symptoms of diarrhea. The sequences were compared within the set of field strains as well as with reference strains available in GenBank. Within the 55 South China PEDV field strains, the deduced amino acid sequence identities ranged from 93.8% to 99.9 % and ranged from 90.7% to 99.5% when compared with the foreign reference strains in GenBank. Our phylogenetic analysis showed that 10 of the 55 South China PEDV strains belonged to G1b and 45 belonged to G2b.
Collapse
Affiliation(s)
- Xiaoya Zhao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhili Li
- Henan University of Science and Technology, Luoyang 471900, China
| | - Xiduo Zeng
- Guangdong Wen's Food Co., Ltd., Xinxing 527400, China
| | - Guanqun Zhang
- Henan University of Science and Technology, Luoyang 471900, China.,Guangdong Wen's Food Co., Ltd., Xinxing 527400, China
| | - Jianqiang Niu
- Henan University of Science and Technology, Luoyang 471900, China.,Guangdong Wen's Food Co., Ltd., Xinxing 527400, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
25
|
Su Y, Liu Y, Chen Y, Xing G, Hao H, Wei Q, Liang Y, Xie W, Li D, Huang H, Deng R, Zhang G. A novel duplex TaqMan probe-based real-time RT-qPCR for detecting and differentiating classical and variant porcine epidemic diarrhea viruses. Mol Cell Probes 2017; 37:6-11. [PMID: 29104088 DOI: 10.1016/j.mcp.2017.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/11/2017] [Accepted: 10/30/2017] [Indexed: 02/01/2023]
Abstract
Two different genotypes of porcine epidemic diarrhea virus (PEDV), the classical and variant strains, are classified by multiple insertions and deletions in their S genes. It is critical to detect and differentiate two genotypes in the pork industry to prevent PEDV outbreaks. In the present study, a novel duplex TaqMan RT-PCR was developed for detecting and differentiating PEDV strains in China. There was no cross-amplification between the two probes when using standard recombinant plasmids, and the specificity was further confirmed by using other seven non-PEDV swine pathogens. The minimum copies required for the detection of both classical and variant PEDV were 4.8 × 102 DNA copies/reaction. The repeatability of TaqMan RT-PCR was evaluated using standard recombinant plasmids and gave coefficients of variation 0.19-4.93. In recent 5 years, 79 clinical samples were collected from piglets with severe diarrhea in the Central China. Among these clinical samples, 51 were confirmed as PEDV positive by conventional RT-PCR, whereas 63 variant PEDV, 3 co-infections and 1 classical PEDV were confirmed by this duplex TaqMan RT-PCR, with viral loads of 102-108, 102-103, and 104 copies/reaction, respectively. Therefore, the duplex TaqMan RT-PCR could be a useful method for detecting and differentiating variant and classical PEDV strains. The results showed that variant PEDV was prevalent in clinical samples in central China. Moreover, in this study, co-infection by PEDV strains was detected for the first time and might help explain the emergence of the novel recombinant PEDV in recent years.
Collapse
Affiliation(s)
- Yunfang Su
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Yumei Chen
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Huifang Hao
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Yue Liang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Weitao Xie
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Dongliang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, China
| | - Huimin Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225000, China.
| |
Collapse
|
26
|
Hao J, Zhang Y, Fang S, Wen Z, Zhang X, Xue C, Cao Y. Evaluation of purified recombinant spike fragments for assessment of the presence of serum neutralizing antibodies against a variant strain of porcine epidemic diarrhea virus. Virol Sin 2017; 32:307-316. [PMID: 28744726 DOI: 10.1007/s12250-017-3969-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/14/2017] [Indexed: 11/30/2022] Open
Abstract
Since 2010, variant strains of porcine epidemic diarrhea virus (PEDV) have caused disasters in the pork industry. The spike (S) protein, as the major immunity-eliciting antigen, has previously been used for serological testing and has been found to correlate significantly with the results of the serum neutralization (SN) test. However, further evaluation of this method is needed as new epidemic strains of PEDV emerge. Hence, the main objective of this study was to assess sow sera and determine the correlation between enzyme-linked immunosorbent assay (ELISA) results (involving a newly isolated GDS01 virus-based ELISA and ELISAs based on seven recombinant fragments comprising overlapping S1 and partial S2 sequences) and SN titers. Furthermore, we determined the reliability of the ELISAs based on receiver operating characteristics (ROC) curve analyses. For the most promising ELISA, i.e., the SP4 ELISA, the correlation coefficient (r) and the area under curve (AUC) were determined to be 0.6113 and 0.8538, respectively. In addition, we analyzed the homology of the SP4 sequences obtained from different strains (including vaccine strains) and found that various strains showed a high degree of homology in this region. Thus, we conclude that SP4 is a promising serological testing protein for use in the field.
Collapse
Affiliation(s)
- Jianwei Hao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shengkun Fang
- Fraunhofer-Institut für Angewandte Informationstechnik FIT, Sankt Augustin, 53754, Germany
| | - Zhifen Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiangbin Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
27
|
Lin H, Li B, Chen L, Ma Z, He K, Fan H. Differential Protein Analysis of IPEC-J2 Cells Infected with Porcine Epidemic Diarrhea Virus Pandemic and Classical Strains Elucidates the Pathogenesis of Infection. J Proteome Res 2017; 16:2113-2120. [PMID: 28506058 DOI: 10.1021/acs.jproteome.6b00957] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Porcine epidemic diarrhea (PED) re-emerged in China in late 2010 and has now become widespread. Accumulated evidence indicates that this large-scale outbreak of diarrhea was caused by variants of the highly virulent porcine epidemic diarrhea virus (PEDV). A pandemic PEDV YC2014 strain (YC2014) was isolated from clinical samples. An iTRAQ-based comparative quantitative proteomic study of IPEC-J2 cells infected with YC2014 and a classical CV777 strain (CV777) was performed to determine the differences between pandemic and classical PEDV strain infection. Totals of 353 and 299 differentially expressed proteins were identified upon YC2014 and CV777 infection, respectively. The canonical pathways and functional networks involved in both PEDV infections were analyzed. The results indicated that the PEDV suppressed protein synthesis of IPEC-J2 cells through down-regulation of the PI3K-AKT/mTOR signaling pathways. Infection with YC2014 could activate the JAK-STAT signaling pathway and the NF-κB pathway more intensively than CV777. YC2014 could activate NF-κB pathway more intensively than CV777. On the basis of differentially expressed proteins, we propose that PEDV might disrupt apoptosis and may elicit stronger inflammatory cascades as well. This study might contribute to an understanding of the pathogenesis of PEDV infection and aid in the development of effective preventive and control vaccines.
Collapse
Affiliation(s)
- Huixing Lin
- College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, China
| | - Bin Li
- Institute of Veterinary Medicine , Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lei Chen
- College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, China
| | - Zhe Ma
- College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, China
| | - Kongwang He
- Institute of Veterinary Medicine , Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, China
| |
Collapse
|
28
|
Su Y, Liu Y, Chen Y, Zhao B, Ji P, Xing G, Jiang D, Liu C, Song Y, Wang G, Li D, Deng R, Zhang G. Detection and phylogenetic analysis of porcine epidemic diarrhea virus in central China based on the ORF3 gene and the S1 gene. Virol J 2016; 13:192. [PMID: 27887624 PMCID: PMC5123408 DOI: 10.1186/s12985-016-0646-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine epidemic diarrhea (PED) has increased in severity in China since 2010. To investigate further the infectivity, genetic diversity and molecular epidemiology of its causative agent, the porcine epidemic diarrhea virus (PEDV), we assessed 129 clinical samples, which were the intestinal tissue of piglets with severe diarrhea, from 17 cities in central China. Both the spike (S) glycoprotein (S1, 1-789 amino acids (aa)) and the full-length ORF3 gene of 21 representative field strains from 21 farms in 11 cities were sequenced and analysed. METHODS PEDV was detected by reverse transcription-polymerase chain reaction (RT-PCR), and S1 and ORF3 sequences were processed by the Clustal W method via DNAMAN 8 software, and phylogenetic trees were constructed by the neighbor-joining method using MEGA 6 software. RESULTS The prevalence of PEDV was 92.25% and was detected in 119 of 129 samples, with 94.03% (63 of 67) of pig farms harbouring the disease. According to the phylogenetic analysis of the S1 genes, our isolates all fell into group G2 (variants) and showed a close relationship to isolates from Chinese (HN1303, CH/ZMDZY/11 and AJ1102), Korean (AD01), American (MN, IA1, IA2 and 13-019349) sources, and these isolates differed genetically from other Chinese (LZC, CH/HNZZ/2011 and SD-M) and Korean (SM98) strains as well Japanese (83-P5 and MK) strains. In addition, our isolates differed from attenuated vaccine strains, CV777 (used in China) and DR13 (used in Korea). According to our derived amino acid sequence analysis, we detected one novel variant PEDV, viz: CH/HNLY, with 4-aa insertion/deletion (RSSS/T) at position 375 and 1-aa (D) deletion at position 430 compared to the CV777 attenuated strain. These mutations were located on the receptor binding domain. Our ORF3 gene analyses showed that the prevalent PEDV isolates were variants, and the isolated strains differed genetically from the vaccine strains. CONCLUSIONS These findings illustrated the existence of genetic diversity among geographically distinct PEDV strains, and our study has provided an impetus to conduct further research on the PEDV receptor binding protein and on the new and efficacious vaccines design.
Collapse
Affiliation(s)
- Yunfang Su
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Science, Zhengzhou, 450002, China.
| | - Yumei Chen
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Baolei Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengchao Ji
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Dawei Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chang Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Yapeng Song
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guoqiang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dongliang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Science, Zhengzhou, 450002, China. .,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
29
|
Chung HC, Lee JH, Nguyen VG, Huynh TML, Lee GE, Moon HJ, Park SJ, Kim HK, Park BK. New emergence pattern with variant porcine epidemic diarrhea viruses, South Korea, 2012-2015. Virus Res 2016; 226:14-19. [PMID: 27345861 PMCID: PMC7114525 DOI: 10.1016/j.virusres.2016.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 11/21/2022]
Abstract
By the application of Bayesian phylogeographical analysis, this study demonstrated the spatial- temporal transmission of PEDVs within Korea. Of the recent emerged G2a viruses, J3142 strains showed potential recombination breakpoint (376–2,143nt) of S1 gene between KNU1303_Korea strain_G2a (KJ451046) and 45RWVCF0712_Thailand strain_G2b (KF724935). The pandemic G2a virus was partial neutralized by the antibodies invoked by the G1- based PED vaccine virus.
Since outbreaks of porcine epidemic diarrhea virus (PEDV) in the United States in 2013, explosive outbreaks of PED in South Korea have infected all age groups of pigs in 2014–2015 year. This study analyzed a large collection of the Spike protein coding gene to infer the spatial-temporal diffusion history of PEDV. The studying results suggested that PEDVs in Korea belonged to different genogroups. While classical G1 was continuingly circulating between provinces of Korea, the pandemic G2a were recently introduced from China and USA. By the application of Bayesian phylogeographical analysis, this study demonstrated the spatial-temporal transmission of PEDVs within Korea. Of the recent emerged G2a viruses, J3142 strains showed potential recombination breakpoint (376–2,143nt) of S1 gene between KNU1303_Korea strain_G2a (KJ451046) and 45RWVCF0712_Thailand strain_G2b (KF724935). The pandemic G2a virus was partial neutralized by the antibodies invoked by the G1- based PED vaccine virus.
Collapse
Affiliation(s)
- Hee-Chun Chung
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, DaeHakRo 1, GwanAk-Gu, Seoul, 151-742, Republic of Korea
| | - Jee-Hoon Lee
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, DaeHakRo 1, GwanAk-Gu, Seoul, 151-742, Republic of Korea
| | - Van Giap Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thi My Le Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Ga-Eun Lee
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, DaeHakRo 1, GwanAk-Gu, Seoul, 151-742, Republic of Korea
| | - Hyoung-Joon Moon
- Research Unit, Green Cross Veterinary Products, Yongin, Republic of Korea
| | - Seong-Jun Park
- Forensic Medicine Division, Daegu Institute, National Forensic Service, Chilgok 718-803, Republic of Korea
| | - Hye-Kwon Kim
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Bong Kyun Park
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, DaeHakRo 1, GwanAk-Gu, Seoul, 151-742, Republic of Korea.
| |
Collapse
|
30
|
Lin CM, Saif LJ, Marthaler D, Wang Q. Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains. Virus Res 2016; 226:20-39. [PMID: 27288724 PMCID: PMC7111424 DOI: 10.1016/j.virusres.2016.05.023] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/21/2016] [Accepted: 05/21/2016] [Indexed: 12/16/2022]
Abstract
Evolution of global PEDV strains. Cross-reactivity between PEDV and other coronaviruses and antigenic variations among different PEDV strains. Pathologic features of different PEDV strains. Considerations for vaccine strain selection: PEDV virulence attenuation and in vivo cross-protection among PEDV variants.
Emerging and re-emerging coronaviruses cause morbidity and mortality in human and animal populations, resulting in serious public and animal health threats and economic losses. The ongoing outbreak of a highly contagious and deadly porcine epidemic diarrhea virus (PEDV) in Asia, the Americas and Europe is one example. Genomic sequence analyses of PEDV variants have revealed important insights into the evolution of PEDV. However, the antigenic variations among different PEDV strains are less explored, although they may contribute to the failure of PEDV vaccines in Asian countries. In addition, the evolution of PEDV results in variants with distinct genetic features and virulence differences; thus PEDV can serve as a model to explore the molecular mechanisms of coronavirus evolution and pathogenesis. In this article, we review the evolution, antigenic relationships and pathologic features of PEDV strains. This information and review of researches will aid in the development of strategies for control and prevention of PED.
Collapse
Affiliation(s)
- Chun-Ming Lin
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Douglas Marthaler
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN 55108, United States.
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
31
|
Park S, Kim S, Song D, Park B. Novel porcine epidemic diarrhea virus variant with large genomic deletion, South Korea. Emerg Infect Dis 2016; 20:2089-92. [PMID: 25424875 PMCID: PMC4257805 DOI: 10.3201/eid2012.131642] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Since 1992, porcine epidemic diarrhea virus (PEDV) has been one of the most common porcine diarrhea–associated viruses in South Korea. We conducted a large-scale investigation of the incidence of PEDV in pigs with diarrhea in South Korea and consequently identified and characterized a novel PEDV variant with a large genomic deletion.
Collapse
|
32
|
Lin H, Chen L, Gao L, Yuan X, Ma Z, Fan H. Epidemic strain YC2014 of porcine epidemic diarrhea virus could provide piglets against homologous challenge. Virol J 2016; 13:68. [PMID: 27103490 PMCID: PMC4840883 DOI: 10.1186/s12985-016-0529-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/19/2016] [Indexed: 11/16/2022] Open
Abstract
Background Porcine epidemic diarrhea virus (PEDV) is the main causative agent of porcine epidemic diarrhea (PED). Since December 2010, a large-scale outbreak of diarrhea has been observed in swine farms in China. Accumulated evidence indicates that this large-scale outbreak of diarrhea were caused by highly virulent PEDV variants. Methods A PEDV strain, YC2014, was isolated from intestinal samples of suckling piglets with acute diarrhea in 2014. The complete genomic sequence of YC2014 and the nucleotide sequence of S gene were aligned with sequences of published isolates using MEGA 5.1 software. The immune protective efficiency of YC2014 were determined by testing PEDV neutralizing antibodies in sera, the colostrum and the milk on 7th day after farrowing of the immunized sows. The diarrhea symptoms of piglets after challenge were also observed. Results Phylogenetic analysis of the complete genomic sequence of YC2014 and the nucleotide sequence of S gene demonstrated that the YC2014 PEDV strain was clustered with the PEDV epidemic strains, with >99 % nucleotide identity to these PEDV strains. The S gene sequence of YC2014 shared only 93.9 % ~ 94.4 % identities with classical CV777, DR13 and JS2008 strains, with 15 nucleotide insertion in three sites and three nucleotide deletion in one site. The amino acid (AA) sequence of S gene of YC2014 shared only 92.8 % ~ 93.4 % identities with classical CV777, DR13 and JS2008 strains, with 5 AA insertion in two sites and 1 AA deletion in one site. In the immune protective efficiency tests, the neutralizing antibody titers in sera, the colostrum and the milk on 7th day after farrowing of the inactivated YC2014 PEDV strain immunized group were significantly higher than the inactivated CV777 immunized group and the inactivated DR13 immunized group (P < 0.05). The traditional inactivated PEDV vaccines made from CV777 or DR13 could not protect piglets from YC2014 challenge, while inactivated YC2014 could provide piglets with 100 % protection against YC2014 challenge. Conclusions The results showed that, great antigenicity variation had occurred to this YC2014 PEDV strain. The YC2014 PEDV strain could provide piglets against homologous challenge. It is critical for future pathogenic and antigenic studies, as well as for the development of effective preventive and control vaccines against PEDV.
Collapse
Affiliation(s)
- Huixing Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lei Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lu Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaomin Yuan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
33
|
Sun D, Wang X, Wei S, Chen J, Feng L. Epidemiology and vaccine of porcine epidemic diarrhea virus in China: a mini-review. J Vet Med Sci 2016; 78:355-63. [PMID: 26537549 PMCID: PMC4829501 DOI: 10.1292/jvms.15-0446] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/22/2015] [Indexed: 01/12/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is an intestinal infectious disease caused by porcine epidemic diarrhea virus (PEDV); manifestations of the disease are diarrhea, vomiting and dehydration. Starting from the end of 2010, a PED outbreak occurred in several pig-producing provinces in southern China. Subsequently, the disease spread throughout the country and caused enormous economic losses to the pork industry. Accumulating studies demonstrated that new PEDV variants that appeared in China were responsible for the PED outbreak. In the current mini-review, we summarize PEDV epidemiology and vaccination in China.
Collapse
Affiliation(s)
- Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing 163319, P.R. China
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin 150001, P.R. China
| | - Xinyu Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing 163319, P.R. China
| | - Shan Wei
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing 163319, P.R. China
| | - Jianfei Chen
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin 150001, P.R. China
| | - Li Feng
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin 150001, P.R. China
| |
Collapse
|
34
|
Identification and Comparison of Receptor Binding Characteristics of the Spike Protein of Two Porcine Epidemic Diarrhea Virus Strains. Viruses 2016; 8:55. [PMID: 26907329 PMCID: PMC4810246 DOI: 10.3390/v8030055] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/04/2016] [Accepted: 02/16/2016] [Indexed: 12/28/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of Alphacoronavirus, has caused huge economic losses for the global pork industry recently. The spike (S) protein mediates PEDV entry into host cells. Herein, we investigated the interactions between the S protein and its receptor porcine aminopeptidase N (pAPN) or co-receptor sugars. The C-terminal domain (CTD) of the S1 domain is bound to pAPN. The prototype strain demonstrated similar receptor-binding activity compared with the variant field isolate. Three loops at the tips of the β-barrel domains did not play crucial roles in the PEDV S-pAPN association, indicating that PEDV conforms to a different receptor recognition model compared with transmissible gastroenteritis virus (TGEV), porcine respiratory CoV (PRCV), and human coronavirus NL63 (HCoV-NL63). The N-terminal domain (NTD) of the PEDV S1 domain could bind sugar, a possible co-receptor for PEDV. The prototype strain exhibited weaker sugar-binding activity compared with the variant field isolate. Strategies targeting the receptor binding domain (RBD) may be helpful for developing vaccines or antiviral drugs for PEDV. Understanding the differences in receptor binding between the prototype and the variant strains may provide insight into PEDV pathogenesis.
Collapse
|
35
|
Kim YK, Cho YY, An BH, Lim SI, Lim JA, Cho IS, Le VP, An DJ. Molecular characterization of the spike and ORF3 genes of porcine epidemic diarrhea virus in the Philippines. Arch Virol 2016; 161:1323-8. [PMID: 26801789 DOI: 10.1007/s00705-016-2758-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 01/08/2016] [Indexed: 11/29/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of swine. In the present study, we analyzed the spike genes and ORF3 genes of seven PEDV strains detected in Philippine pigs in June 2014. There are four major epitope regions in the spike glycoprotein: a CO-26K equivalent (COE) domain, SS2 and SS6 epitopes, and an epitope region recognized by the 2C10 monoclonal antibody. Analysis of Philippine strains revealed amino acid substitutions in the SS6 epitope region (LQDGQVKI to SQSGQVKI) of the S1 domain. Substitutions were also detected in the 2C10 epitope region (GPRLQPY to GPRFQPY) in the cytoplasmic domain. Phylogenetic analysis of the complete spike gene sequences from the seven strains revealed that they clustered within the G2 group but were distantly related to the North American and INDELs clusters. Interestingly, these strains were close to Vietnamese PEDVs on the ORF3 genetic tree and showed high (97.0-97.6 %) sequence identity to ORF3 genes at the nucleotide level.
Collapse
Affiliation(s)
- Yong Kwan Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-824, Republic of Korea
| | - Yoon-Young Cho
- Virus Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-824, Republic of Korea
| | - Byung-Hyun An
- Applied Chemistry and Biological Engineering, Ajou University, Suwon, 443-749, Republic of Korea
| | - Seong-In Lim
- Virus Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-824, Republic of Korea
| | - Ji-Ae Lim
- Virus Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-824, Republic of Korea
| | - In-Soo Cho
- Virus Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-824, Republic of Korea
| | - Van Phan Le
- College of Veterinary Medicine, Vietnam National University of Agriculture (VNUA), Hanoi, Vietnam
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-824, Republic of Korea.
| |
Collapse
|
36
|
Sung MH, Deng MC, Chung YH, Huang YL, Chang CY, Lan YC, Chou HL, Chao DY. Evolutionary characterization of the emerging porcine epidemic diarrhea virus worldwide and 2014 epidemic in Taiwan. INFECTION GENETICS AND EVOLUTION 2015; 36:108-115. [PMID: 26375730 PMCID: PMC7106162 DOI: 10.1016/j.meegid.2015.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/03/2015] [Accepted: 09/12/2015] [Indexed: 11/16/2022]
Abstract
Since 2010, a new variant of PEDV belonging to Genogroup 2 has been transmitting in China and further spreading to the Unites States and other Asian countries including Taiwan. In order to characterize in detail the temporal and geographic relationships among PEDV strains, the present study systematically evaluated the evolutionary patterns and phylogenetic resolution in each gene of the whole PEDV genome in order to determine which regions provided the maximal interpretative power. The result was further applied to identify the origin of PEDV that caused the 2014 epidemic in Taiwan. Thirty-four full genome sequences were downloaded from GenBank and divided into three non-mutually exclusive groups, namely, worldwide, Genogroup 2 and China, to cover different ranges of secular and spatial trends. Each dataset was then divided into different alignments by different genes for likelihood mapping and phylogenetic analysis. Our study suggested that both nsp3 and S genes contained the highest phylogenetic signal with substitution rate and phylogenetic topology similar to those obtained from the complete genome. Furthermore, the proportion of nodes with high posterior support (posterior probability > 0.8) was similar between nsp3 and S genes. The nsp3 gene sequences from three clinical samples of swine with PEDV infections were aligned with other strains available from GenBank and the results suggested that the virus responsible for the 2014 PEDV outbreak in Taiwan clustered together with Clade I from the US within Genogroup 2. In conclusion, the current study identified the nsp3 gene as an alternative marker for a rapid and unequivocal classification of the circulating PEDV strains which provides complementary information to the S gene in identifying the emergence of epidemic strain resulting from recombination. Both nsp3 and S genes revealed the phylogeny similar to those obtained from the complete genome. Nsp3 gene could assist to identify the emergence of epidemic strain resulting from recombination. The sequences from the 2014 PEDV outbreak in Taiwan clustered with Clade I viral sequences from the US within Genogroup 2.
Collapse
Affiliation(s)
- Ming-Hua Sung
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; Taichung City Animal Protection and Health Inspection Office, Taichung 408, Taiwan
| | - Ming-Chung Deng
- Animal Health Research Institute, Council of Agriculture, New Taipei City 25158, Taiwan
| | - Yi-Hsuan Chung
- Taichung City Animal Protection and Health Inspection Office, Taichung 408, Taiwan
| | - Yu-Liang Huang
- Animal Health Research Institute, Council of Agriculture, New Taipei City 25158, Taiwan
| | - Chia-Yi Chang
- Animal Health Research Institute, Council of Agriculture, New Taipei City 25158, Taiwan
| | - Yu-Ching Lan
- Department of Health Risk Management, School of Public Health, China Medical University, Taichung, Taiwan
| | - Hsin-Lin Chou
- Department of Health Risk Management, School of Public Health, China Medical University, Taichung, Taiwan
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
37
|
Song D, Moon H, Kang B. Porcine epidemic diarrhea: a review of current epidemiology and available vaccines. Clin Exp Vaccine Res 2015; 4:166-76. [PMID: 26273575 PMCID: PMC4524901 DOI: 10.7774/cevr.2015.4.2.166] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/20/2015] [Accepted: 06/25/2015] [Indexed: 11/23/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), an Alphacoronavirus in the family Coronaviridae, causes acute diarrhea, vomiting, dehydration, and high mortality rates in neonatal piglets. PEDV can also cause diarrhea, agalactia, and abnormal reproductive cycles in pregnant sows. Although PEDV was first identified in Europe, it has resulted in significant economic losses in many Asian swine-raising countries, including Korea, China, Japan, Vietnam, and the Philippines. However, from April 2013 to the present, major outbreaks of PEDV have been reported in the United States, Canada, and Mexico. Moreover, intercontinental transmission of PEDV has increased mortality rates in seronegative neonatal piglets, resulting in 10% loss of the US pig population. The emergence and re-emergence of PEDV indicates that the virus is able to evade current vaccine strategies. Continuous emergence of multiple mutant strains from several regions has aggravated porcine epidemic diarrhea endemic conditions and highlighted the need for new vaccines based on the current circulating PEDV. Epidemic PEDV strains tend to be more pathogenic and cause increased death in pigs, thereby causing substantial financial losses for swine producers. In this review, we described the epidemiology of PEDV in several countries and present molecular characterization of current strains. We also discuss PEDV vaccines and related issues.
Collapse
Affiliation(s)
- Daesub Song
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong, Korea
| | - Hyoungjoon Moon
- Research Unit, Green Cross Veterinary Products, Yongin, Korea
| | - Bokyu Kang
- Research Unit, Green Cross Veterinary Products, Yongin, Korea
| |
Collapse
|
38
|
Chiou HY, Huang YL, Deng MC, Chang CY, Jeng CR, Tsai PS, Yang C, Pang VF, Chang HW. Phylogenetic Analysis of the Spike (S) Gene of the New Variants of Porcine Epidemic Diarrhoea Virus in Taiwan. Transbound Emerg Dis 2015; 64:157-166. [PMID: 25903998 DOI: 10.1111/tbed.12357] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Indexed: 11/28/2022]
Abstract
New variants of porcine epidemic diarrhoea virus (PEDV), which emerged in Taiwan in late 2013, have caused a high morbidity and mortality in neonatal piglets. To investigate the molecular characteristics of the spike (S) gene of the emerging Taiwan PEDV strains for a better understanding of the genetic diversity and relationship among the Taiwan new variants and the global PEDVs, full-length S genes of PEDVs from nine 1-7 day-old piglets from three pig farms in the central and southern Taiwan were sequenced and analysed. The result of phylogenetic analysis of the S gene showed that all the Taiwan PEDV strains were closely related to the non-S INDEL strains from US, Canada and China, suggesting a common ancestor for these strains. As compared with the historic PEDVs and CV777-based vaccine strains, the nine Taiwan PEDV variants shared almost the same genetic signatures as the global non-S INDEL strains, including a series of insertions, deletions and mutations in the amino terminal as well as identical mutations in the neutralizing epitopes of the S gene. The high similarity of the S protein among the Taiwan and the globally emerged non-S INDEL PEDV strains suggests that the Taiwan new variants may share similar pathogenesis and immunogenicity as the global outbreak variants. The development of a novel vaccine based on the Taiwan or the global non-S INDEL strains may be contributive to the control of the current global porcine epidemic diarrhoea outbreaks.
Collapse
Affiliation(s)
- H-Y Chiou
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Y-L Huang
- Animal Health Research Institute, Council of Agriculture, Tamsui, New Taipei City, Taiwan
| | - M-C Deng
- Animal Health Research Institute, Council of Agriculture, Tamsui, New Taipei City, Taiwan
| | - C-Y Chang
- Animal Health Research Institute, Council of Agriculture, Tamsui, New Taipei City, Taiwan
| | - C-R Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - P-S Tsai
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - C Yang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - V F Pang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - H-W Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
39
|
Kim YK, Lim SI, Lim JA, Cho IS, Park EH, Le VP, Hien NB, Thach PN, Quynh DH, Vui TQ, Tien NT, An DJ. A novel strain of porcine epidemic diarrhea virus in Vietnamese pigs. Arch Virol 2015; 160:1573-7. [PMID: 25864174 DOI: 10.1007/s00705-015-2411-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/28/2015] [Indexed: 10/23/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and dehydration in suckling pigs and has caused high rates of death among piglets and substantial economic loss in Vietnam since 2009. To investigate the genotypes of prevailing PEDVs, intestinal and fecal samples from piglets from central and northern Vietnam were collected and analyzed. Phylogenetic analysis of the nucleotide sequences of complete spike genes of PEDVs from Vietnam resulted in the identification of two divergent groups. PEDVs (HUA-PED45 and HUA-PED47) belonged to the G2b group, along with Chinese, US, and Korean strains occurring at the end of 2010, in May 2013 and in November 2013, respectively. Six strains from the Quang Tri region were assigned to the G1b group, along with Chinese and US strains. The Vietnamese PEDVs detected in infected piglets had a nationwide distribution and belonged to the G2b and G1b genotypes.
Collapse
Affiliation(s)
- Yong Kwan Kim
- Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-824, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Collin EA, Anbalagan S, Okda F, Batman R, Nelson E, Hause BM. An inactivated vaccine made from a U.S. field isolate of porcine epidemic disease virus is immunogenic in pigs as demonstrated by a dose-titration. BMC Vet Res 2015; 11:62. [PMID: 25881296 PMCID: PMC4404228 DOI: 10.1186/s12917-015-0357-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/10/2015] [Indexed: 11/10/2022] Open
Abstract
Background Porcine epidemic diarrhea virus (PEDV), a highly pathogenic and transmissible virus in swine, was first detected in the U.S. in May, 2013, and has caused tremendous losses to the swine industry. Due to the difficulty in isolating and growing this virus in cell culture, few vaccine studies using cell culture propagated PEDV have been performed on U.S. strains in pigs. Therefore, the objective of this study was to evaluate the humoral immune response to the selected inactivated PEDV vaccine candidate in a dose-titration manner. Results PEDV was isolated from a pig with diarrhea and complete genome sequencing found >99% nucleotide identity to other U.S. PEDV. Inactivated adjuvanted monovalent vaccines were administered intramuscularly to five week old pigs in a dose titration experimental design, ranging from 6.0-8.0 log10 tissue culture infective dose (TCID50/mL), to evaluate immunogenicity using a fluorescent foci neutralization assay (FFN), fluorescent microsphere immunoassay (FMIA), and enzyme-linked immunosorbent assay (ELISA) on sera. Pigs vaccinated with 8.0 log10 TCID50/mL inactivated virus showed significantly higher FFN titers as well as FMIA and ELISA values than 6.0 log10 TCID50/mL vaccinates and the negative controls. Conclusions These results demonstrate the immunogenicity of a PEDV inactivated viral vaccine with a U.S. strain via dose-titration. A future vaccination-challenge study would illustrate the efficacy of an inactivated vaccine and help evaluate protective FFN titers and ELISA and FMIA responses.
Collapse
Affiliation(s)
- Emily A Collin
- Newport Laboratories Inc., Worthington, MN, USA. .,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA. .,Present Address: Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA.
| | | | - Faten Okda
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA. .,National Research Center, Giza, Egypt.
| | - Ron Batman
- Newport Laboratories Inc., Worthington, MN, USA.
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA.
| | - Ben M Hause
- Newport Laboratories Inc., Worthington, MN, USA. .,Present Address: Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
41
|
Genomic and epidemiological characteristics provide new insights into the phylogeographical and spatiotemporal spread of porcine epidemic diarrhea virus in Asia. J Clin Microbiol 2015; 53:1484-92. [PMID: 25694517 DOI: 10.1128/jcm.02898-14] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 02/07/2015] [Indexed: 01/21/2023] Open
Abstract
Porcine epidemic diarrhea has become pandemic in the Asian pig-breeding industry, causing significant economic loss. In the present study, 11 complete genomes of porcine epidemic diarrhea virus (PEDV) field isolates from China were determined and analyzed. Frequently occurring mutations were observed, which suggested that full understanding of the genomic and epidemiological characteristics is critical in the fight against PEDV epidemics. Comparative analysis of 49 available genomes clustered the PEDV strains into pandemic (PX) and classical (CX) groups and identified four hypervariable regions (V1 to V4). Further study indicated key roles for the spike (S) gene and the V2 region in distinguishing between the PX and CX groups and for studying genetic evolution. Genotyping and phylogeny-based geographical dissection based on 219 S genes revealed the complexity and severity of PEDV epidemics in Asia. Many subgroups have formed, with a wide array of mutations in different countries, leading to the outbreak of PEDV in Asia. Spatiotemporal reconstruction based on the analysis suggested that the pandemic group strains originated from South Korea and then extended into Japan, Thailand, and China. However, the novel pandemic strains in South Korea that appeared after 2013 may have originated from a Chinese variant. Thus, the serious PED epidemics in China and South Korea in recent years were caused by the complex subgroups of PEDV. The data in this study have important implications for understanding the ongoing PEDV outbreaks in Asia and will guide future efforts to effectively prevent and control PEDV.
Collapse
|
42
|
Abstract
In the last decade, many porcine epidemic diarrhoea (PED) outbreaks have been reported by several countries in Asia whereas only a few Member States of the European Union (EU) have reported PED clinical cases and/or PED virus (PEDV)-seropositive animals. This alphacoronavirus was first reported in the USA in May 2013, followed by rapid spread throughout the country and outbreaks reported by several countries in the Americas. The recent PEDV-EU isolates have high level of sequence identity to PEDV-Am isolates. Based on nucleotide sequencing, multiple variants of PEDV are circulating in Europe, the Americas and Asia but any difference in virulence and antigenicity is currently unknown. Serological cross-reactivity has been reported between PEDV isolated in Europe and in the Americas; however no data regarding cross-protection are available. The impact of different PEDV strains is difficult to compare between one country and another, since impact is dependent not only on pathogenicity but also on factors such as biosecurity, farm management, sanitary status or herd immune status. However, the clinical signs of PEDV infections in naive pigs are similar in different countries with mortalities up to 100% in naive newborn piglets. The impact of recently reported PED outbreaks in Asia and the USA seems to be more severe than what has been described in Europe. Infected animals, faeces, feed and objects contaminated with faeces are matrices that have been reported to transmit PEDV between farms. Infectious PEDV has been detected in spray-dried porcine plasma (SDPP) in one study but the origin of the infectious PEDV in SDPP is not clear. Detection of porcine deltacoronavirus (PDCoV) has been reported in a few countries but only limited testing has been done. Based on the currently available information, it seems that PDCoV would have a lower impact than PEDV.
Collapse
|
43
|
Chen Y, Shi Y, Deng H, Gu T, Xu J, Ou J, Jiang Z, Jiao Y, Zou T, Wang C. Characterization of the porcine epidemic diarrhea virus codon usage bias. INFECTION GENETICS AND EVOLUTION 2014; 28:95-100. [PMID: 25239728 PMCID: PMC7185563 DOI: 10.1016/j.meegid.2014.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 11/15/2022]
Abstract
Codon usage bias of porcine epidemic diarrhea virus is low. Mutational bias and natural selection pressure influence codon usage bias of porcine epidemic diarrhea virus. Natural selection plays an increasingly significant role during evolution of porcine epidemic diarrhea virus.
Porcine epidemic diarrhea virus (PEDV) has been responsible for several recent outbreaks of porcine epidemic diarrhea (PED) and has caused great economic loss in the swine-raising industry. Considering the significance of PEDV, a systemic analysis was performed to study its codon usage patterns. The relative synonymous codon usage value of each codon revealed that codon usage bias exists and that PEDV tends to use codons that end in T. The mean ENC value of 47.91 indicates that the codon usage bias is low. However, we still wanted to identify the cause of this codon usage bias. A correlation analysis between the codon compositions (A3s, T3s, G3s, C3s, and GC3s), the ENC values, and the nucleotide contents (A%, T%, G%, C%, and GC%) indicated that mutational bias plays role in shaping the PEDV codon usage bias. This was further confirmed by a principal component analysis between the codon compositions and the axis values. Using the Gravy, Aroma, and CAI values, a role of natural selection in the PEDV codon usage pattern was also identified. Neutral analysis indicated that natural selection pressure plays a more important role than mutational bias in codon usage bias. Natural selection also plays an increasingly significant role during PEDV evolution. Additionally, gene function and geographic distribution also influence the codon usage bias to a degree.
Collapse
Affiliation(s)
- Ye Chen
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Yuzhen Shi
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Hongjuan Deng
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Ting Gu
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Jian Xu
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Jinxin Ou
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Zhiguo Jiang
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Yiren Jiao
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Tan Zou
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Chong Wang
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China.
| |
Collapse
|
44
|
Hao J, Xue C, He L, Wang Y, Cao Y. Bioinformatics insight into the spike glycoprotein gene of field porcine epidemic diarrhea strains during 2011-2013 in Guangdong, China. Virus Genes 2014; 49:58-67. [PMID: 24771495 PMCID: PMC7088867 DOI: 10.1007/s11262-014-1055-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/06/2014] [Indexed: 10/27/2022]
Abstract
Three strains of porcine epidemic diarrhea virus (PEDV) were isolated from dead or diseased pigs at different swine farms in Guangdong during 2011-2013, and their S genes were sequenced. In the same period, seven PEDV strains were also isolated in Guangdong by other laboratories. The spike sequences of 10 Guangdong isolates were compared with vaccine strains and reference pathogenic isolates using six bioinformatics tools. The results revealed that 10 Guangdong strains, excluding strain GDS03, had distinct characteristics in terms of primary structure, secondary structure, high-specificity N-glycosylation sites, potential phosphorylation sites, and palmitoylation sites. Phylogenetic analysis also confirmed these findings and revealed that all PEDV strains were clustered into three distinct groups. Ten Guangdong strains, not including GDS03, belong to Group 1, whereas four vaccine strains and GDS03 belong to Group 3, which is evolutionarily distant from Group 1. Alignment analysis of the neutralizing region amino acid sequences indicated that the amino acid substitutions of Y/D766S, T549S, and G594S that are present in the Guangdong strains, not including GDS03, were a sign of predominant genetic changes among the isolated strains. GDS03 is closely related to the 83P-5 vaccine strain, which suggests that it might represent re-isolation of the vaccine strain or vaccine variants. Taken together, these results indicate that there have been predominant new strains circulating in Guangdong from 2011 to 2013, and the circulating PEDV strains have a genetic composition that is distant from reference strains, especially the vaccine strains; however, the vaccinations might also provide some level of cross-protection, as there have been no changes in the neutralizing epitopes of SS2 and 2C10. This explains why there have been constant but infrequent outbreaks recently in comparison to late 2010 in which PEDV outbreaks were more frequent and severe. In addition, the USA-Colorado-2013 strain had the same amino acid substitutions in the neutralizing regions as the Guangdong strains except GDS03, which suggests that the information and strategies in this study may play role in PEDV variant research in other countries.
Collapse
Affiliation(s)
- Jianwei Hao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006 People’s Republic of China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006 People’s Republic of China
| | - Liangliang He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006 People’s Republic of China
| | - Yang Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006 People’s Republic of China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006 People’s Republic of China
| |
Collapse
|